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Abstract: In this work, an effective Fault Detection and Diagnosis (FDD) strategy designed to increase
the performance and accuracy of fault diagnosis in grid-connected photovoltaic (GCPV) systems
is developed. The evolved approach is threefold: first, a pre-processing of the training dataset is
applied using a multiscale scheme that decomposes the data at multiple scales using high-pass/low-
pass filters to separate the noise from the informative attributes and prevent the stochastic samples.
Second, a principal component analysis (PCA) technique is applied to the newly obtained data to
select, extract, and preserve only the more relevant, informative, and uncorrelated attributes; and
finally, to distinguish between the diverse conditions, the extracted attributes are utilized to train the
NNs classifiers. In this study, an effort is made to take into consideration all potential and frequent
faults that might occur in PV systems. Thus, twenty-one faulty scenarios (line-to-line, line-to-ground,
connectivity faults, and faults that can affect the normal operation of the bay-pass diodes) have been
introduced and treated at different levels and locations; each scenario comprises various and diverse
conditions, including the occurrence of simple faults in the PV1 array, simple faults in the PV2 array,
multiple faults in PV1, multiple faults in PV2, and mixed faults in both PV arrays, in order to ensure a
complete and global analysis, thereby reducing the loss of generated energy and maintaining the
reliability and efficiency of such systems. The obtained outcomes demonstrate that the proposed
approach not only achieves good accuracies but also reduces runtimes during the diagnosis process
by avoiding noisy and stochastic data, thereby removing irrelevant and correlated samples from the
original dataset.

Keywords: Fault Detection and Diagnosis (FDD); Multiscale Principal Component Analysis (MSPCA);
Feature Extraction and Selection (FES); Neural Network (NN); Photovoltaic (PV) Systems

1. Introduction

During the previous decade, photovoltaic (PV)-based electric generating has been a
developing area of research in the industry domains [1,2], where GCPV systems have expe-
rienced the strongest growth [3]. Moreover, the operation of high-efficiency photovoltaic
systems has taken a major significance and a top priority, and a big challenge [4]. In fact,
many faults can occur and damage this kind of system, these faults can be categorized into
three main classes: abrupt, incipient, or intermittent faults [5]. Indeed, line-to-ground or
line-to-line, short circuits, connector disconnection, open circuits, hot spots, and junction
box failures are kinds of abrupt faults that can occur instantly often as a result of damage
to the PV array. Because of their slower dynamics and smaller amplitudes, incipient faults
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are generally considered the most difficult faults. They can cause gradual damage to the
PV cells, and lead to major problems if not detected early [6]. Therefore, these kinds of
faults can occur on both DC and AC sides. PV module defects for instance delamina-
tion, yellowing, and browning of solar cells, cracks, gaps, bubbles, and defects in the
anti-reflective coating are examples of DC-side incipient faults [7]. Wiring degradation,
Insulated Gate Bipolar Transistor (IGBT) faults, islanding, overheating, and aging are all
AC-side faults. Environmental stress or partial shading are kinds of intermittent failures
that vary over time [5,8]. Thus, it is important to diagnose identify thereby forecast these
faults early. Therefore, the demand for FDD algorithms is growing with the speedy growth
of information and automation technologies, and data-driven process control approaches
are being continuously enhanced. Indeed, different techniques and strategies have been
developed in the literature. For instance, the authors in [9], employ and present the initial
results of an extensive, Long-Term study of the forecasting of voltage sags in distribution
networks. The overriding objective of this research is to give the network operators proper
algorithms that will allow them to forecast how many voltage sags will occur and the sites
at which they are likely to occur. The authors in [10], employed a Domain Reflectometry
(TDR) technique to locate a failed PV module in a PV array, noting that the technique may
also be used for fault localization and detection.

The research in [11] provided a diagnostic method based on observing the magnitudes
of various essential measurable frequency components for a DC-DC boost converter and a
voltage source full-bridge inverter. A fault detection strategy for the GCPV systems using
a wavelet transform (WT) is proposed in [12]. Using power losses analysis, the authors
in [13] proposed a new statistical signal processing method for PV system (PVS) monitoring
and fault detection. A strategy for automatic failure detection in (PVS) based on parameter
extraction techniques was proposed in [14]. To diagnose faults in (PVS), a statistical
technique based on an exponentially weighted moving average chart was developed
in [15]. While, in [16], authors presented an approach based on I–V characteristics analysis
in order to detect PV array faults. In [1,17–19], additional multivariate and univariate
statistical techniques for PV fault detection were reported. In [20], an approach based
on the estimating PV module’s crucial parameters was presented. A new algorithm for
detecting faults in PV modules was developed in [21]. The presented method in [22] allows
the identification of three major stages of faults, including faults in the string, faults in
the module’s string, and a group of diverse failures, for example, aging, MPPT errors,
and partial shadow. In [23], a fault detection method that compares the current and
the previous situations in a defective PV array (PVA), has been developed. The authors
in [24] presented a technique for determining the approximate position of faulty PVM in
parallel or series PVA. For detecting DC cable faults and PV series arc failures, the authors
proposed in [25] a novel differential current-based quick detection and accurate failure
localize estimate method. On a GCPV system, FDD has been employed using a reduced
Kernel Random Forest (KRF) based on K-means clustering and a Euclidean distance-based
KRF [26]. Additionally, in order to optimize the voltage profile of distribution systems,
centralized control is adopted and implemented in [27] for determining the set points of
the controllers of the distributed energy resources connected to the grid. The study in [28]
illustrated the use of an artificial NN (ANN) technique to diagnose GCPV system faults. A
fault detection strategy for PV modules under partially shaded statues is proposed in [29],
which utilizes an artificial NN to predict electrical outputs and detect possible anomalies in
the PV module using real time correlation of estimated and measured performances under
variable conditions. The authors in [30] used the ANN in conjunction with the traditional
analytical approach to provide string-based PV systems with innovative and automatic
fault detection and diagnostics. In [31], a bi-directional input parameter integration-based
ANN-based PV failure detection technique is developed. A Radial basis Network-based
PV array defect detection method is provided in [32]. The authors in [33] employed a
novel diagnostic strategy for PV systems based on artificial NNs to identify and classify
the diverse failures occurring in the PV array. The work in [34] presents a novel intelligent
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algorithm for PV system diagnosis and fault detection (IFD). In this work, the ANN
algorithm can identify and thereby detect three recurrent states between healthy, string
disconnection, and short circuit faults in the PV array. The paper [35] proposes a customized
NN algorithm that classifies, and identifies eight diverse commonly occurring PV faults
scenarios. The authors in [36] introduce the Laterally Primed Adaptive Resonance Theory
(LAPART) artificial NN for PV system fault diagnostics and detection purposes. In [37], the
authors used back-propagation ANN, generalized regression ANN, probabilistic ANN, and
two radial basis function ANNs (RBF) to detect and locate the most encountered failures in
PV installations: short circuit, and open circuit string cases in PV generator.

The current work proposes an intelligent fault detection/diagnosis strategy based on
Multiscale Principal Component Analysis (MSPCA) and NN classifiers in order to enhance
the efficiency of conventional data-driven strategies for monitoring multivariate dynamic
systems. Different from the classical and standard diagnosis approaches, the proposed
MSPCA-based NN approaches are used to detect and thereby isolate faults. Therefore, the
contributions of this work involve three major steps: First, the data are pre-processed by the
use of a multiscale scheme in order to remove noise and stochastic observations. Second,
the new dataset is fed as input to a PCA method in order to extract and select the most-
significant attributes from the GCPV systems in order to improve and accelerate, thereby
enhance, model convergence and classification performance and accuracy. After that, the
extracted features are fed as inputs to the NN classifiers in order to detect, classify, and
distinguish between the different conditions. Additionally, this study is being investigated
and established to address and treat all the frequent and potential faults that might occur,
damage, and affect PV systems. A total of 21 fault scenarios: line-to-line, line-to-ground,
connectivity, and faults that can affect the bay-pass diodes’ normal operation are introduced
at various levels and locations; each scenario contains a variety of conditions, including
simple faults in the PV1 array, simple faults in the PV2 array, multiple faults in the PV1
array, multiple faults in the PV2 array, and mixed faults. Various ML techniques, including
Decision Tree (DT), Support Vector Machine (SVM), Discriminant Analysis (DA), k-nearest
neighbor (KNN), and Naive Bayes (NB), are employed to test and evaluate the performance
of our suggested strategy in terms of diagnostic precision, recall, accuracy, and computation
time. The obtained results demonstrate that the evolved strategy not only improves the
accuracy compared to conventional ML methods but also provides an efficient reduction in
computation time and storage space.

The sections of this paper are organized and arranged as follows: A thorough expla-
nation and detailed description of the suggested multiscale PCA-based NNs is provided
in Section 2. The essential and main outcomes are presented in Section 3. The paper is
concluded in Section 4.

2. Developed Multiscale PCA-Based NN
2.1. Feature Extraction Using PCA Technique

PCA is a multivariate statistical analysis technique. It is utilized for information
extraction from data and has been employed in a wide range of disciplines. In the operation,
monitoring, and control of chemical processes, it is also used to complete a number of
tasks, such as data rectification, fault detection and isolation, and disturbance and fault
diagnosis, due to its effectiveness in extracting abnormal changes from the information
in the system. Therefore, the foundation of PCA is the projection of large amounts of
multivariate data obtained from measurable process variables onto a reduced dimensional
space of uncorrelated principal components [38]. Consider the data that were gathered in
the form of a X ∈ <n×m matrix from a process that was working normally with n samples
of m variables, and store them in an X matrix with zero mean and unity [38].

X = [x1, x2, ..., xm] ∈ <n×m (1)
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The following equation describes the linear transformation that turns the data matrix into
another novel matrix called the score matrix of uncorrelated variables,
T = [t1, t2, ..., tn]T ∈ <n×m :

T = XP (2)

The score matrix is T, and the loading matrix is P. The singular value decomposition (SVD),
which is used to create an orthogonal transformation of X’s covariance matrix, results in P
as depicted in the following equation:

C =
1

n− 1
XTX = PΛPT (3)

The eigenvalues for the diagonal matrix Λ = diag(λ1, λ2, ..., λm) are arranged in decreasing
order to indicate the variance λ1 ≥ λ2 ≥ ... ≥ λm. P and Λ are divided into modeled
and non-modeled variants (Figure 1) to diminish the dimensionality of the dataset. As a
result, Λl ∈ <l×l and Pl ∈ <m×l span the first subspace, which is called principal subspace.
Otherwise, Λm−l ∈ <(m−l)×(m−l) and Pm−l ∈ <m×(m−l) span the residual subspace (second
subspace). Numerous methods, such as parallel analysis, cumulative percent variance
(CPV), scree plot, kaiser criterion, and cross-validation, are used in the literature to choose
principal components (PCs), l. The CPV criterion is used in the current paper in order to
select the PCs, and it is depicted as the following equation:

CPV(l) = 100


l

∑
j=1

λj

j=m
∑

j=1
λj

% (4)

Figure 1. Schematic illustration of PCA model.

2.2. Feature Selection Using PCA Technique

To obtain and accomplish high classification performance, it is essential to extract the
statistical attributes using a PCA model by exhaustively listing specific available values.
The two distinct indices T2 and Q can be used to characterize the PCA model. Based on the
first l PCs terminated for each attribute, T2 determines the variations in the first subspace
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and the distance of each observation from the model’s center. The T2 index is determined
by:

T2 = XT P̂Λ̂P̂TX (5)

The Square Predict Error (SPE), also called the Q statistic, calculates how good the PCA
model is, as well as how the sampled dataset vector is projected into the second sub-
space [38]. Q is provided by:

Q =
∥∥X̃
∥∥ =

∥∥∥(I − P̂P̂T
)∥∥∥2

(6)

The control limits are determined for any monitoring index by the following equation:

T2
α =

a(n− 1)(n + 1)
n(n− a)

Fα(a, n− a) (7)

Qα = θ1(

cα

√
2θ2h2

0

θ1
+ 1 +

θ2h0(h0 − 1)
θ2

1
)

1
h0 (8)

Fα(a, n− a) is an evaluation of an F distribution with a, n− a degrees of freedom at a
specified level of confidence (1− α), where n is the number of samples and a is the number
of PCs.

θi =
m

∑
j=a+1

λi
jθi =

m

∑
j=a+1

λi
j, i = 1, 2, 3 (9)

h0 = 1− 2θ1θ2

3θ2
2

(10)

The (1− α) percentile’s associated normal deviation is cα. The statistic that combines the
advantages of Q and T2 is depicted as:

Φ =
T2

Tα
+

Q
Qα

(11)

2.3. Overview of the Multiscale Representation Framework

Practical measurements are generally affected by unwanted noise, autocorrelation,
and errors that conceal important elements in the dataset and restraint the efficiency of each
process monitoring tool. This is because of the various physical limitations of acquisition
systems. Therefore, it is necessary to first reduce the undesirable noise in order to prevent
making bad decisions based on these noisy signals. In order to effectively split the stochastic
features from the dataset and reduce the impacts of noise and outliers, a robust data analysis
method that effectively separates deterministic and stochastic features is wavelet-based
multiscale representation [39]. A low-pass filter (h), that is formed from a scaling basis
function of the following form, can be used to combine a time domain data set (signal) with
a low-pass filter to obtain a coarser estimation of the signal (referred to as a scaled signal),
as shown in Figure 2.

Φij(t) =
√

2−jφ
(

2−jt− k
)

(12)

where k and j, respectively, stand for the discretized translation and dilation parameters.
The diversity between the original and approximate signals may extracted by mixing the
original signal with the use of a high-pass filter (g) (Figure 2), which is made from a wavelet
basis function: [40].

ψij(t) =
√

2−jψ
(

2−jt− k
)

(13)
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The original signal could be presented as the sum of almost recent scaled signal and all the
detail signals after repeating these approximations, i.e., [40]:

[X](t) =
n2−j

∑
k=1

ajkφjk(t) +
j

∑
j=1

n2−j

∑
k=1

djkψjk(t) (14)

where n and j stand for the signal’s length and the highest possible decomposition, respec-
tively. This multiscale representation process is schematically depicted in Figure 2.

Φ =
T2

Tα
+

Q
Qα

(15)

Figure 2. A schematic diagram for the data set’s multiscale representation.

2.4. NNs-Based Fault Classification

For the sake of diagnosing frequent and similar faults, NN classifiers are applied
to the features after noise removal, extraction, and selection of the most significant and
informative attributes from the dataset. A brief review of these classifiers is given.

2.4.1. Artificial Neural Network

An organism’s nervous system, which is made up of several neurons connected in
order to process data. Similar to human brains, ANN models may acquire knowledge
through training, store it, and use it to estimate previously unobserved datasets [41]. The
most popular ANN model is the artificial multilayer perceptron (MLP) NN. A general
MLP net is an n layer NN (n ≥ 2). The MLP’s design generally comprises three levels:
input, hidden, and output layers, as depicted in Figure 3. Therefore, gradient descent
or conjugate gradient techniques are frequently used to back-propagate errors between
targets, or desired values, and network outputs when training MLP [42,43].
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Figure 3. Perceptron with two layers, three inputs, and one output.

2.4.2. Multilayer Neural Network

Three layers—input, hidden, and output—constitute the Multilayer Neural Network
(MNN), as depicted in Figure 4.

Figure 4. Architecture of a Multilayer Neural Network.

Each layer is built of a set of nodes and weights that connect them. The goal of learning
is to achieve the desired input/output characteristics. A back-propagation algorithm, which
represents a kind of steepest descent technique, is utilized to learn an MNN by adjusting
the weights. The main function that was used to train the NN is depicted in detail in [44,45].

2.4.3. Cascade Forward Neural Network (CFNN)

The CFNN algorithm is a static NN in which signals can only pass in a forward direc-
tion. Despite the fact that it connects the input and each previous layer to the subsequent
ones. Indeed, the reason this network is referred to as a cascade is that all of the neurons’
output previously existed in the network and were used to feed a new neuron. When novel
neurons are added to the hidden layers, the learning method tries and aims to achieve
maximum correlation between the output of the added neuron and the network’s residual
error, which we are seeking to low and decrease. The output layer is directly connected to
an input and hidden layers in a three-layer network. Therefore, this NN has the advantage
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of accommodating nonlinear relationships without avoiding the linear relationship between
the input and the output [46,47]. CFNN’s architecture with one hidden layer is shown in
Figure 5.

Figure 5. CFNN Architecture of a Cascaded Forward Neural Network.

2.5. MSPCA-Based NN Fault Diagnosis

In this study, the MSPCA model was applied with the goal of merging the PCA’s
capacity to extract the corresponding cross-correlation betwixt variables with the orthonor-
mal wavelets’ capacity to split features from noise and avoid the auto-correlation between
the obtainable measurements. In order to combine the outcomes at adequate scales, the
MSPCA technique processes and computes a PCA model of the wavelet coefficients at
each scale. Accordingly, the pertinent attributes are attained for each scenario by selecting
only those latent variables that capture the relationship betwixt the variables after the
elimination of less important signal features. Thus, for the purpose of fault diagnosis, the
most pertinent features are fed into NN classifiers. A wavelet decomposition is utilized
to remove errors, decrease noise, and decorrelate the relationship between the stochastic
measurements, once measurements representing healthy and various potential defective
operating modes in the process are provided. The data gathered while the system is in
normal operation is then used to develop a PCA model. The obtained dataset is projected
onto a subspace of positive right directions while maintaining the information about the
most collected features. The resultant PCA model’s structure is described by the directions
of the subspace projector, whose dimension is smaller than that of the raw dataset. With
the use of this projection technique, various important attributes are gathered for each
situation. Subsequently, a bank of various classifiers is trained using a range of attributes as
input and their associated labels as the desired output. Otherwise, a comparison between
the resulting classifier output and the set of feature labels is evaluated in order to generate
an efficient decision.

The main various tasks of the suggested strategy are illustrated in Figure 6.
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Figure 6. MSPCA-based NNs fault diagnosis and detection process.

Algorithm 1 highlights the key tasks of the MSPCA-based NN algorithm.

Algorithm 1 MSPCA-based NN algorithm

Input: n×m data matrix X,
Collecting the data.
Training phase
1. Calculate the wavelet decomposition for each column in the data matrix;
2. Calculate the mean and standard deviation of each process variable, then standardize
the dataset matrix;
3. Decompose each variable into wavelet coefficients;
- Each scale’s wavelet coefficients are formed into a matrix;
- Each of these scales is subjected to PCA;
- Determine the Q, T2, and φ statistics of each dataset;
4. Retained wavelet scales and coefficients are used to reconstruct the dataset matrix;
5. Perform PCA to acquire an estimated dataset matrix and residuals;
6. Classify the faults through NN classifiers;
7. Ascertain the classification model;
Testing phase
1. Standardize the testing dataset by the use of the mean and the standard deviation
computed from the fault-free training phase;
2. Decompose each variable into wavelet coefficients;
- Each scale’s wavelet coefficients are formed into a matrix;
- Each of these scales is subjected to PCA;
- Determine the Q, T2, and φ statistics of each dataset;
3. Reconstruct the data matrix by use of the retained wavelet scales and coefficients;
4. A PCA technique is performed on the reconstructed data matrix;
5. Classify the faults through NN classifiers;
6. Establish the prediction model;
7. Attain the fault diagnosis outcomes.



Signals 2023, 4 390

3. Results and Discussion
3.1. Process Description

In this work, the distributed structure has been considered. This structure is a modular
application that allows the multiplication and diversification of technologies, for which the
combination of several different types of photovoltaic sensors can be made. One aspect of
the possible configuration is shown in Figure 7. A DC voltage bus with a 500-volt value
is involved. All panel and converter components are linked in parallel to the DC voltage
bus. Because each panel is optimally controlled individually, the downstream converter
does not control the global MPP tracking. Besides, the controllers are resistant to external
perturbations. Because of the used high voltage, it is possible to consider a reduction of
the cable sections, which constitutes a material gain in copper or aluminum. The PV farm
consists of 3 PV arrays, each delivering a maximum of 4 kW. A single PV array block is
made up of two parallel strings, each having 24 modules connected in series. In each
module, there are 20 cells. Each PV array has a DC/DC converter connected to it. The
outputs of the boost converters are connected to a common 500-volt DC bus. Each boost
is individually controlled using Maximum PowerPoint Trackers (MPPT). The PV array’s
terminal voltage is varied by the MPPTs using the “perturb and observe” technique in
order to obtain the maximum possible power. A three-phase source converter transforms
the 500 V DC to 260 V AC and keeps the unity power factor. To connect the converter to
the grid, a 100 (kVA) 260 (V)/25 (kV) three-phase coupling transformer is employed.

Figure 7. Schematic of a parallel system on a direct bus.

3.2. Description of the Input Data

Twenty-one frequent PV faults (Fault1, Fault2..., Fault21) are treated in this current
work.

As shown in Table 1, we used five different types of faults to introduce various
scenarios into the PV1 and PV2 systems in this work; for example, PV1’s simple faults
include four possible fault scenarios: Fault1 (line-to-line fault) is injected betwixt two
distinct points; a line-to-ground fault (Fault2) is considered in String1 (Str1) positioned
betwixt one point and the ground; Fault3 (connectivity fault) is injected in the first string
between two modules; Fault4 impacts the bay-pass diodes by injecting a variation in
resistance, the diverse positions of the aforementioned failures are shown in Figure 8.

The second PV array receives the same simple fault injections. Then, numerous defects
that present multiple faults are introduced into one PV array (PV1 or PV2). In addition, we
simultaneously injected mixed faults, which reflect numerous faults in both PV arrays.
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Figure 8. PV panel association structure.

Table 1. Detailed description of the diverse injected labeled faults.

Type of Fault Fault Label Fault Description

Simple faults in PV1

Fault1 Line-to-Line fault (LL1)
Fault2 Line-to-Ground fault (LG1)
Fault3 Connectivity fault (Cn1)
Fault4 Bypass fault (BP1)

Simple faults in PV2

Fault5 Line-to-Line fault (LL2)
Fault6 Line-to-Ground fault (LG2)
Fault7 Connectivity fault (Cn2)
Fault8 Bypass fault (BP2)

Multiple faults in PV1 Fault13 LL1 + LG1 + Cn1

Multiple faults in PV2 Fault14 LL2 + LG2 + Cn2

Mixed faults

Fault9 LL1 + LG1 + LL2
Fault10 Cn1 + LL2+ LG2
Fault11 BP1 + LL1 + BP2
Fault12 LL2+ BP2 + LG2
Fault15 BP1 + BP2
Fault16 LL1 + LL2
Fault17 LG1 + LG2
Fault18 Cn1 + Cn2
Fault19 LL1 + LG2
Fault20 LG1 + LL2
Fault21 Cn1 + BP2

The used simulated variables, which are gathered in order to assess FDD performance,
are presented in [48].
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3.3. Fault Classification Results

The investigated GCPV system operates in 22 working modes (Class Ci, i = 0...21)
when the first mode is the healthy one. A sample training dataset using 50 percent of the
data was utilized in order to train the NNs, and the remaining data were utilized to validate
and evaluate the trained NNs (see Table 2).

Table 2. Construction of the database.

Type of Fault Class State Training
Dataset

Testing
Dataset

Fault-free C0 healthy case 3000 3000

Simple faults in PV1

C1 Fault1 3000 3000
C2 Fault2 3000 3000
C3 Fault3 3000 3000
C4 Fault4 3000 3000

Simple faults in PV2

C5 Fault5 3000 3000
C6 Fault6 3000 3000
C7 Fault7 3000 3000
C8 Fault8 3000 3000

Multiple faults in PV1 C13 Fault13 3000 3000

Multiple faults in PV2 C14 Fault14 3000 3000

Mixed faults

C9 Fault9 3000 3000
C10 Fault10 3000 3000
C11 Fault11 3000 3000
C12 Fault12 3000 3000
C15 Fault15 3000 3000
C16 Fault16 3000 3000
C17 Fault17 3000 3000
C18 Fault18 3000 3000
C19 Fault19 3000 3000
C20 Fault20 3000 3000
C21 Fault21 3000 3000

In the present work, a method for detecting and diagnosing faults is provided. Almost
all stochastic measurements are decor-related. After being normalized to have unit variance
and zero mean, a PCA model is generated. Then, using a 95% cumulative variance criterion,
the acquired variances of the variables are stored and arranged in decreasing order after
being computed by the use of the eigenvalue decomposition. Consequently, five PCs were
maintained to be utilized to train the NN classifiers.

Therefore, denoising variables and selecting and thereby extracting statistical features
using an MSPCA tool is crucial for achieving higher accuracy in FDD-based techniques. As
a result, in this study, the NN classifiers are introduced with the newly obtained dataset.
Using labeled training data, this method teaches a set of predefined fault types.

Several ML techniques, including DT, SVM, DA, KNN, and NB, are employed to test
and evaluate the performance of our suggested strategy in terms of diagnostic precision,
recall, accuracy, and computation time.

The different existing techniques are implemented in a MATLAB environment. The
accuracy of these techniques is computed using a 10-fold cross-validation metric in order
to determine the FDD efficiency of the suggested techniques. The number of hidden layers
selected for the NN and CFNN is 10, and it was [10, 10, 10] for MNN, with a total of 50 max
epochs with full batch size. The K value for KNN is equal to 3, and the K and C parameters
for SVM are set with the lowest RMSE value. The number of splits for DT is equal to 50.

This work then employs a PCA model with a {PCl=5, Q, Φ} group of features. Table 3
shows the overall normalized accuracy values for the various extracted features and the
NN classifiers.
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Table 3. Normalized accuracy for the various extracted features and the NN classifiers.

Classifiers Phase Normalized
Accuracy CT (s)

ANN
Training 0.8249 88.23

Testing 0.9166 0.62

MNN
Training 0.6486 110.98

Testing 0.8220 0.68

CFNN
Training 0.6611 4260.8

Testing 0.6674 0.40

DT
Training 0.7364 23.18

Testing 0.7349 0.20

SVM
Training 0.8569 3700.79

Testing 0.8532 500.31

KNN
Training 0.8157 5.57

Testing 0.8212 0.82

NB
Training 0.2143 5.75

Testing 0.2368 0.50

DA
Training 0.3744 4.92

Testing 0.3721 0.46

Table 4 shows the obtained results in terms of normalized accuracy values for the
diverse extracted features based on the combined MSPCA technique and the NN classifiers.

Table 4. MSPCA normalized accuracy values for the diverse extracted features and NN classifiers.

Classifiers Phase
MSPCA

Normalized
Accuracy

CT (s)

ANN
Training 0.9149 72.26

Testing 0.9363 0.45

MNN
Training 0.8461 118.4

Testing 0.9419 0.65

CFNN
Training 0.8359 4195.8

Testing 0.8362 0.53

DT
Training 0.8436 11.90

Testing 0.8634 0.093

SVM
Training 0.8911 2125.14

Testing 0.8660 218.26

KNN
Training 0.8722 3.60

Testing 0.8235 0.40

NB
Training 0.7262 3.27

Testing 0.7259 0.25

DA
Training 0.4383 2.86

Testing 0.4317 0.21
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The established MSPCA-based NN methods are demonstrated to be efficient alter-
natives for fault diagnosis when compared to other existing methods. In spite of the fact
that the MSPCA tool enhances and improves the overall performance of all the utilized
techniques, the conventional methods still have significant drawbacks. For instance, the
accuracy of the DA and NB approaches is still poor, and the SVM technique suffers from a
difficult training phase and a high time complexity. In effect, it is clear that the suggested
approach performs better and produces good outcomes in terms of classification accuracy
compared to conventional techniques.Indeed, the accuracy of the training and testing
phases of the ANN classifier increased by 9 and 1.97 percent, respectively, the training
and testing phase accuracy of the MNN classifier improved by 19.75 and 11.99 percent,
respectively; and indeed, for the CFNN classifier, the training mode accuracy increased by
17.48 percent and the testing mode accuracy by 16.88 percent. Besides, the evolved strategy
reduces and decreases the computation time (CT), which speeds up the NN classifiers
and slows down their convergence. For instance, for the ANN classifier, the CT has been
decreased by 15.97 (s) and 0.17 (s) for the training and testing phases, respectively.

Tables 5–7 present the obtained testing classification outcomes of diverse classes by the
use of the normalized confusion matrix in order to indicate the efficiency of the developed
strategies. In fact, this matrix presents the samples that were correctly classified as well as
the ones that were incorrectly classified for the healthy (C0) and faulty modes (C1 to C21).
Actual classes and predicted process statuses are indicated by the raw and the column,
respectively.

Table 5 shows that for faulty operating mode 1 (C1), the ANN classifier recognizes
2863 observations out of 3000 (true positive) observations. For this scenario, the detection
precision is 94.05 percent, the recall is 95.43 percent, and the misclassification rate is equal
to 4.57%. For Fault2, designated to class C2, the precision is equal to 94.44%, the recall is
98.66%, and the misclassification rate is equal to 1.34%. The Precision for Fault3 is 90.01%,
the recall is 95.26%, and there is a 4.74% misclassification. The misclassification is therefore
8.17% for Fault4, 1.87% for faulty operating mode5, 6.8% for Fault6, 2.64% for Fault7, 6% for
Fault8, 4.24% for faulty operating mode9, 5.97% for Fault10,9.93% for Fault11, 14.07% for
Fault12, 1.37% for Fault13, 23.74% for Fault14, 8.3% for Fault15, 2.27% for Fault16, 8.07% for
Fault17,6.14% for Fault18, 2.37% for Fault19, 2.6% for Fault20,and 9.27% for Fault21.

In Table 6, the misclassification is 9.04% for the healthy case, 4.87% for Fault1, 1.6% for
Fault2, 1.67% for Fault3, 2.84% for faulty operating mode4, 2.87% for Fault5, 4.1% for
Fault6, 7.8% for Fault7, 9.3% for Fault8, 6.07% for Fault9, 9.34% for Fault10, 6.24% for
Fault11, 10.24% for Fault12, 3.6% for Fault13, 9.94% for Fault14, 9.3% for Fault15, 2.5% for
Fault16, 5.97% for Fault17, 5.47% for Fault18, 2.94% for Fault19, 4.14% for Fault20, and
8% for Fault21.

In Table 7, the misclassification is 29.54% for the healthy case, 4.2% for Fault1, 4.64% for
Fault2, 10.47% for Fault3, 8.3% for faulty operating mode4, 0.64% for Fault5, 10.5% for
Fault6, 5.84% for Fault7, 10.54% for Fault8, 32.64% for Fault9, 98.24% for Fault10, 6.44% for
Fault11, 3.77% for Fault12, 3.44% for Fault13, 9.24% for Fault14, 8.44% for Fault15, 2.6% for
Fault16, 12.77% for Fault17, 38.57% for Fault18, 33.6% for Fault19, 14.84% for Fault20, and
11.17% for Fault21.

Despite the fact that the introduced faults are numerous, similar, and close, the de-
veloped technique, which merges the benefits of multiscale representation and the PCA
technique, shows significant efficiency in detecting and diagnosing such frequent failures.

Therefore, overall results show that the evolved approach can improve the perfor-
mance of a variety of existing techniques, not only in terms of recall, precision, and accuracy
but also by significantly reducing computation time and storage space requirements. One
can conclude that denoising variables, eliminating stochastic samples, removing irrelevant
and correlated samples, and selecting and extracting only informative statistical features us-
ing an MSPCA tool are crucial to reducing the misclassification rate and thereby achieving
the higher accuracy and reliability of FDD-based techniques.



Signals 2023, 4 395

Table 5. Normalized confusion matrix of ANN classifier on testing phase.

True Classes
Predicted Classes C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 Normalized Precision

C′0 28.09 0 0 0 1.56 0 0 0 0.43 0 0 0 0 0 0 0.79 0.30 1.33 0 0.41 0 0 0.8535
C′1 0.09 28.63 0 0 0 0 0 0 0 0.46 0 1.20 0 0 0 0 0 0 0 0 0 0.06 94.05
C′2 0 1.04 29.60 0.21 0 0 0 0 0 0.49 0 0 0 0 0 0 0 0 0 0 0 0 0.9444
C′3 0.26 0.32 0.04 28.58 0 0 0 0 0 0.10 0 0 0 0 0 0 0 0 0 0 0 2.45 0.9001
C′4 0 0 0 0.16 27.55 0 0 0 0 0 0 0 0 0 0 0.02 0 0.09 0 0 0 0 0.9902
C′5 0 0 0 0 0 29.44 0.38 0.53 0 0 0.48 0 0 0 0 0 0 0 0 0 0 0 0.9549
C′6 0 0 0 0 0 0 27.96 0 0.67 0 0.61 0 0 0.01 0.28 0 0 0 0 0 0 0 0.9471
C′7 0 0 0 0 0 0.25 0.32 29.21 0 0 0.08 0 0 0 0 0 0 0 0 0.10 0.01 0 0.9746
C′8 0.01 0 0 0 0.56 0 0 0.05 28.20 0 0 0.31 0 0 0 0.97 0 0 0 0 0.23 0 0.9297
C′9 0 0.01 0.24 0.97 0 0 0 0 0 28.73 0 0 0 0.11 0 0 0 0 0 0 0.15 0.27 0.9425
C′10 0 0 0 0 0.11 0.31 1.02 0 0 0 28.21 0.37 0.46 0 0.28 0 0 0 0 0 0 0 0.9171
C′11 0 0 0 0 0 0 0 0 0 0 0 27.21 0 0.18 0 0.26 0 0 0 0 0 0 0.9840
C′12 0 0 0 0 0 0 0.24 0.21 0 0 0.10 0 25.78 0.03 6.56 0 0 0 0 0 0 0 0.7831
C′13 0 0 0 0.08 0 0 0 0 0 0 0 0 0 29.59 0 0 0 0 0 0 6 0 0.9952
C′14 0 0 0 0 0 0 0.06 0 0 0 0.25 0.15 3.57 0 22.88 0.04 0 0 0 0 0.11 0 0.8455
C′15 0 0 0 0 0.19 0 0 0 0 0 0 0.10 0 0 0 27.51 0.10 0.69 0.21 0 0.03 0 0.9542
C′16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29.32 0.30 0.81 0 0 0 0.9635
C′17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.12 0.17 27.58 0.82 0.17 0 0 0.9556
C′18 1.47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.02 0.11 0.01 28.16 0 0 0 0.9459
C′19 0.08 0 0.12 0 0 0 0 0 0 0 0 0.07 0.01 0 0 0.27 0 0 0 29.29 0.19 0 0.9753
C′20 0 0 0 0 0.03 0 0.02 0 0 0.06 0.27 0 0.01 0.08 0 0 0 0 0 0.03 29.22 0 0.9831
C′21 0 0 0 0 0 0 0 0 0.70 0.16 0 0.59 0 0.08 0 0 0 0 0 0 0 27.22 0.9467

Normalized recall 0.9363 0.9543 0.9866 0.9526 0.9183 0.9813 0.932 0.9736 0.94 0.9576 0.9403 0.9007 0.8593 0.9863 0.7626 0.917 0.9773 0.9193 0.9386 0.9763 0.974 0.9073 0.9363



Signals 2023, 4 396

Table 6. Normalized confusion matrix of MNN classifier on testing phase.

True Classes
Predicted Classes C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 Normalized Precision

C′0 27.29 0 0 0 0.57 0 0 0 1.83 0 0 0 0 0 0 1.21 0.29 0.41 0.44 0 0 0 0.8517
C′1 0 28.54 0 0.01 0 0 0 0 0 0 0 1.02 0 0 0 0 0 0 0 0 0 0 0.9651
C′2 0 0.27 29.52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.08 0.05 0.9866
C′3 0 0 0.20 29.50 0 0 0 0 0 1.61 0 0 0 0 0 0.20 0 0 0 0 0.04 2.35 0.8656
C′4 0.53 0 0 0.21 29.15 0 0 0 0 0 0 0 0 0 0 0.31 0 0.07 0 0 0 0 0.9629
C′5 0 0 0 0 0.02 29.14 0.50 0.40 0 0 0.23 0 0 0 0 0 0 0 0 0 0.59 0 0.9436
C′6 0 0 0 0 0 0 28.77 0.10 0 0 2.21 0 0 0 0 0 0 0 0 0 0 0 0.9256
C′7 0 0 0 0 0 0.19 0.15 27.66 0 0 0 0.05 0 0 0 0 0 0 0.14 0 0.11 0 0.9773
C′8 0.26 0 0 0 0.03 0 0 0 27.21 0 0 0 0 0 0 9.54 0 0 0 0 0.04 0 0.9690
C′9 0 0.27 0 0 0 0 0 0 0 28.18 0 0.22 0 0.17 0 0 0 0 0 0 0 0 0.9771
C′10 0 0 0 0 0 0.67 0.47 0.88 0 0 27.20 0.14 0.14 0 0.53 0.02 0 0 0.03 0 0 0 0.9042
C′11 0 0.77 0 0 0 0 0 0 0 0.06 0 28.13 0 0.21 0 0 0 0 0 0 0 0 0.9643
C′12 0 0 0 0 0 0 0 0 0 0 0 0 26.93 0 2.40 0 0 0 0 0 0 0 0.9181
C′13 0 0.06 0 0.01 0 0 0 0 0 0 0 0 0 28.92 0 0 0 0 0.08 0 0 0 0.9948
C′14 0 0 0 0 0 0 0.11 0 0 0.05 0.29 0.01 2.32 0 27.02 0.16 0 0.05 0 0.03 0.19 0 0.823
C′15 0 0 0 0 0.05 0 0 0 0 0 0.07 0.02 0 0.09 0 27.22 0 0.62 0.12 0 0.16 0 0.9601
C′16 0.42 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29.25 0.29 0.44 0.48 0 0 0.8295
C′17 0.22 0 0 0 0 0 0 0 0.06 0 0 0.03 0 0 0 0 0 28.21 0.39 0.18 0 0 0.9697
C′18 1.28 0 0 0.10 0 0 0 0.06 0 0 0 0.02 0 0 0 0.09 0.28 0.22 28.36 0.19 0 0 0.9267
C′19 0 0 0 0 0 0 0 0 0 0 0 0.06 0.61 0.12 0 0.25 0.18 0.13 0 29.12 0.03 0 0.9547
C′20 0 0.03 0.03 0 0.18 0 0 0.90 0 0 0 0 0 0.23 0.05 0 0 0 0 0 28.76 0 0.9529
C′21 0 0 0.25 0.17 0 0 0 0 0.90 0.10 0 0.30 0 0.26 0 0 0 0 0 0 0 27.60 0.9330

Normalized recall 0.9096 0.9513 0.984 0.9833 0.9716 0.9713 0.959 0.922 0.907 0.9393 0.9066 0.9376 0.8976 0.964 0.9006 0.9073 0.975 0.9403 0.9453 0.9706 0.9586 0.92 0.9419
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Table 7. Normalized confusion matrix of CFNN classifier on testing phase.

True Classes
Predicted Classes C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 Normalized Precision

C′0 21.14 0 0 0 1.65 0 0.02 0.23 1.72 0 0 0 0 0 0 0.54 0.23 1.33 6.47 0.43 0.15 0 0.6234
C′1 0 28.74 0.08 0.45 0 0 0 0 0 2.04 0 0.66 0 0 0 0 0 0 0 3.15 0 0.60 0.8045
C′2 0.10 0.79 28.61 1.51 0 0 0 0 0 4.01 0 0.01 0 0 0 0 0 0 0 0 0.05 0.74 0.7987
C′3 1.50 0 0 26.86 0 0 0 0 0 0.07 0 0 0 0 0 0.01 0 0 0 0 0 2.01 0.8821
C′4 0.61 0 0 0.74 27.51 0 0 0 0 0 0 0 0 0 0 0.01 0 0.06 2.03 0 0.06 0 0.8868
C′5 0.18 0 0 0 0.05 29.81 1.23 0.55 0.45 0 2.11 0 0 0 0 0.37 0.38 0.75 0.26 0.25 0.71 0 0.8035
C′6 0 0 0 0 0 0 26.85 0.74 0 0 10.84 0.04 0.23 0 0.46 0.16 0 0 0 0.03 0.44 0 0.6809
C′7 0 0 0 0 0 0 1.30 28.25 0 0 2.79 0.18 0.28 0 0.01 0 0 0 0 0 2.64 0 0.7968
C′8 1.74 0 0 0 0.01 0 0 0.0 4 26.84 0 0 0.24 0 0 0 1.21 0 0.02 0 0 0.16 0 0.8869
C′9 0 0 0 0 0 0 0 0 0 20.21 0 0 0 0.11 0 0 0 0 0 0 0 0 0.9945
C′10 0 0 0 0 0 0 0 0 0 0 0.53 0 0.14 0 0 0 0 0 0 0 0 0 0.7910
C′11 0 0.11 0 0 0 0 0 0 0 0 0 28.07 0 0.72 0 0 0 0 0 5.87 0 0 0.8073
C′12 0 0 0 0 0 0 0 0 0 0 0.15 0 28.87 0 1.97 0 0 0 0 0 0 0 0.9315
C′13 0 0 0 0 0 0 0 0 0 0 0 0 0 28.97 0 0 0 0 0 0 0 0 1
C′14 0 0 0 0 0 0.19 0.60 0 0 0 12.37 0 0.14 0 27.23 0.06 0 0 0 0 0 0 0.6755
C′15 0.03 0 0 0 0.78 0 0 0 0 0 0 0 0 0 0 27.47 0.06 1.67 1.80 0 0 0 0.8635
C′16 0 0.22 0.81 0.24 0 0 0 0 0 0.31 0 0.31 0 0 0 0 29.22 0 0.58 0.22 0 0 0.9157
C′17 0 0 0 0 0 0 0 0 0 0 0.75 0.28 0 0 0 0 0 26.17 0.43 0 0 0 0.9471
C′18 4.70 0 0 0 0 0 0 0.19 0 0 0 0 0 0 0 0 0.08 0 18.43 0.13 0 0 0.7832
C′19 0 0 0.32 0 0 0 0 0 0 0 0 0 0.20 0 0 0 0 0 0 19.92 0.24 0 0.9632
C′20 0 0 0 0 0 0 0 0 0 3.24 0.46 0.04 0 0.03 0.33 0 0 0 0 0 25.55 0 0.8617
C′21 0 0.14 0.18 0.20 0 0 0 0 0.99 0.12 0 0.17 0.14 0.17 0 0.17 0.3 0 0 0 0 26.65 0.9202

Normalized recall 0.7046 0.958 0.9536 0.8953 0.917 0.9936 0.895 0.9416 0.8946 0.6736 0.0176 0.9356 0.9623 0.9656 0.9076 0.9156 0.974 0.8723 0.6143 0.664 0.8516 0.8883 0.8362
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4. Conclusions and Future Work

This paper investigated the problem of failure detection and diagnosis in grid-connected
PV (GCPV) systems. The developed methodologies were based on Neural Network (NN),
multiscale representation, and principal component analysis (PCA) tools. A multiscale PCA
strategy was used to remove noise and extract and select more-relevant features. After that,
the extracted features were fed as inputs to the NN classifiers in order to detect, classify,
and distinguish between the different working conditions. After that, the extracted features
were fed as inputs to the NNs classifiers in order to detect, classify, and distinguish between
the different working conditions. In this work, we consider the diagnosis of all potential
and frequent faults that may occur in GCPV systems in order to establish a comprehensive
analysis and guarantee the efficiency and safety of such systems. Therefore, 21 faulty
scenarios, including line-to-line, line-to-ground, connectivity faults, and faults that can
affect the normal operation of the bay-pass diodes, were introduced. These faulty scenarios
comprise various conditions: Simple, multiple, and mixed faults are injected at different
levels and locations. To evaluate the robustness of the proposed strategy, various cases were
investigated. The suggested solutions were sufficient for diagnosing the characteristics of
GCPV operating conditions in both normal and abnormal modes. Nevertheless, the obtained
fault diagnosis accuracy presented when applying the established approach demonstrated
some missed detection and false alarm rates, thereby some faulty conditions not being
correctly labeled. Accordingly, one future work aspect is to employ an online and adaptive
NN-based tool to enhance the model, which can provide a reduced missed classification
rate. Another direction of work is to develop adaptive NNs-based techniques to address and
avoid uncertainties in PV systems using the interval-valued dataset representation. Indeed,
an ensemble NNs-based model will be improved using multiple NNs-based strategies to
raise the precision of the decision-making.
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