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Abstract: The reconstruction in MRI assumes a uniform radio-frequency field. However, this is
violated due to coil field nonuniformity and sensitivity variations. In whole-body MRI, the nonuni-
formities are more complex due to the imaging with multiple coils that typically have different
overall sensitivities that result in sharp sensitivity changes at the junctions between adjacent coils.
These lead to images with anatomically inconsequential intensity nonuniformities that include jump
discontinuities of the intensity nonuniformities at the junctions corresponding to adjacent coils. The
body is also imaged with multiple contrasts that result in images with different nonuniformities.
A method is presented for the joint intensity uniformity restoration of two such images to achieve
intensity homogenization. The effect of the spatial intensity distortion on the auto-co-occurrence
statistics of each image as well as on the joint-co-occurrence statistics of the two images is modeled in
terms of Point Spread Function (PSF). The PSFs and the non-stationary deconvolution of these PSFs
from the statistics offer posterior Bayesian expectation estimates of the nonuniformity with Bayesian
coring. Subsequently, a piecewise smoothness constraint is imposed for nonuniformity. This uses
non-isotropic smoothing of the restoration field to allow the modeling of junction discontinuities. The
implementation of the restoration method is iterative and imposes stability and validity constraints
of the nonuniformity estimates. The effectiveness and accuracy of the method is demonstrated
extensively with whole-body MRI image pairs of thirty-one cancer patients.

Keywords: whole-body MRI; bicontrast intensity homogenization; co-occurrence statistics;
Bayesian coring estimate; anisotropic smoothing; minimum description length principle

1. Introduction

Whole body (WB) MRI can be used to provide information about a variety of condi-
tions. It has several applications for cancer imaging and patient monitoring. Some of these
applications are metastases to the bones and other organs [1], refractory leukemia [2], and
the ability to replace a PET/CT examination with a PET/MRI examination [3]. It is also
used for general examination of asymptomatic individuals with predisposition to cancer [4].
Other applications are the imaging of extensive properties throughout the body such as fat
distribution and for the imaging of metabolic disorders [5,6]. A more recent application
is the treatment of inflammation that can also be extensive throughout the body [7]. The
long-term objective for this type of imaging is to become a one-stop shop examination for
the whole body as well as for the health status of as many individual organs as necessary.

However, WB-MRI imaging methodology and its uses are still under development.
Hence, the acquired images suffer from several acquisition artifacts. These hamper not
only the computerized analysis and quantification of the 3D data, but even the visual
interpretation of the data by radiologists. One of the main imaging artifacts is the spatial
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intensity inhomogeneities throughout the human body. The imaging of the whole body
can be performed with multiple coils. The images from individual coils suffer from smooth
intensity nonuniformities that stem from the inhomogeneities of the radio-frequency (RF)
field within the subject. The overall field also suffers from sharp changes in the inhomo-
geneities at the junctions between regions corresponding to adjacent coils. This is because
the MRI signal amplitude across coils is not standardized and inevitably varies between
the coils used due to multiple factors. There have been attempts to calibrate for smooth
coil nonuniformities in MRI with physical phantoms and parametrized acquisitions [8,9].
In particular, in whole-body MRI, there is a method for station-to-station adapted B+1
shimming [10]. However, these methods require additional physical acquisitions that are
time-consuming and are valid for only particular MRI sequences and anatomies.

Several general postacquisition restoration methods have also been proposed. Postac-
quisition methods for intensity uniformity restoration benefit from regularity properties of
the anatomy and of the physical radiofrequency (RF) field as well as from general prior
knowledge of the imaging process. They are applicable to a range of MRI contrasts and
anatomies. In general, they assume that the nonuniformity is smooth and that the under-
lying anatomic image is the union of piecewise constant intensity regions corresponding
to different uniform tissues with uniform intensity transition magnitudes between them.
Some postacquisition methods encode this directly using the total variation in space [11,12].
Piecewise anatomic constancy has also been encoded with local fuzzy C-means intensity
clustering [13]. This method is also combined with level sets for spatial segmentation [14,15].
The entropy for the sharpness of the histogram has also been used [16]. A more general,
non-parametric approach is the Bayesian coring framework. The image histogram has been
analyzed with coring to remove noise [17,18]. Coring has been adapted for low-frequency
noise to offer a smooth nonuniformity [19]. Current postacquisition methodologies in
medical image analysis cannot accommodate sharp changes between intensity nonunifor-
mities of different regions. Moreover, the direct histogram-based corrections can lead to an
unstable dynamic range and hence unstable correction as well [19].

A clinical imaging protocol consists of multiple sequences providing images that suffer
from different nonuniformities. Postacquisition methods have been developed for their
joint restoration. A data dependent method fuses MRI with PET data [20]. A variational
method preserves the differential structure of two images [21] and enforces a smooth
nonuniformity. A statistical method minimizes the entropy of the joint histogram of two
images [22]. Another method restores multiple co-registered images by minimizing the
sum of the entropies of voxelwise stack vectors throughout an image [23].

In general, there has been significantly more work on homogenization of the intensities
of an image rather than on standardization of the intensities of different parts of an image
or standardization of intensities between several images. There have been efforts to account
for the lack of intensity standardization in MRI by using physical arguments to compute
physical MR imaging parameters of the tissues. These methods reconstruct intermediate
homogeneous physical images [24,25]. Several postacquisition restoration methods have
also been proposed. Histograms of pairs of images have been matched with piecewise linear
transformations for brain images [26]. The difference between intensity ranges of different
slices in a scan has been modeled with a multiplicative factor [27]. This multiplicative
factor can vary for different slices. Histograms of images that can even be multicontrast
have been normalized with the Kullbach–Leibler divergence [28]. A comparative study
between different intensity standardization methods has found that more sophisticated
methods that consider all images simultaneously either directly or at a pixel level improve
performance [29]. Another study suggested that it is more appropriate to first perform
intensity inhomogeneity correction and then to perform intensity standardization [30].

In WB-MRI, intensity standardization and intensity homogenization are intertwined.
Thus, there has been some work on intensity standardization between different parts of
an image and between different WB-MRI scans. A simple method identifies peak and
trough features in the histograms of different coronal sections or stations. It then fits a
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continuum for these histogram features along the sections and stations [31]. However,
different organs have different histograms, and organs can also contain pathologies that
violate this continuity assumption. In a more comprehensive method, the joint intensity
histogram of pairs of acquired images is non-rigidly registered to the joint histogram of
reference images of the same contrasts to offer a vector field mapping the intensities to
their corrected values [32,33]. Other methods are correcting based on overlapping regions
of single-image blocks [34] or of their extension for multispectral image blocks [35]. This
method is extended even further to start with a bias correction for the image of each coil
separately using N4 [36,37]. It then continues to register the joint histograms of consecutive
stations using their overlap as well as to register to a median station histogram to perform
intensity standardization for the whole image [37].

Beyond smooth intensity nonuniformities, the method in this work needs to and does
represent the abrupt changes in the intensity inhomogeneity field corresponding to the
junctions between consecutive coils. The formation and preservation of discontinuities of
the inhomogeneities under smoothing has been achieved with inhomogeneous diffusion
also known as anisotropic diffusion. There has been a significant amount of work on these
types of methods that preserve discontinuities across regions or equivalently smooth only
within regions [38–42]. An early, but yet extensive, method for piecewise image smoothing
and simultaneous noise estimation is based on the Minimum Description Length (MDL)
principle formulation [41,42]. The method allows the separation of an image into piecewise
smooth regions [41,42]. In effect, these methods are similar to the result of the solution of
appropriate Euler–Lagrange partial differential equations [41,42]. Along the same lines,
methods for solving geometric partial differential equations over the image domain have
also been proposed [39,40]. Other early methods can separate the image only into piecewise
constant components [38]. Image piecewise constancy has also been enforced with the L1
norm constraint [43–45].

Some of the methods for anisotropic diffusion have been applied directly to biomedical
MRI images for denoising [46,47]. Also, image piecewise smoothness has been combined
with smoothness of the nonuniformity, e.g., retinex [11,12]. However, direct anisotropic
diffusion of an image only assumes high-frequency spatial noise and incorrectly inter-
prets shades and the discontinuities they can create as being due to image structure or
anatomy [42,48]. Hence, in biomedical MRI, anisotropic diffusion methods interpret re-
gions with different shading and abrupt transitions between them as the result of tissue
differences. The proposed method addresses this limitation by applying the anisotropic
diffusion to the shading nonuniformity artifact instead of applying it directly to the image.
It thus obtains a piecewise smooth nonuniformity field.

The proposed postacquisition method performs a joint restoration of two images of the
same anatomic region with different contrasts. The method uses a non-parametric Bayesian
coring formulation for intensity restoration. This is applied to the statistical representation
of the auto-co-occurrence statistics of each image as well as to the joint-co-occurrence statis-
tics between the two images [49–52]. The effects of the intensity distortions on both types
of co-occurrence statistics are modeled and restored. Their back-projection to the images
offer rough initial estimates of the spatial nonuniformity corrections. The initial nonuni-
formity corrections are subsequently smoothed anisotropically to offer piecewise smooth
nonuniformity corrections. Thus, the proposed restoration method can accommodate not
only smooth intensity nonuniformities, but also sharp changes between the smooth inten-
sity nonuniformities at the junctions between regions corresponding to consecutive coils.
The MDL principle method that allows piecewise smoothness is used [41,42]. Additional
constraints have also been imposed for the stability of the method. The proposed method
has been tested and demonstrated extensively with anatomic WB-MRI datasets of 31 breast
cancer patients.
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2. Patient and Data Description
2.1. Study Design and Ethical Approval

The data are obtained from oncological clinical imaging of breast cancer or prostate
cancer patients examined with WB-MRI imaging for possible bone metastases. The imaging
data are for years between 2011 and 2019. The data were analyzed retrospectively, fully
anonymized, in accordance with the ethical standards laid down in the 1964 Declaration of
Helsinki and its amendments, the European Regulation 536/2014 and its latest addendum
ICH GCP E6(R2)/2017, as well as with the guidelines of the Institutional Review Board (IRB)
for clinical studies of the University of Jena (IRB number 2019-1452-Daten) (all datasets
are anonymized and their sharing is enabled by the IRB licence. Sample datasets or all the
datasets are available upon request (email) from the corresponding author).

2.2. Patients and Data Description

A total of 39 WB-MRI datasets were considered from an equal number of patients.
The patient data were extracted from the database of the Suedharz Hospital Nordhausen
for years 2011–2019 with a randomizer (https://www.randomizer.org/, last accessed
on 9 February 2023). In the study, we randomly included 23 females (64.22 ± 7.61 y.o.),
and 17 males (66.88 ± 6.74 y.o.); Student’s t-test, p = 0.51; normality was tested with the
Kolmogorov–Smirnov test, p > 0.05. No exclusion criteria were applied at this phase for
the data.

The clinical images were acquired with a Philips Ingenia Suite 3.0 T or a 1.5 T static field
strength using a dedicated dStreamWholeBody coil (Philips Healthcare Medical Systems,
Hamburg, Germany) [53]. The protocol consists, among other sequences, of the two coronal
sequences that in brief can be described as follows:

1. A T1-weighted (T1w) sequence in a Turbo Spin Echo (TSE) or a Fast Field Echo
(FFE) technique,

2. A Short Tau Inversion Recovery (STIR): This is an inverted pulse fat suppression
method that, apart from the fat suppression, prolongs the T1w relaxation, and thus
reduces the T1w signal. It furthermore prolongs the T2w relaxation, thus enhancing
the T2w signal. All in all, STIR has an additive effect of enhancing the T2w signal.
Thus, the STIR sequence offers T1 weighted (T1w) and T2 weighted (T2w) images,
(T1w + T2w) images.

The patient images from these two anatomic sequences are analyzed in this work.
Some of the most important imaging protocol parameters in Table 1 are the same as those
that have already been previously used [53]. As can be seen in Table 1, the 3D voxels in the
datasets have anisotropic resolution. The resolution in the frontal (coronal) plane is higher
than that along the front–back sagittal axis.

The complete WB-MRI images are an axial, y, concatenation of images from different
coils placed along the patient. The body imaging data in this study were acquired with
five such coils. Thus, the body image axial size is five times the axial size of the images
described in Table 1. Since the images of the different coils are concatenated along the
axial body direction, y, the junction planes between them are transverse on (x, z). The
intensity nonuniformities of individual coils are smooth. However, the nonuniformities at
the junctions between different coils are sharp. The precise axial locations where images
from different coils are joined are not preset and depend on the exact placement of the coils
that can vary axially along the different patients.

2.3. Preparation of the Data

Both images, T1w TSE and T1w + T2w STIR, are denoised separately with median
filtering. The denoised images are resampled to have identical spatial resolution that is
chosen to be the lowest resolution of the two images. The resulting images may have
different sizes. The largest image is cropped to that of the smallest along all axes so that
the two images have the same size. In terms of intensity resolution, the acquired MRI
images have four bytes per pixel. To save space and to increase processing speed, after

https://www.randomizer.org/
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limiting the dynamic range for the intensities, the number of bytes per pixel is reduced to
two for both images. The common and simpler 3D grid and resolution for the two images
simplifies significantly the subsequent image processing steps. The effect of the decrease in
resolution of one of the two images is negligible without decreasing the accuracy of the
nonuniformity estimation.

Table 1. Acquisition parameters of the imaging sequences for individual coils.

Parameters /
Sequence,
Static Field

T1w TSE
1.5 T

STIR
1.5 T

T1w TSE
3.0 T

STIR
3.0 T

Number of 66 66 60 60
slices

Voxel size 1.17× 1.17 0.95× 0.95 1.02× 1.02 1.04× 1.04
(mm2)

Slice hickness 3 3 3 3
(mm)

Spacing 0.3 0.3 1 1
(slice gap) (mm)

Matrix 215× 188 226× 152 233× 180 151× 148
size

3. Methods
3.1. Spatial and Statistical Image Representation
3.1.1. Spatial Image Representation

The anatomic images of two different contrasts, Ivi(x), where x = (x, y, z) are spatial
coordinates and i = 0, 1, have the same 3D sampling grid. They are assumed, respectively,
to be the product of latent anatomic images Iui(x) with spatial intensity nonuniformities
bi(x) due to MRI radio-frequency inhomogeneities and coils sensitivities. Each image is
also corrupted with additive and independent noise, ni, to produce the image model as

Ivi = bi ⋅ Iui + ni, i = 0, 1, (1)

where ⋅ is the voxelwise product. The first-order term of bi(x) provides a piecewise linear
approximation within a spherical neighborhood N ρ of radius ρ. Median filtering applied
to vi removes high-frequency noise ni.

3.1.2. Statistical Image Representation

The voxelwise probability distributions of Iu(x) and b(x), pu(u(x)) and pb(b(x); 1, σ2
b ),

respectively, are assumed independent. The distortion of the joint intensity statistics is mod-
eled by the non-stationary distribution p(v∣u)(v∣u) = pb(v − u∣u) = pb(v − u; 0, (σbu)2). Thus,
the intensity statistics of v, pv(v), result from the convolution, ∗, pv(v) = p(v∣u)(v∣u)∗pu(u) =
pu(u)∗pb(v− u; 0, (σbu)2). The probability of the distortion is assumed to be bimodal with

one mode for b(x) > 1 and another mode for b(x) < 1 and given by pb(b; 0, σ2
b ) =

G(b;0,σ2
b)

G2(b;0,σ2
b)+ε2

,

where ε2 is a regularization constant.
The statistical representation of images vi are based on their intensities ηi and their

counts within neighborhood Nρ in image space to offer co-occurrence statistics as [49]

Cvivj(vi, vj, ηi, ηj) = Cvivj(ηi, ηj) =

= ∫
x=I−1

vi
(ηi)

⎛

⎝
∫

x′=I−1
vj
(ηj)

(∥x − x′∥2 ≤ ρ)dx′
⎞

⎠
dx, (2)
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where ρ is the radius of the spherical neighborhood considered. The auto-co-occurrences
result from i = j to produce C00 and C11. The joint-co-occurrences are C01. The auto-co-
occurrences are dominated by their diagonal, and thus the diagonal is weighted down
with the sigmoid, 1/(1 + e−(k1∣η0−η1∣+k2)), where k1 and k2 are constants. Examples of the
co-occurrences of pairs of T1w and T2w images are presented in Figures 3 and 5.

3.2. Effect of Spatial Intensity Nonuniformities in Co-Occurrences
3.2.1. Distortion in Co-Occurrences from Spatial Intensity Nonuniformity

The statistics of the products bi.Iui are modeled as the convolutions of Cuiui and Cu0u1

with the respective PSF of the intensity distortions that are non-stationary to account for
the spatial multiplication. The effects of bi in Nρ around x0 are approximated by the zero-
order term b(x0) that scales the auto-co-occurrences of Cuiui radially and the first-order
term ∇b(x)∣x0 that rotates them around the origin in the co-occurrence space [49]. The
PSF affecting Cuiui is represented in polar coordinates (ri, φi). The σri of the PSF is scaled
linearly with ri, σri ∝ ri. The σφ of the PSF increases with ρ, is largest along the diagonal
and is zero along the axes. The application of the PSFs of the distortions to pui(ui) = Cuiui

produce pvi(vi) = Cvivi with convolution

Cvivi(ri, φi) = Cuiui(ri, φi)∗pb(ri; 0, σ2
ri
)∗pb(φi; 0, σ2

φi
), i = 0, 1, (3)

which represents the auto-co-occurrences of the distorted images.
The effects of the zero-order terms of bi on the joint-co-occurrences Cu0u1 of ui are in

Cartesian coordinates. The σηi of the PSFs are linearly related with ηi, σηi ∝ ηi [50]. The
diagonal relation between ηi and ri is used, ηi = ri/

√
2. The application of the PSFs of the

distortions to pu0u1(u0, u1) = Cu0u1 produces pv0v1(v0, v1) = Cv0v1 with convolution

Cv0v1(η0, η1) = Cu0u1(η0, η1)∗pb(η0; (ση0 η0)
2
)∗pb(η1; (ση1 η1)

2
), (4)

which represents the joint-co-occurrences of the distorted images. The PSFs of the distor-
tions are assumed separable.

3.2.2. Restoration from Spatial Non-Uniformity in Co-Occurrences

The Point Spread Function (PSF) for the distortion of the intensity co-occurrences
increases linearly with intensity. Thus, the deconvolution is non-stationary. It appears that
it is difficult to perform non-stationary deconvolution in the Fourier transform domain.
Hence, in the proposed method, this deconvolution is performed directly in the spatial
domain with the Van Cittert algorithm [54]. This is iterative with

pn+1
u = pn

u + β(p0
v − pb∗pn

u), (5)

where β is a regularization parameter, p0
v are the statistics of the original image, and pb is

the distortion PSF. The last iteration provides the estimate p̃u(u).
The Van Cittert deconvolutions are non-stationary for both the radial and the angular

dimensions of the auto-co-occurrences. The restorations of Cvivi provide C̃uiui for i = 0, 1.
The restoration of Cv0v1 provides C̃u0u1 .

3.3. Bayesian Posterior Expectation for the Restoration

An overview of the posterior expectation is presented in Figure 1. The posterior
expectation of the latent intensity, û = E(u∣v), is the minimum mean squared error. The
Bayesian expansion for p(u∣v)(u∣v) produces

û = E(u∣v) =∬
∞

0
p(u∣v)(u∣v)udu =

∬
∞

0 p(v∣u)(v∣u)pu(u)udu

∬
∞

0 p(v∣u)(v∣u)pu(u)du
. (6)
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The likelihood p(v∣u)(v∣u) in Equation (6) is the non-stationary distortion as given in
Section 3.1 for the joint intensity statistics. This expression expanded in Equation (6) also
involves the prior distribution pu(u) of latent image u. This is estimated in Equation (5) with
the deconvolution of the distortion pb(v−u∣u) from the intensity co-occurrence distribution
pv(v), (Cv), to provide the non-parametric prior p̃u(u) = C̃u of u. These two factors are
substituted into Equation (6) to produce

û = E(u∣v) = ∬
∞

0 pb(v − u; 0, (σbu)2) ⋅ p̃u(u) ⋅ udu

∬
∞

0 pb(v − u; 0, (σbu)2) ⋅ p̃u(u)du
. (7)

The magnitude of pb(v − u; (σbu)2) is significant for neighborhood ∆u ∈ Nu in co-
occurrence space and tends to zero for intensities u far from v. The image domain is
discrete and the necessary discretization of û = E(u∣v) in Equation (7) becomes

û = E(u∣v) =
∑∆u∈Nu Pb(∆u; 0, (σbu)2) ⋅ C̃u(u +∆u) ⋅ (u +∆u)

∑∆u∈Nu Pb(∆u; 0, (σbu)2) ⋅ C̃u(u +∆u)
. (8)

The extent of Pb and Nu increases linearly with intensity u.

Posterior
conditional
expectation
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
û = E(u∣v) = ∫

Posterior
probability
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
p(u∣v)(u∣v) .

Variable
for

conditional
expectation

©
u du

Conditional
expectation

followed
by

Bayes’
rule
©
=

∫

Bayes’ rule:
Likelihood
p(v∣u)(v∣u)

=
p(b)(v − u)

=

pb(v − u; 0, (σbu)2)

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹· ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
p(v∣u)(v∣u) .

Bayes’ rule:
Prior from

deconvolution
p̂u(u) ≈ pn+1

u =

pn
u + β(p0

v − pb ∗ pn
u)

³¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
p(u)(u) .

Variable
for

conditional
expectation

©
u du

∫ p(v∣u)(v∣u)p(u)(u)du
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Bayes’ rule:
Marginal likelihood

p(v)

Figure 1. Overview of the non-parametric Bayesian coring derivation of the posterior conditional
expectation. The conditional expectation is further expanded with Bayes’ rule. The expressions for the
prior and the likelihood are then substituted. It provides the intermediate vector field û = E(u∣v, x)
for image restoration.

General Equation (8) for the auto-co-occurrence statistics offers the posterior expec-
tation of the intensities in polar coordinates (r̂i, φ̂i)

T = E((ri, φi)
T ∣(r′i , φ′i)

T) in auto-co-
occurrence neighborhoods ∆ri ∈ Nri and ∆φi ∈ Nφi as

(
r̂i

φ̂i
) =

∑Nri
∑Nφi

Pb
⎛

⎝
(

∆ri

φi
);

⎛

⎝

(σb,ri
ri)

2

σ2
b,φi

⎞

⎠

⎞

⎠
⋅ C̃uiui(

ri +∆ri

φi +∆φi
) ⋅ (

ri +∆ri

φi +∆φi
)

∑Nri
∑Nφi

Pb
⎛

⎝
(

∆ri

φi
);

⎛

⎝

(σb,ri
ri)

2

σ2
b,φi

⎞

⎠

⎞

⎠
⋅ C̃uiui(

ri +∆ri

φi +∆φi
)

, (9)

where Pb(∆ri, φi) is as used in the RHS of Equation (3). Equation (8) for the joint-co-
occurrence statistics provides the posterior expectation of the intensities in Cartesian coordi-
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nates (η̂0, η̂1)
T = E((η0, η1)

T ∣(η′0, η′1)
T) in joint-co-occurrence neighborhoods

∆η0 ∈ Nη0 and ∆η1 ∈ Nη1 with

(
η̂0

η̂1
) =

∑Nη0
∑Nη1

Pb
⎛

⎝
(

∆η0

∆η1
);

⎛

⎝

(σb,η0 η0)
2

(σb,η1
η1)

2
⎞

⎠

⎞

⎠
⋅ C̃u0u1(

η0 +∆η0

η1 +∆η1
) ⋅ (

η0 +∆η0

η1 +∆η1
)

∑Nη0
∑Nη1

Pb
⎛

⎝
(

∆η0

∆η1
);

⎛

⎝

(σb,η0 η0)
2

(σb,η1
η1)

2
⎞

⎠

⎞

⎠
⋅ C̃u0u1(

η0 +∆η0

η1 +∆η1
)

, (10)

where Pb(∆η0, ∆η1) is as used in the RHS of Equation (4).

3.4. Spatial Image Restoration
3.4.1. Back-Projection of Restoration to Space

A scalar gain factor is computed for each intensity co-occurrence. The initial restoration
field, b̂−1, is given by the Bayesian estimate û from Equation (8) with

b̂−1(x) = E(
u(x)
v(x)

∣v(x)) = E(
u(x)∣v(x)

v(x)
) =

û
v

. (11)

This provides a voxelwise restoration factor independent of x. Thus, it is precomputed
and stored in a 2D matrix with axes of sizes equal to the dynamic ranges of the correspond-
ing images. The gain in Equation (11) for Cuiui in Equation (9) becomes Rs

i,t(r, φ) =
r̂i
ri

, i = 0, 1.

The gain for Cu0u1 in Equation (10) becomes Rb
i,t =

η̂i
ηi

, i = 0, 1. They offer 2D restoration
matrices of dimensions equal to the corresponding dynamic ranges.

The intensity co-occurrences index the restoration matrices to provide an initial incre-
mental estimate of the restoration with

b̂−1
i(x) =

1
2

E∆x∈Nρ(Rs
i (vi(x), vi(x +∆x))+ Rb

i (v0(x), v1(x +∆x))). (12)

This offers an initial rough restoration field in an image space.

3.4.2. Anisotropic Smoothing of the Restoration Field

The nonuniformities of individual coils are smooth and, in this case of multiple coils,
they are piecewise smooth due to the differences between the sensitivities of different
coils. In particular, the junctions between the coils are on axial planes (x, z) of the 3D data.
Hence, the nonuniformities on axial planes (x, z) are unaffected and remain smooth. This
is imposed to the initial rough estimates b̂−1(x) with a smooth 2D anisotropic axial spatial
Gaussian filter G(x, z; σ2

s,i). This filtering does not affect the piecewise nonuniformities in
the axial direction resulting from different coils. It produces the restoration fields at this
phase as

W′
i,t(x) = b̂−1

i,t(x)∗G(x, z; σ2
s,i), i = 0, 1. (13)

The application of the restoration fields to the images produces Ivi(x)← Ivi(x)W′
i,t(x).

The piecewise nonuniformity along the axial direction, y, is accounted for with spa-
tially varying inhomogeneous smoothing. The method used is based on the 2D Mini-
mum Description Length (MDL) principle method that has been developed for piecewise
smoothness of image regions [41,42]. In the 2D rectangular image grid, the 8-connected
neighborhood in used. The 2D method considers the anisotropy of the grid. The method
for 2D piecewise smoothness is extended in his work for 3D piecewise smoothness. In
3D, the 26-connected neighborhood is used. The considerations for the anisotropy artifact
of the 8-connected neighborhood in the 2D grid are extended to account for the spatial
anisotropy of the 26-connected neighborhood of the 3D grid used in this work. It considers
the resolution of the 3D grid of the image within the neighborhood of the anisotropic filter.
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The 3D anisotropic smoothing with MDL is applied to Wi,t(x) to offer the final restora-
tion field W. The MDL principle can be formulated equivalently in terms of the Bayesian
Maximum a Posteriori (MAP) estimate. This uses the Bayesian formulation:

P(Wi∣W
′
i ) =

P(W′
i ∣Wi)P(Wi)

P(W′
i )

, i = 0, 1, (14)

where W′
i offers initial rough estimates of the restoration and Wi are the final restoration

fields. In fact, in this case, it is the minimum rather than the maximum of the Bayesian
posterior that is of interest. The MAP strategy is to choose the Wi that minimizes P(Wi∣W′

i ).
That is, the objective is to obtain the MAP estimate that is given by

Ŵi,MAP = arg min
Wi

P(Wi∣W
′
i )

(1)
= arg min

Wi

P(W′
i ∣Wi)P(Wi)

P(W′
i )

(2)
= arg min

Wi
P(W′

i ∣Wi)P(Wi). (15)

Equality (1) in Equation (15) holds from the Bayesian formulation in Equation (14).
Equality (2) in Equation (15) holds from the assumption that the marginal likelihood P(W′

i )

is constant.
The probability of the likelihood P(W′

i ∣Wi) is a Gaussian distribution of the noise
P(W′

i ∣Wi) = ∑x(W′
i −Wi) with a zero mean and variance σ2

W in the spatial nonuniformity.
In the piecewise constant case, the probability of prior for a piecewise constant field Wi is a
Gaussian normal distribution of the length of the boundary between the different regions.
The length of the boundary is P(Wi) = ∑x∑x′(1− δ(Wi(x)−Wi(x′))), where x and x′ are
neighboring spatial locations. Substituting the likelihood and the prior in Equation (15)
provides the MAP estimate as

Ŵi,MAP = arg min
Wi

exp
⎛

⎝
∑
x
(

W′
i −Wi

σW
)

2

+∑
x
∑
x′

(1− δ(Wi(x)−Wi(x′)))
⎞

⎠

(1)
= arg min

Wi

⎛

⎝
∑
x
(

W′
i −Wi

σW
)

2

+∑
x
∑
x′

(1− δ(Wi(x)−Wi(x′)))
⎞

⎠
. (16)

Equality (1) of Equation (16) holds since the logarithm is a monotonic function. The
cost for the piecewise constant case in Equation (16) can be extended for a piecewise linear
field and even for piecewise fields of higher orders [41,42]. In this work, the degree of
smoothness is set to linear.

The implementation of the MDL principle method uses the continuation method to
deal with the discrete δ(⋅) functions with a continuous optimization. That is, the implemen-
tation is iterative with K iterations. The extent of smoothing increases with the number
of iterations K. The result is to obtain the piecewise smooth restoration field Wi(x) for
the nonuniformity.

3.5. Iterative and Stable Estimation of Cumulative Intensity Restoration

The restoration is iterative t = 0,⋯, tmax − 1, where tmax is the maximum number of
iterations. The restoration field is first computed at each iteration, t, with anisotropic axial
Gaussian smoothing of standard deviation that decreases with iterations, t, and is given by

σs = 2σs0(1−
t

tmax − 1
), (17)

where σs0 is a parameter for the spatial planar Gaussian smoothing. This smoothing as
described in Equation (13) provides W′

i,incr,t(x). That is, the axial anisotropic Gaussian
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smoothing at the first iteration t = 0 is maximal and at the last iteration tmax − 1 it is zero,
σs∣t=tmax−1 = 0. It is then anisotropically smoothed with the MDL principle method with
K iterations to provide Wi,incr,t(x). That is, at the last iteration, the smoothing consists
exclusively of MDL principle anisotropic smoothing.

3.5.1. Incremental Nonuniformity Correction Field

As described in Equation (12) for t >= 0, the intensity co-occurrences index the restora-
tion matrices to provide an initial incremental estimate of the restoration with

b̂−1
i,inc,t(x) =

1
2

E∆x∈Nρ(Rs
i,t(vi(x), vi(x +∆x))+ Rb

i,t(v0(x), v1(x +∆x))). (18)

This rough incremental estimate is further processed to compute the incremental
intensity homogeneity field. It is first smoothed with an anisotropic Gaussian of σs,incr,
G(x, z; 0, σ2

s,incr), to provide W′
i,incr,t(x), where a low-value σs,incr is used. It is then filtered

with the MDL anisotropic smoothing method with limited iterations Kincr for the incre-
mental restoration. The anisotropic smoothing offers the final incremental restoration field,
Wi,incr,t(x).

3.5.2. Iterative Estimation of Cumulative Intensity Restoration

At t = 0, the restoration fields are initialized to Wi,cum,t=0(x) = 1, ∀x. The cumulative
restoration at subsequent time steps, t, is the product of the cumulative restoration at the
previous iteration Wi,cum,t−1 of iteration t − 1 with the estimates Wi,incr,t(x) of incremental
restoration at iteration t > 0 to offer the cumulative estimate of the restoration,

W′′
i,cum,t = Wi,cum,t−1 ×Wi,inc,t−1. (19)

The estimates W′′
i,cum,t(x) are smoothed with a spatial Gaussian filter G(x, z; σ2

s,cum) to
offer cumulative restorations

W′
i,cum,t(x) = W′′

i,cum,t(x)∗G(x, z; σ2
s,cum), i = 0, 1, (20)

where σs,cum > σs,incr. The estimates of the field inhomogeneous smoothing are then
piecewise smoothed with the MDL principle method with Kcum > Kincr to produce Wi,cum,t.

The Wi,cum,t are applied to Ivi,t−1 to provide Ivi,t = Iui,t−1 that are the updated estimates
for the latent images.

3.5.3. End Condition for the Iterations

The method runs for a maximum of tmax = 10 iterations. The optimal iteration,
topt, is the one for which the negative of the entropy of the joint intensity co-occurrence
statistics, C01,

H01,t =∑
l,m

C01,t(l, m) log C01,t(l, m), (21)

is maximized. That is, the optimal iteration providing the restored images corresponds to
topt = maxtH01,t.

3.6. Valid Domains in Image Space and Statistics

The MRI acquisition sequences produce he Regions of Interest (ROI) of the images,
IROI,i, with valid signal. They also provide a valid dynamic range with tissues contrasts.
However, the dynamic ranges of the MRI images are not standardized.

3.6.1. Valid Signal Region of Images

Signal nonuniformities, of course, presuppose the presence of a signal and hence only
exist over the signal regions of the images. Thus, the signal regions of the images,IROI,i,
are extracted and further processed to compute the spatial intensity nonuniformities. The
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signal regions are identical for both images. To identify the signal regions, the two images
are added. Otsu’s thresholding [55] applied to their sum image offers the foreground, IFG,
image. This preliminary foreground is morphologically closed with a structuring element,
S . This produces the signal region, the foreground, that is, the Region of Interest (ROI), as
IROI = IFG ●S .

3.6.2. Valid Dynamic Co-Occurrence Ranges in Statistics

The nonuniformities are over the signals regions of the images and affect their dynamic
ranges and contrasts. The upper parts of the images dynamic ranges may correspond to
artifacts and are compressed linearly in the proposed method. To achieve this, reference
intensities ηi,re f for high cumulative percentages, 90%, of the dynamic ranges are com-
puted. The dynamic ranges of the noise are delimited by the minimum signal intensities,
ηi,min = 0.1 × ηi,re f . The dynamic ranges are preserved up to ηi,upp = 1.5 × ηi,re f . Beyond
these values the intensity ranges are compressed linearly up to ηi,max = 3.0 × ηi,re f for
ranges [1.5× η0.9

i , 3.0× η0.9
i ]. The dynamic ranges are scaled linearly so that ηi,max become

intensity 500, that is, ηi,max ↦ 500. This value is a tradeoff between intensity resolution
and computational complexity for processing the statistics. After the intensity scaling, the
direct computation of the statistics from the images would create spikes in the statistics in
cases where a dynamic range is compressed and voids in cases where a dynamic range is
expanded. To avoid these artifacts in the statistics, noise of a very small standard deviation,
0.5, is added to both images.

The intensity ranges of [ηmin
i , ηmax

i ] = [0.1ηi,re f , 3ηi,re f ] are assumed to correspond
to the valid signal regions of the ROIs, IROI,i = 1. The regions in the images ROIs with
intensities in ranges [0, ηmin

i ] and intensities beyond ηmax
i are invalid, IROI,i = 0.

The Cii are computed over ([ηi,min, ηi,max]
2). The same ranges are used for the decon-

volution of the Cii to give the Rs
i . The deconvolution of Cij for Rb

i considers [ηi,min, ηi,max]

for i and the range starting from zero [0, ηj,max] for image j. Beyond the valid ranges, the
entries of Ri are set to unity, Rs

i = Rb
i = 1.

The estimates of the initial restoration fields b̂−1
i,inc in Equation (12) involve window

Nρ in image space over the valid part of the ROI of image i and is set to the neutral value
of unity outside. The resulting estimates are spatially smoothed with a Gaussian to give
Wi with a window depending on σs in Equation (13). The smoothing windows of the
nonuniformity with Equation (13) consider a spatial multiplicative field with unit weight
in the corresponding valid region IROI,i = 1 and with value much less than unity in the
remaining ROI. As a result the spatial Gaussian smoothing gives smoothly unity farther
from the valid region and towards the invalid region of the image with IROI,i(x) = 0.

3.6.3. Stability of Valid Co-Occurrence Ranges along the Iterations

The valid image domains in space remain the same along iterations and are the
originally computed ROIs, IROI,i. The stability of the dynamic ranges are also ensured. The
first constraint to this end is applied to the output of Equation (12) to set the pixelwise
average of the restoration to unity with normalization

b̂−1
i,inc,t(x)←

b̂−1
i,inc,t(x)

∥b̂−1
i,inc,t(x)∥1

. (22)

A second constraint preserves the reference intensity so that ηi,re f ,t = ηi,re f ,t=0, by
rescaling the restorations from Equation (13) with

Wi,t ←Wi,t ×
ηi,re f ,t=0

ηi,re f ,t
. (23)

These two constraints in Equations (22) and (23) ensure stability of the dynamic ranges
by avoiding both darkening and saturation of the dynamic ranges of the images.
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4. Experimental Results
4.1. Data Quality

The imaging data and their statistics are first examined by eye for quality control.
Some image pairs of patients have extensive misregistration artifacts. This misregistration
is often due to motion of the shoulders and the legs of the patient. The misregistration is
also due to differences in the fields of view between the two images of a patient, particularly
in the front-to-back, or sagittal, axis. In the cases where the images of a patient suffer from
this artifact and are misregistered, the images are excluded from further analysis.

The intensity statistics of the whole image is the sum of the statistics from the images
of the various coils. In this study, the statistics are the intensity co-occurrences. In some
cases, the intensity range corresponding to noise in one of the coil images overlaps with
the intensity range of the signal in another one of the coil images. In these cases, the noise
intensity range and hence noise image region cannot be discriminated from the signal
intensity range in the statistics of the whole image. The image sets of a patient that suffer
from such extreme acquisition artifact are excluded from the automated image analysis.

Overall, six images suffer from misregistration artifacts and two images suffer from
the signal acquisition artifact. Thus, out of a total of 39 images, there are 31 valid images
that are considered in this study.

4.2. Implementation
4.2.1. Parameters of the Method and Their Values

The size of the spherical window for the computation of the co-occurrences is ρ = 24 mm.
Within a sphere of this size, the nonuniformity field is assumed constant or piecewise
constant. To expedite computation, a subsampling step set to ρstep = 4 mm is used. As
described in Section 3.2.1, the standard deviation of the deconvolution filter for the co-
occurrence statistics is σri ∝ ri, where ri is the magnitude of the co-occurrences. The
standard deviation of the deconvolution filter for the joint-co-occurrence statistics is σηi ∝ ηi,
where ηi is the magnitude of the joint-co-occurrences. The maximum values of the standard
deviations of the deconvolution filters, σri and σηi , at the maxima of the dynamic ranges are
set to 6% of these dynamic ranges extents. The standard deviations of the deconvolution
filers are accumulated along the iterations, tmax = 10, to cumulatively remove the total
standard deviations of the distortions present in the statistics.

The Gaussian filtering for the rough nonuniformity estimates is implemented with
separable Gaussian filtering along the two axes of the transverse plane of the image. There
is no Gaussian smoothing in the axial direction y. The rough estimate of the nonuniformity
after the preliminary smoothing with the Gaussian is processed with the MDL principle 3D
anisotropic smoothing to separate the field into piecewise linear regions. Higher orders
for the MDL smoothing are possible, and in some cases would be more representable.
However, they would significantly increase the computational complexity of the MDL
smoothing. The size of the windows for MDL smoothing is 3× 3× 3 with associated weights
for each location inversely proportional to the distance of the voxels in space from the
center considering anisotropy. The extent of the incremental smoothing both for the case
of anisotropic Gaussian smoothing and anisotropic MDL smoothing is 33% of the extent
for the respective cumulative smoothing. That is, σs,incr =

1
3 σs,cum and Kincr =

1
3 Kcum. The

cumulative smoothing parameter values are σs,cum =107 mm and Kcum = 15. A lower
smoothing for the incremental nonuniformity is used to avoid discontinuities in the incre-
mental nonuniformity field that is also assumed to be smooth. A larger smoothing for the
cumulative nonuniformity fields represents the actual coil field nonuniformities.

The size of the images is very large. To expedite processing, the images are subsampled
by a certain factor along each of their axes. In the experiments, this factor is α = 0.5. That
is, the number of pixels in the subsampled image is only 12.5% of the number of pixels in
the original image. The values of several of the program parameters, namely ρ, ρstep, σs,cum,
decrease proportionately to the image axes subsampling factor, α. That is, the parameters
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become ρ ↦ αρ, ρstep ↦ αρstep, and σs,cum ↦ ασs,cum. The value of the parameter α is a
tradeoff between computational complexity and accuracy of the method.

4.2.2. Computational Complexity of the Method

The size of the 3D image I is taken to be approximately ∣I∣ ≈ 200× 150× 60 ≈ 2× 106.

The size of the statistics using the dynamic ranges is (ηmax
i )

2
= 500× 500 = 0.25× 106. The

order of the cost of the main steps of the method per iteration t is as follows:

• Computation of the co-occurrence and the joint co-occurrence statistics:

3∣I∣( ρ
∆ρ)

2
≈ 6× 106 × (

ρ
∆ρ)

2
.

• Deconvolution of the statistics: 3(ηmax
i )

2
(ση)

2
= 0.75× 106 × (ση)

2
.

• Back-projection to the image: 3∣I∣( ρ
∆ρ)

2
≈ 6× 106

× (
ρ

∆ρ)
2
.

• Gaussian smoothing of spatial nonuniformity: 2∣I∣(σs,cum)
2
≈ 4× 106

× (σs,cum)
2.

• MDL smoothing of spatial nonuniformity: 2∣I∣33Kcum ≈ 108× 106
× Kcum , where 33 is

the connectedness in MDL smoothing.
• Multiplication of incremental spatial nonuniformity with cumulative spatial nonuni-

formity: ∣I∣ ≈ 2× 106.

The size of the 3D image, ∣I∣, is larger than the size of the 2D co-occurrence statistics,
(ηmax

i )
2
. Therefore, the image domain operations for the spatial nonuniformity dominate.

The costs of computing the co-occurrence statistics and of back-projecting them to the
image are almost the same. The most expensive image-based operation is the cost of MDL
smoothing of the nonuniformity. Its cost is greater for larger values of the number of

iterations Kcum compared to the number of the co-occurrence sampling pixels, ( ρ
∆ρ)

2
.

4.3. Experiments and Validation with Whole-Body Images

The images in Figures 2–5 below offer representative examples of the processing of
pairs of anatomic images, T1w TSE and T1w + T2w STIR, of two patients. The anatomic
images for the first patient are presented in Figure 2 and the corresponding statistics are
presented in Figure 3. The anatomic images for the second patient are presented in Figure 4
and the corresponding statistics are presented in Figure 5. The cumulative restoration
fields in the second column of Figures 2 and 4 represent the restorations for the intensity
nonuniformities with their discontinuities. The third column of these figures shows the
restored images. The restored statistics in the second column of Figures 3 and 5 show that
in the statistics of the restored images, the tissue distributions become sharper.

The measurement of improvement due to restoration uses the decrease in the value of
the negative of the entropy of the statistics. In particular, the validation uses the negative
of the entropy, H, of the joint-co-occurrence statistics. The initial entropy value is H01,i
and the entropy of the final statistics isH01, f . In particular, the entropy ratio gain value is
computed as

Hratio =
eH01, f − eH01,i

eH01,i
. (24)

The method improves contrast in cases whereH01, f <H01,i. This leads toHratio < 0 and
implies higher image quality. The statistics of the entropy ratio gain values over all images
are presented in Table 2. The mean value, the minimum value, as well as the maximum
value over all images are all negative. This shows that the method results in negative
values forHratio for all images. Hence, the method improves performance and is effective
for all images.
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(a) (b) (c)

(d) (e) (f)

Figure 2. First example of joint restoration of T1w TSE and a T1w + T2w STIR. The cumulative restora-
tion fields account for the spatial variations of the coil sensitivities, their different overall sensitivities,
and the junctions between them. (a) Initial T1w image TSE; (b) Cumulative restoration field for TSE;
(c) Restored T1w image TSE; (d) Initial T1w + T2w STIR image; (e) Cumulative restoration field for
STIR; (f) Restored T1w + T2w STIR image.

Original statistics Restored statisics

(a) (b)

Figure 3. Cont.
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(c) (d)

(e) (f)

Figure 3. Co-Occurrence statistics of original and restored images of the first example in Figure 2.
The restored statistics are sharper. The different distribution of the tissues are better shown in the
restored joint-co-occurrence statistics in (b). (a) Original joint-co-occurrence statistics; (b) Restored
joint-co-occurrence statistics; (c) Original T1w TSE co-occurrence statistics; (d) Restored T1w TSE
co-occurrence statistics; (e) Original T2w STIR co-occurrence statistics; (f) Restored T2w STIR co-
occurrence statistics.

(a) (b) (c)

Figure 4. Cont.
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(d) (e) (f)

Figure 4. Second example of joint restoration of T1w TSE and a T1w + T2w STIR. The cumulative
restoration fields account for the spatial variations of the coil sensitivities, their different overall sensi-
tivities, and the junctions between them. (a) Initial T1w image TSE; (b) Cumulative restoration field
for TSE; (c) Restored T1w image TSE; (d) Initial T1w + T2w STIR image; (e) Cumulative restoration
field for STIR; (f) Restored T1w + T2w STIR image.

Original statistics Restored statisics

(a) (b)

(c) (d)

Figure 5. Cont.
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(e) (f)

Figure 5. Co-Occurrence statistics of original and restored images of the second example in
Figure 4. The restored joint-co-occurrence statistics better show the distributions of the different
tissues. The tissues distributions are shown improved in the restored co-occurrence statistics as well.
(a) Original joint-co-occurrence statistics; (b) Restored joint-co-occurrence statistics; (c) Original T1w
TSE co-occurrence statistics; (d) Restored T1w TSE co-occurrence statistics; (e) Original T2w STIR
co-occurrence statistics; (f) Restored T2w STIR co-occurrence statistics.

Table 2. Statistics of entropy ratio gain valuesHratio for validation.

Mean St.Dev. Median Minimum Maximum

−0.46 0.23 −0.52 −0.89 −0.02

5. Discussion and Conclusions

Whole-body MRI is a developing and promising imaging method that can be clinically
useful for many purposes. It has found several novel applications and can potentially
have even more applications. However, it still suffers from many acquisition artifacts.
The restoration and the analysis of the MRI imaging data remains a challenge. One of the
main artifacts decreasing data quality and preventing the understanding of the data is
the intensity nonuniformities that can even have abrupt changes at the junctions between
images corresponding to different coils. The proposed method addresses this problem by
achieving homogenization of the intensities.

Statistical representation of the images involves co-occurrence statistics. The effect
of using co-occurrences as opposed to plain intensity histograms is that they decrease
the spread of the dominant distributions in the image and increase the contrasts between
them. The sigmoid in the auto-co-occurrence statistics depresses the dominance of their
diagonal that corresponds to the interior of intensity uniform image regions. Hence, the
sigmoid increases the sensitivity to the statistics across region borders in the 2D statistical
space. In whole-body images, the borders are from the extensive interface between not
only different tissues, but also different organs as well. The assumed PSF of the distortion
filter for the statistics is non-stationary and is used to design the deconvolution filter for
the non-stationary restoration. The latter filter is, in turn, used to obtain the conditional
expectation of the restored values.

The Bayesian estimate for the intensity correction is back-projected to the image to
offer an initial rough estimate of intensity restoration. The Bayesian restoration is efficient
since it computes and restores the co-occurrence statistics only once per iteration. The
method is stable along the iterations and is even able to accommodate differences between
the signal regions of the images.

The rough estimate of the restoration is smoothed with anisotropic Gaussian and
anisotropic or inhomogeneous diffusion based on MDL that accommodates the disconti-
nuities of the field at the junctions between images corresponding to different coils, and
hence it is able to correct for nonuniformities. The junction surfaces between the images of
the different coils may not be known a priori for an image and hence the method does not
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require their a priori knowledge. The anisotropic inhomogeneous diffusion method used
represents the piecewise smooth regions of individual coils. There exists extensive literature
on anisotropic image smoothing that preserves discontinuities. However, the methods in
the literature are applied directly to the images. They can only accommodate pixel image
noise and hence incorrectly interpret shades and discontinuities between the shades as
being due to image structure [42,48]. This limitation of current methods is addressed in
this work. It is able to account for sharp shading artifacts by applying the inhomogeneous
diffusion to the spatial nonuniformity restoration field to estimate it.

The proposed methodology is also shown to be robust to the lower tissue quality of
cancer patients data and the high-intensity distortions that are present in most images.
The method also restores images effectively despite the more extensive and elongated
whole-body anatomy compared to that of more traditional images of individual organs
such as the brain which are typically processed for intensity nonuniformity restoration. To
the authors’ knowledge, the proposed method can restore, for the first time, for intensity
nonuniformities suffering from discontinuities in the context of MRI image processing.
This method contributes to the restoration of datasets from whole-body imaging, which is
an important and developing topic for several clinical applications.
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