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Abstract: Reliable prognostic biomarkers are needed to support the early diagnosis of brain injury
in extremely preterm infants, and to develop effective neuroprotective protocols that are tailored to
the progressing phases of injury. Experimental and clinical research shows that severity of neuronal
damage is correlated with changes in the electroencephalogram (EEG) after hypoxic-ischemia (HI).
We have previously reported that micro-scale sharp-wave EEG waveforms have prognostic utility
within the early hours of post-HI recordings in preterm fetal sheep, before injury develops. This
article aims to investigate whether these subtle EEG patterns are translational in the early hours of
life in clinical recordings from extremely preterm newborns. This work evaluates the existence and
morphological similarity of the sharp-waves automatically identified throughout the entire duration
of EEG data from a cohort of fetal sheep 6 h after HI (n = 7, at 103 ± 1 day gestation) and in recordings
commencing before 6 h of life in extremely preterm neonates (n = 7, 27 ± 2.0 weeks gestation). We
report that micro-scale EEG waveforms with similar morphology and characteristics (r = 0.94) to
those seen in fetal sheep after HI are also present after birth in recordings started before 6 h of life
in extremely preterm neonates. This work further indicates that the post-HI sharp-waves show
rapid morphological evolution, influenced by age and/or severity of neuronal loss, and thus that
automated algorithms should be validated against such signal variations. Finally, this article discusses
the need for more focused research on the early assessment of EEG changes in preterm infants to
help determine the timing of brain injury to identify biomarkers that could assist in targeting novel
therapies for particular phases of injury.

Keywords: neonatal encephalopathy; hypoxia-ischemia; EEG biomarker; deep learning; sharp wave;
theta and alpha frequency band

1. Introduction

Preterm infants continue to have a high risk of disability in survivors, despite pro-
gressively improved survival [1]. Experimental and clinical research in full-term and
pre-term and neonates shows that the severity of hypoxia-ischemia (HI) is associated with
the severity of injury in the white and grey matter [2,3], and, in turn, with changes in
the electroencephalogram (EEG) after HI [4,5]. Studies in large animals (e.g., fetal sheep)
support the value of continuous EEG monitoring for assessing early diagnosis and prog-
nosis [6,7]. The use of fetal sheep allows for comprehensive physiological assessment at
different gestational ages, from pre- to full-term age, in order to acquire continuous EEG
and electrocardiography (ECG) recordings without confounding by anaesthesia or other
medications [8].

Our understanding of the evolution of HI brain injury has mostly been established
in animal studies and validated in human newborns with magnetic resonance spec-
troscopy [7,9]. Typically, an HI event is followed by a ‘latent’ phase of suppression of
EEG activity and hypometabolism, followed after 6 to 8 h by a secondary deterioration
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associated with high amplitude seizures (HAS) (Figure 1a) [7] and failure of mitochondrial
function [10]. After 3 days, this may be followed by a long term ‘tertiary’ phase with
remodeling, persistent inflammation, and epigenetic changes [11].

Figure 1. Examples of the changes in EEG power after hypoxia-ischemia induced by umbilical cord
occlusion (UCO) in preterm fetal sheep (a) and during the first day of life after birth in an extremely
preterm human neonate (b). Examples of post HI micro-scale sharp-waves along profoundly sup-
pressed EEG in 1024 Hz recordings of preterm fetal sheep model (c,d) and in 256 Hz neonatal EEG
from an at risk preterm infant (e,f). The HI sharp-waves are indicated with ‘*’.

Currently, no specific neuroprotection/neurorepair treatments have been proven to
be effective for premature infants. In full-term babies, the first 6 h after hypoxia-ischemia
(HI) provides a ‘window of opportunity’ when therapeutic hypothermia can significantly
improve outcomes [12,13]. It is important to appreciate that the ideal windows for other
interventions in the very preterm brain are likely to be different. The development of
effective treatments requires accurately targeting the right phases of injury. For example,
our animal experiments indicate that early signatures of the injury emerge in the form of
micro-scale EEG waveforms superimposed on a suppressed background during the latent
phase before the bursts of high-amplitude seizures [6].

Therefore, there is a need to identify biological markers that could indicate the timing
of the injury in order to further develop effective treatments associated with different
phases of the injury. Currently, we lack reliable early biomarkers while HAS (seen in both
experimental and clinical evolving EEG—Figure 1a,b) can be a good indicator of the start
of the secondary phase, at least in most cases. Another drawback of HAS are that they
are a sign of the closure of the best window of opportunity for treatment in the preterm
brain [7,10]. Nevertheless, encouragingly there is some animal evidence that, in specific
situations, very late treatment starting after the secondary phase may be beneficial [14].
Anticonvulsant therapy for HAS may improve outcomes, but this remains surprisingly
controversial [2]. Thus, HAS should mainly be thought of as useful markers of secondary
deterioration after acute brain injury.
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Our team has previously shown that in preterm fetal sheep these EEG waveforms
emerge in the form of micro-scale sharp-waves and gamma spike transients, and that they
are significantly correlated with the subcortical brain damage post HI injury [6,15]. Our
team has successfully developed and validated automated advanced signal processing
technology, based on deep-learning, for the identification, quantification, and localization
of these patterns in preterm fetal sheep data (accuracy > 99%) [15,16]. We have previously
shown that micro-scale sharp-waves, in particular, contain timing information related to
the evolution of injury in the latent phase after HI. Following this, in fetal sheep the phase
of secondary deterioration is associated with a fully stochastic EEG background regardless
of age and that HAS in this phase are not necessarily associated with clinical signs. In the
preterm brain, these seizures are most often discrete events, and they are less likely to show
clinical seizures than term infants [9,10,17].

Real-time manual identification and assessments of EEG data is challenging and
requires expert clinical knowledge [18–22]. This is even more challenging when subtle
waveforms, often with complex morphological patterns, need to be quantified [23,24].
Hence, there is a significant need for developing automated signal processing techniques
to assist with reliable assessments of EEG in suspected cases of brain injury [4,19,25–29].
One approach is to focus on automatic identification and quantification of micro-scale EEG
patterns as well as seizures in order to determine the timing and effectively target treatment
for infants who might benefit [9,15,17,25,26,30,31].

The primary aim of this study was to explore the potential translational relevance
of subtle EEG patterns during the first 6 h of life, specifically focusing on their presence
and significance in clinical recordings obtained from extremely preterm newborns. By
closely examining these EEG patterns in this vulnerable population, this study seeks to
determine whether they exhibit consistent characteristics and whether these patterns could
serve as reliable indicators of neurological development similar to those seen in our fetal
sheep models.

Therefore, this article will delve into whether the micro-scale sharp-waves observed in
preterm fetal sheep models after HI are also evident within the initial 6 h of life in clinical
recordings from extremely preterm newborns. The study will then discuss how these subtle
waveforms may represent early signatures of preterm brain injury, and how automated
algorithms could be useful for the identification and quantification of these patterns in
clinical recordings.

2. Materials and Methods
2.1. Ethics

Animal ethics: all procedures on animals were approved by the Animal Ethics Commit-
tee of the University of Auckland (R1942) under the New Zealand Animal Welfare Act and
were carried out in accordance with the Code of Animal ethical conduct established by the
Ministry of Primary Industries of New Zealand Government.

Human ethics: Ethics approval was granted by the Health and Disability Ethics Com-
mittees (HDEC), New Zealand (ethics number 13/NTB/49).

2.2. Experimental Protocols

In this study, a total of seven preterm Romney/Suffolk fetal sheep at the gestational
ages of 103 ± 1 days were used (full term gestation: 145 days). The surgical procedures
were conducted using aseptic techniques, as previously described [10]. Prior to surgery,
the ewes were fasted for 18 h, with access to water. They were administered long-acting
oxytetracycline (20 mg/kg, Phoenix Pharm, Auckland, New Zealand) intramuscularly
30 min before the start of surgery. Anesthesia was induced using intravenous propofol
(5 mg/kg, AstraZeneca Limited, Auckland, New Zealand) and maintained with 2–3%
isoflurane in oxygen. Throughout the procedure, the depth of anesthesia, maternal heart
rate, and respiration were closely monitored by trained staff. To maintain fluid balance, the
ewes received a continuous infusion of isotonic saline (at approximately 250 mL/h).
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Following a midline abdominal incision, the fetuses were exposed and an inflatable sili-
cone occluder (OC16HD, 16 mm, In Vivo Metric, Healdsburg, CA, USA) was loosely placed
around the umbilical cord to allow for post-surgical occlusion, inducing fetal hypoxic-
ischemic (HI) injury [6,8]. EEG electrodes, consisting of two pairs of electrodes made from
a 7-stranded stainless-steel wire (AS633–7SSF; Cooner Wire Co.: Los Angeles, CA, USA),
were placed on the dura over the parasagittal parietal cortex. A reference electrode was
sewn over the occiput. Additional instruments, such as thermistors for temperature mea-
surement, were placed accordingly (data not used in this study). The surgical incisions were
closed, and antibiotics (80 mg Gentamicin, Pharmacia and Upjohn, Rydalmere, New South
Wales, Australia) were administered into the amniotic sac. Post-operative care included
housing the sheep together in separate metabolic cages with ad libitum access to food
and water. The room temperature was maintained at 16 ± 1 ◦C, with a humidity level of
50 ± 10%, and a 12 h light/dark cycle (lights on at 06:00 h).

Sheep received intravenous antibiotics daily for four days (600 mg benzylpencillin
sodium, Novartis Ltd., Auckland, New Zealand, and 80 mg gentamicin) to ensure post-
operative maternal care and minimize the risk of infection. The patency of fetal catheters
was maintained by continuous infusion of heparinized saline, while the maternal catheter
was flushed daily to maintain patency.

Data were recorded and saved continuously at 1024 Hz sampling frequency for off-
line analysis using custom data acquisition programs (LabView for Windows, National
Instruments, Austin, TX, USA). The raw EEG recordings were initially low-pass filtered by
using a 6th order anti-aliasing Butterworth filter with a cut-off set at 500 Hz. The signal
was then amplified by a gain ×10,000 and then high-pass filtered by a first-order filter with
a cut-off frequency set at 1.6 Hz. The recordings were then digitized at 4096 Hz, low-pass
filtered using a 10th-order low-pass inverse Chebyshev at 128 Hz (in software), and then
decimated down to 1024 Hz sample rate, before saving to file. Data from the last stage
were recorded for 72 h and then decoded into Matlab for analysis. Here, we used the
experimental EEG recordings during the first 6 h after HI.

2.3. Clinical Protocols

Here we used data from a random subset (n = 7) of an observational cohort study of
33 extremely preterm infants born at ≤28 weeks estimated gestation at Starship Children’s
Hospital, Auckland, New Zealand, from 2014 to 2017. All infants received routine clinical
and nursing care. The EEG recordings were started as early as possible after birth and
continued for 3 days (median age of starting recordings 4:29 h, range 2:45 to 5:29). The
infants’ EEG activity was monitored through EEG leads placed symmetrically on the left
and right sides of the skull. The EEGs were recorded on the reBRM2 monitor (research
version of the BRM2; BrainZ Instruments, Auckland, New Zealand). The EEG signals
from the right and left sides were amplified by a factor of 5000 and filtered using a first-
order high-pass filter with a −3 dB frequency at 1 Hz, as well as a fourth-order low-pass
Butterworth filter with a −3 dB frequency at 50 Hz. The computer digitized the signal at
a sampling rate of 256 Hz. Data were collected continuously for a duration of 48 h from
the point of initiation. However, we exclusively analyzed recordings from the first 6 h
after birth.

In order to avoid any conflict between clinical care requirements and research activi-
ties, the EEG electrodes were placed by experienced neonatal intensive care unit (NICU)
nurses on call for this project and available in addition to the standard clinical team. Physi-
ological instability in the infant, drug administration and blood sampling, or infant cares
were recorded.

Administration of antenatal and postnatal treatments such as sedatives and steroids
were documented. Infants with congenital or genetic abnormalities, or scalp injury/infection
were excluded.
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2.4. Micro-Scale Sharp-Wave EEG Waveforms—An HI Biomarker

We have previously shown that micro-scale sharp-wave EEG patterns with ampli-
tudes between 20–80 µV and a duration between 70 and 250 ms (frequency range: 4 to
14.3 Hz, in the θ (4–8 Hz), α (8–12 Hz), and lower-beta β band (i.e., 12–14.3 Hz)) were
superimposed on a suppressed EEG background, within the latent phase of fetal sheep
data (103 ± 1 days, human brain maturation equivalent ~28–30 weeks) which are a reliable
marker for hypoxic-ischemic encephalopathy (HIE) (see Figure 1c,d) [6,15]. We have shown
that EEG sharp-waves can help to predict the latent phase of injury after an HI insult, where
a larger number of sharp-waves within the first 30 min post-HI is associated with greater
subcortical neuronal survival in the caudate nucleus (r = 0.80). Conversely, greater numbers
of sharp-wave activity between 2–4 h after HI are associated with more damage and a
reduced neuronal survival in the same subcortical region (r = −0.83) [6]. This experimental
observation highlights the significance of these micro-scale EEG waveforms in a suppressed
background as early indicators of HIE, emphasizing the necessity to explore their presence
in bedside monitoring, at birth.

This study investigated the potential “translatability” of micro-scale sharp wave EEG
patterns within the critical early postnatal period, with a specific focus on documenting
their presence within clinical recordings derived from profoundly premature neonates.
To achieve this, we examined the comparability of EEG power signal behaviour as well
as these sharp-wave EEG patterns within neonatal clinical recordings, compared to our
animal data.

Here, in a preliminary analysis of a subset (n = 7) of an observational cohort study of
EEG recordings in 33 extremely preterm infants born at ≤28 weeks estimated gestation,
we investigated whether the micro-scale EEG waveforms previously reported in our fetal
sheep models were also present within the first 6 h after birth. The micro-scale sharp
waves were initially detected using our deep learning-based sharp wave identifiers from
animal experiments [15,16]. Sharp-waves were automatically identified throughout the
entire duration of EEG recordings, starting from the initiation of neonatal recording and
continuing 6 h post-birth. Similarly, sharp-waves were automatically identified throughout
the entire duration of EEG post-hypoperfusion phase (30 min after the HI event), extending
for 6 h post-HI, in the preterm fetal sheep data.

A total of 5191 sharp waves were extracted from the clinical EEG set, while 6086 sharp
waves were extracted from the experimental EEG set in the fetal sheep data. Sharp wave
patterns from each baby and fetal sheep were centralized at their peaks. The sharp waves
per subject were then averaged, and correlations were calculated between the average
pattern of all subjects within the neonatal and fetal sheep groups. The matrix of correlation
coefficients between the average of sharp patterns in all subjects was calculated using
Matlab’s ‘corrcoef’ function.

Here we used Pearson’s correlation coefficient (r, between −1 to +1) to report the
correlation coefficient (i.e., the strength in the ‘degree of similarity’—morphological charac-
teristics) between the average of micro-scale sharp-waves seen in our fetal sheep models
post-HI, and the ‘similar’ patterns observed in the early hours (<6 h) of birth.

Thus, the current paper focuses on the ‘signal observation’ aspects of the work and
does not investigate the potential correlations between the quantifications and timing of
these EEG patterns with neonatal outcomes.

3. Results

This study reports that micro-scale sharp-wave transients are present in the recordings
taken within the first 6 h after birth in extremely preterm infants. We found that these
clinical transients had a nearly identical morphology (r = 0.94, Figure 1e,f) to the sharp-
waves seen in the experimental data from sheep fetuses (n = 7, 103 ± 1 days, Figure 2). The
example micro-scale sharp-waves shown in Figure 2A were recorded at around 3 h post
birth using conventional 256 Hz neonatal recordings from an extremely premature infant.
For comparison, Figure 2B shows examples of experimental micro-scale sharp waves at
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around 2 h post-HI in 1024 Hz recordings from a preterm fetal sheep, as well as the high
level of morphological similarities between these micro-scale patterns in preterm infants
and fetal sheep.

Signals 2023, 4, FOR PEER REVIEW  6 
 

 

For comparison, Figure 2B shows examples of experimental micro-scale sharp waves at 

around 2 h post-HI in 1024 Hz recordings from a preterm fetal sheep, as well as the high 

level of morphological similarities between these micro-scale patterns in preterm infants 

and fetal sheep. 

 

Figure 2. Examples of micro-scale EEG sharp-waves in 256Hz neonatal recordings from a premature 

infant at ~3 h post birth (A—12 patterns), and in 1024Hz recordings from preterm fetal sheep model 

at ~2 h post-HI (B—12 patterns). The low level of noise in the experimental data in B reflects the 

more controlled environment of these studies. 

Examples of EEG sections showing sharp-waves in the amplitude range of 20–70 μV 

in the clinical and experimental recordings are shown in Figure 3. As can be seen in the 

EEG sections on the left column of Figure 3, the clinical EEG recordings show greater 

complexity (spectral components associated with neuronal activity) compared to the EEG 

sections after acute-HI (25 min occlusion) from fetal sheep models, collected under a much 

more controlled environment, on the right-hand side column of this figure.  

Furthermore, Figure 1c,d and 1e,f show examples of the post-HI EEG signals in a 

preterm fetal sheep and during the first day of life after birth in an extremely preterm 

human neonate, respectively. The EEG sections in Figure 1a,b also illustrate the similarity 

of the EEG signal’s behavior in the post-HI recordings of fetal sheep vs. early hours post 

birth recordings in a preterm human data (i.e., the overall EEG recovery and the existence 

of high amplitude seizures). The emergence of the micro-scale sharp-waves along pro-

foundly suppressed EEG signals could be reliable evidence as to how these EEG patterns 

are translational in human neonates. 

The importance of this ‘EEG pattern similarity’ associated with their emergence in 

the very early hours of birth lies in factors that we have shown in our fetal sheep models, 

which show how these early EEG signatures are associated with subcortical neuronal 

damage, post-HI event. 

Figure 2. Examples of micro-scale EEG sharp-waves in 256 Hz neonatal recordings from a premature
infant at ~3 h post birth ((A)—12 patterns), and in 1024 Hz recordings from preterm fetal sheep model
at ~2 h post-HI ((B)—12 patterns). The low level of noise in the experimental data in B reflects the
more controlled environment of these studies.

Examples of EEG sections showing sharp-waves in the amplitude range of 20–70 µV in
the clinical and experimental recordings are shown in Figure 3. As can be seen in the EEG
sections on the left column of Figure 3, the clinical EEG recordings show greater complexity
(spectral components associated with neuronal activity) compared to the EEG sections
after acute-HI (25 min occlusion) from fetal sheep models, collected under a much more
controlled environment, on the right-hand side column of this figure.

Furthermore, Figure 1c,d and 1e,f show examples of the post-HI EEG signals in a
preterm fetal sheep and during the first day of life after birth in an extremely preterm
human neonate, respectively. The EEG sections in Figure 1a,b also illustrate the similarity
of the EEG signal’s behavior in the post-HI recordings of fetal sheep vs. early hours post
birth recordings in a preterm human data (i.e., the overall EEG recovery and the existence of
high amplitude seizures). The emergence of the micro-scale sharp-waves along profoundly
suppressed EEG signals could be reliable evidence as to how these EEG patterns are
translational in human neonates.

The importance of this ‘EEG pattern similarity’ associated with their emergence in the
very early hours of birth lies in factors that we have shown in our fetal sheep models, which
show how these early EEG signatures are associated with subcortical neuronal damage,
post-HI event.

The correlation coefficients between the average sharp-wave patterns in all subjects (in-
cluding both neonates and fetal sheep data) are presented in Table 1. The gray-highlighted
cells in the table indicate out-of-group correlations for each baby versus each sheep. The
average overall out-of-group correlation was calculated as r = 0.94.
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Table 1. Correlation coefficients between all subjects (neonates and fetal sheep data).

Baby 1 Baby 2 Baby 3 Baby 4 Baby 5 Baby 6 Baby 7 Sheep 1 Sheep 2 Sheep 3 Sheep 4 Sheep 5 Sheep 6

Baby 1 (675) *
Baby 2 (1005) 0.948
Baby 3 (1403) 0.940 0.981
Baby 4 (265) 0.947 0.957 0.957
Baby 5 (224) 0.926 0.935 0.932 0.981
Baby 6 (558) 0.945 0.967 0.938 0.959 0.925
Baby 7 (1061) 0.934 0.989 0.984 0.957 0.944 0.964
Sheep 1 (1022) 0.954 0.982 0.985 0.960 0.923 0.950 0.974
Sheep 2 (453) 0.904 0.921 0.938 0.933 0.885 0.943 0.938 0.937
Sheep 3 (264) 0.908 0.901 0.943 0.903 0.861 0.854 0.907 0.959 0.902
Sheep 4 (1156) 0.944 0.981 0.968 0.957 0.921 0.972 0.973 0.989 0.927 0.921
Sheep 5 (604) 0.953 0.981 0.987 0.964 0.924 0.954 0.976 0.997 0.956 0.959 0.983
Sheep 6 (1083) 0.952 0.990 0.979 0.966 0.930 0.976 0.981 0.992 0.944 0.923 0.996 0.991
Sheep 7 (1522) 0.905 0.927 0.937 0.878 0.862 0.829 0.900 0.950 0.807 0.936 0.918 0.936 0.919

* Parentheses represent the total number of sharps per subject.
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4. Discussion
4.1. Insights on the Utility of Computer-Aided Diagnostic Algorithms

EEG is a highly complex and detailed signal that requires experienced clinicians,
pediatrics, or neonatal EEG specialists to interpret [32,33]. Therefore, the current clinical
utility of this technology at the neonatal intensive care units (NICUs) is limited to units with
access to experts. EEG monitoring is also a critically time-consuming process that requires
meticulous attention to detail, adding to the burden for human interpretation. Research
shows that a simplified 2–4 channel EEG system can be more practical at NICUs [34].
Despite these limitations, EEG provides useful information related to the evolution of HI
injury and could contain potential biomarkers related to evolution of HIE [6,35]. Therefore,
there is currently a growing interest in the application of automated algorithms for the
assessment and grading of the post HI EEG background [4,34]. However, there is limited
evidence for how automated deep-learning-based algorithms could help to identify and
quantify HI-related markers in the post-HI EEG; furthermore, there is a question as to what
extent these strategies could translate across different stages of brain maturation.

Studies show that the severity of neurological damage can be predicted based on the
first 12 h EEG recordings from a two-channel EEG-set initiated within the early hours
of birth [34,36–38]. Importantly, in a cohort of term infants with HIE, TH was more
efficacious if initiated within less than 3 h of birth [12]. Our team also has a successful track
record on developing and validating advanced technology, based on deep-learning, for
the identification, quantification, and localization of micro-scale EEG patterns in the latent
phase of preterm fetal sheep (0–7 h post-HI) [9,17,25]. Our data-driven techniques include
1D Convolutional Neural Networks (1D-CNN), Wavelet-Fourier CNNs (WF-CNN), and
a highly accurate state-of-the-art 2D Wavelet-Scalogram CNN (WS-CNN) approach that
infuses spectrally rich feature maps of EEG sections into a deep CNN classifier for pattern
recognition.

Further, the literature indicates an extensive set of clinical and experimental work
on the application of data-driven deep-learning-based classifiers for seizure identification
in term and preterm infants [27,39–42] as well as adults [43]. Our team has also recently
developed and validated a generalized seizure (HAS) detector algorithm, using data from
fetal sheep, that can accurately identify post-HI stereotypic seizures regardless of age or
use of TH [44]. HAS are common in clinical recordings and TH can partially suppress
these seizures in both animals and human neonates [44–48]. Therefore, automated seizure
detector algorithms hold clinical utility to help identify the secondary phase of injury (in
some cases, albeit not all). However, HAS identification has almost no utility for detecting
the latent phase of injury where the earlier initiation of therapeutic treatment, prior to
the emergence of HAS, has been shown to be most effective. The strong morphological
similarity between the clinical and experimental seizures makes our pre-clinically validated
seizure detector, reported in [44], a good candidate for the identification of clinical seizures
in the secondary phase (see Figure 1).

The reliability of our pattern classifiers still needs to be tested on clinical EEG record-
ings for the identification of micro-scale sharp-wave and HAS. This is particularly important
for micro-scale seizures occurring in the latent phase, as they are subject to higher complex-
ities (Figure 3) and rapid morphological evolution, influenced by age and/or severity of
neuronal loss.

4.2. Implications and Future Direction

This study demonstrates that micro-scale EEG sharp-wave patterns, previously re-
ported by our team in the recordings from preterm fetal sheep after HI, also exist with
similar morphology and characteristics in the early hours of post-birth clinical data of
preterm neonates. This cohort was selected to include only infants whose recordings
started within 6 h of birth. Future studies will examine the evolution of the EEG after 6 h
of life. We demonstrated that the morphology of micro-scale sharp waves observed in
the initial hours of post-birth neonatal EEG in extremely preterm newborns and post-HI
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fetal sheep EEG data are notably consistent (with an average overall correlation of r = 0.94
across all subjects from the two groups). The reader should note that preterm brain injury
is multifactorial and commonly involves hypoxia-ischemia (HI) and exposure to infection,
alone or in combination [49,50]. To make matters worse, the preterm infant may be injured
in utero, survive, and remain unborn with developing brain injury. However, serial EEG
recordings support the concept that EEG abnormalities are most often closely related to the
time of birth (~53.8%), with some injury occurring well before birth (19.2%); while postnatal
injury occurs, it is less common (23%) [51]. Although most interventions are most effective
if they are started in the latent phase, there is now preclinical evidence in preterm fetal
sheep that anti-inflammatory therapy delayed until 72 h after HI can attenuate surprisingly
severe delayed white matter injury [14].

One important factor to consider is that the pattern of evolution of sharp-waves after
HI can be markedly affected by the severity of neuronal injury within the latent phase, and
therefore early and continuous monitoring can play a pivotal role in the early assessment
of the injury. This important factor must be carefully considered in future studies, as being
consistent with maturation of neural connectivity, EEG characteristics and the associated
patterns’ morphology (including seizures) are highly influenced by age and severity of the
injury [2,52,53]. Thus, there is a significant need to design more focused research into the
early assessment of EEG patterns (along with other electrophysiological data) to precisely
determine timing of the injury in preterm infants with signs of disturbed brain function.
Through such investigations, a deeper understanding of the early neurological processes
in extremely preterm infants could emerge, thereby potentially paving the way for more
targeted interventions and enhanced care strategies in neonatal healthcare.

5. Study limitations

While this study offers valuable insights into the potential translatability of micro-scale
sharp waves in neonatal EEG and highlights the necessity for the utility of computer-aided
algorithms for EEG interpretation in the context of HIE, there are several limitations that
merit careful consideration.

The study’s implications and future directions acknowledge the multifactorial nature
of preterm brain injury and emphasize the challenge of accurately timing interventions
due to the intricate interplay of contributing factors. While the presence of micro-scale EEG
sharp-wave patterns in post-birth clinical data is highlighted, it is important to note that
the study’s focus on infants with recordings initiated within six hours of birth limits the
understanding of the evolution of these patterns beyond that timeframe.

This temporal constraint does not fully account for injuries that might have occurred
prior to birth, thereby complicating the interpretation of EEG abnormalities and their
relationship to birth time. Furthermore, the study’s assertion that early and continuous
monitoring plays a pivotal role in assessing injury is indeed significant; however, it necessi-
tates careful consideration in light of the ongoing development of neural connectivity and
the intricate interrelationship between EEG characteristics and the severity of the injury.

Importantly, the intricate and complex nature of EEG signals necessitates the in-
volvement of experienced clinicians, pediatricians, or neonatal EEG specialists for precise
interpretation, underscoring the need for a thorough clinical validation phase before the
technology can be implemented in specialized units. The clinical specialists’ expertise
and experiences can be incorporated into automatic analysis studies for data interpreta-
tion. Moreover, the demanding and time-consuming nature of EEG monitoring further
highlights the challenges associated with human interpretation. Despite the interest in
automated algorithms to assess post-HIE EEG backgrounds, there remains a scarcity of
robust evidence on the effectiveness of deep-learning-based algorithms in identifying and
quantifying HIE-related markers across different stages of brain maturation.

Additionally, the study’s pattern classifiers, developed using experimental data from
preterm fetal sheep, need validation against extensive and reliable clinical EEG recordings,
particularly for identifying micro-scale sharp-wave patterns and seizures during and after



Signals 2023, 4 640

the latent phase, respectively, which are influenced by complex factors such as brain
maturity (age) and neuronal loss severity.

Addressing this limitation could involve the development of robust machine-learning
architectures and their validation using substantial clinical datasets.

6. Conclusions

This study highlights the presence of micro-scale EEG sharp-wave patterns, as previ-
ously observed in experimental data from preterm fetal sheep after HIE, in clinical recordings
obtained within the first six hours after birth in extremely preterm neonates. We report
the morphological and timing similarities between the clinical and experimental sharp-
wave patterns, supporting the translational utility of these patterns as biomarkers of neural
dysfunction. These findings emphasize the need for reliable automated algorithms that
can accurately identify and quantify clinical EEG sharp-waves as a potential candidate
prognostic biomarker for disturbed brain function in the early stages of recovery from injury.

The study also illustrates the limitations of current clinical EEG interpretation, which
require experienced clinicians and neonatal EEG specialists. Automated algorithms can
address these limitations and provide practical solutions for accurate and efficient as-
sessment of encephalopathy-related EEG patterns. Such advances would facilitate early
interventions and individualized treatment protocols targeted at specific phases of brain
injury, which ultimately are likely to be essential to help improve outcomes for preterm
infants. The integration of advanced signal processing technology with clinical practice
holds promise for improving prognostic accuracy, facilitating timely interventions, and
ultimately enhancing the long-term outcomes of preterm infants at risk of HIE.

We conclude that there is a need for more targeted studies specifically aimed at the
early assessment of EEG recordings, and other electrophysiological data, to precisely
determine the timing and severity of brain injury in extremely preterm infants displaying
signs of HIE.
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