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Abstract: This paper uses millimeter-wave radar to recognize gestures in four different scene do-
mains. The four scene domains are the experimental environment, the experimental location, the
experimental direction, and the experimental personnel. The experiments are carried out in four
scene domains, using part of the data of a scene domain as the training set for training. The remaining
data is used as a validation set to validate the training results. Furthermore, the gesture recognition
results of known scenes can be extended to unknown stages after obtaining the original gesture data
in different scene domains. Then, three kinds of hand gesture features independent of the scene
domain are extracted: range-time spectrum, range-doppler spectrum, and range-angle spectrum.
Then, they are fused to represent a complete and comprehensive gesture action. Then, the gesture
is trained and recognized using the three-dimensional convolutional neural network (CNN) model.
Experimental results show that the three-dimensional CNN can fuse different gesture feature sets.
The average recognition rate of the fused gesture features in the same scene domain is 87%, and
the average recognition rate in the unknown scene domain is 83.1%, which verifies the feasibility of
gesture recognition across scene domains.

Keywords: across the scene; convolutional neural network; gesture recognition; millimeter-wave
radar; three-dimensional feature set

1. Introduction

With the development of millimeter-wave radar technology, millimeter-wave technology
has been applied in an increasing number of production environments. For example, in
autopilot [1,2], the unmanned user interface [3,4] employs millimeter-wave sensing detection
technology. In terms of vehicle trajectory positioning and tracking [5] and vehicle situational
awareness [6], the detection capability of millimeter-wave radar is significantly more robust
than other sensing technologies. Millimeter-wave radar also plays a role in human gait recog-
nition [7,8] and vital signs (respiration and heartbeat [9]) detection. The gesture is an essential
tool for human–computer interaction and a significant field in wireless signal perception. For
example, gestures are used in applications or video games [10]. Existing gesture recognition
research is based on wearable sensor devices [11] or wireless communication signals (Wi-
Fi [12], RFID), as well as computer vision research methods using optical cameras [13] and
depth cameras [14] to collect data. Wearable sensors [15] mainly capture position and spatial
state information during finger movement and then use this information to analyze gestures
to achieve the purpose of gesture recognition. Wearable devices can also study whole-body be-
havior and posture [16]. Wi-Fi signals are typically characterized by Received Signal Strength
Indication (RSSI) or Channel State Information (CSI) [17], which can also be combined with
machine learning algorithms to recognize gestures. The computer vision method [18] collects
the skeleton data in the gesture movement, uses the skin color, contour, texture, and other
information of the hand to represent the specific movement process of the gesture and then
recognizes the gesture. The above three methods are the mainstream methods of gesture
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research, but some aspects have apparent deficiencies. The data collected by computer vision
methods largely depend on light [19]. If the light is dim, the collected data will be incomplete,
and the gesture cannot be accurately recognized. Using Wi-Fi signals to describe motions,
the multipath effect seriously affects the independence of gestures. Extracting gestures from
a large number of reflected signals is a huge challenge. The most significant disadvantage of
using wearables to recognize gestures is the very high cost of deployment [20]. To sum up,
the mainstream research methods of gestures have shortcomings.

Millimeter-wave radar has the characteristics of large bandwidth, narrow beam, strong
detection ability, high signal transmission quality, and small impact on the environment
at close range. It can distinguish subtle changes in motion and fully meet the research
requirements of gesture motion. Therefore, using millimeter-wave radar [21] to recognize
gestures can avoid the disadvantages of the above methods.

It is a trendy research field to use millimeter-wave radar to study gestures. Foreign
Google [22] uses a self-developed 77 GHz millimeter-wave radar to analyze motions, and
domestic Infineon [23] uses a wafer polar grid array (eWLB) to manufacture SiGe radar
chips to study gestures. Li and Zhang [24] discussed the mixing and modulation principle
of frequency-modulated continuous wave (FMCW) signals. Tao et al. [25] extracted the
range and doppler features from the range of doppler images of gesture echoes. They then
classified them with the training data of the dual-channel CNN. Kim and Toomajian [26]
used orthogonal matching pursuit (OMP) algorithm to analyze radar echo signals and
obtain micro doppler trajectories. Then, K-means is used to cluster the data, and the
neighborhood classifier is used to classify gestures. Yong et al. [27] estimated gestures
range, doppler, and angle parameters through time-frequency analysis of radar echoes.
After training, they used a multi-branch, end-to-end, multi-dimensional CNN to classify
gesture feature parameters. Zhaoyang et al. [28] fused the stitched feature map with the
non-stitched feature map by using the range map, doppler map, angle map, and the stitched
range doppler time feature map on the fixed frame time length. They then used the CNN
for classification training. Jing Biao [29] used the one-dimensional CNN to process echo
data and then used the one-dimensional initial V3 structure and long short-term memory
(LSTM) network to aggregate one-dimensional features for gesture recognition. These
studies extract part of the gesture features in a specific scene and do not fuse the gesture
features into an environment-independent feature set. In the literature [30], they extract
features from time and space, capture the motion information in multiple adjacent frames
and fuse them into a unified hand feature set. The gesture features obtained by this method
are complete and comprehensive, and the fused gesture recognition effect is better.

Research on gestures using millimeter-wave radar mainly focuses on an experimental
scenario. Most researchers collect data on multiple motions and then process the data to
obtain gesture features. Then, the gestures are trained and recognized in a deep-learning
model. Few experimenters conduct training after collecting gesture data in one experimental
environment and then use the gesture data in another suitable habitat as a validation set to
verify the training results. It is further explained that the gesture recognition of millimeter-
wave radar has nothing to do with the scene domain. To confirm that the gesture recognition
by millimeter-wave radar is independent of the scene domain, four different scene domains
(environment, location, orientation, and person) are designed for experiments. Gesture
data is first collected in four other scene domains. Then, the gesture data is processed, and
distance-time features, distance-doppler features, and distance-angle features are extracted
from the gesture data. Gestures are described using three feature sets. It can solve the
problem that the gesture features of different scenes are difficult to adapt to other locations,
and the description of gestures is incomplete. It will also play a more significant role in
the classification and identification stage. Then, the three feature sets are trained in the
three-dimensional CNN [31]. At the same time, the time dimension is introduced into the
training of gesture features. Finally, gestures are recognized in different scene domains,
which further illustrates that the millimeter-wave radar recognizes gestures, and the scene
domain is irrelevant. The overall structure of the experiment is shown in Figure 1.
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Figure 1. Millimeter-wave signal gesture recognition architecture network.

2. FMCW Radar System and Theory

The experiment uses two development boards, IWR1642 and DCA1000. The original
data sampling process is shown in Figure 2. Thick arrows represent data signal links, and
thin arrows represent control signal links. The light-colored thick arrows indicate the data
flow direction on the same board, and the dark-colored thick arrows indicate the data
flow between different boards. As can be seen from Figure 2, the PC is connected to the
two panels through the universal serial bus (USB) interface. The USB interface between
the PC and the IWR1642 development board is responsible for program download and
virtual serial port functions. the USB interface between the PC and DCA1000 controls
signals’ communication and data transmission. After the FMCW radar on the IWR1642
development board receives the echo signal, it passes through the low-noise amplifier
and mixes to obtain the intermediate frequency signal. Secondly, the analog-to-digital
converter (ADC) integrated of IWR1642 samples the four-way signals and temporarily
stores them in the ADC buffer. Then, the ADC is transmitted to the DCA1000 data ac-
quisition card through the low-voltage differential signal (LVDS) interface. Finally, the
field-programmable gate array (FPGA) chip collects the ADC data stream and sends the
result to the PC for processing.

As shown in Figure 2, the FMCW radar has two transmitting antennas and four
receiving antennas. The two transmitting antennas transmit signals alternately using the
time gap. After receiving the intermediate frequency signal transmitted by the radar, the PC
performs a ping-pong operation on the data, constructs complex signal and serial-parallel
conversion and other preprocessing processes, and obtains eight receiving antenna time-
domain signals. The intermediate frequency signal obtained by mixing the transmitted
signal and the reflected signal is shown in Figure 3.
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In the experiment, the acquisition unit of the FMCW radar intermediate frequency
signal is 64 frames, each data frame has 128 frequency sweep signals, and each frequency
sweep has 64 sampling points. Each frame of data is 40 ms long, so the observation duration
of 64 frames of data lasts 2.56 s. Many experimental tests show that the time of gesture
action is 12–20 frames, which is approximately 0.5–0.8 s. The specific radar parameters are
shown in Table 1.

Table 1. Radar target detection parameter setting.

Radar Parameter Name Value

FM bandwidth 4 GHz
Antenna configuration 2Tx, 4Rx

Antenna Spacing Wave Length/2
FM period 40 µs

Data frame period 40 ms
The number of chirp signals in the frame 128

Sampling Rate 2 MHz
The number of sampling points in the FM-period 64

Distance resolution 3.75 cm/s
Speed resolution 4 cm/s

After an FMCW radar signal is transmitted, it reflects off objects and transmits the
echoes to the radar antenna, including noise. The primary noise interference of gesture
targets is static objects, such as tables and chairs in the experimental environment, displayed
plants, etc. Therefore, the static clutter filtering method filters the interference information.
The algorithm flow of filtering static objects is shown in Algorithm 1.
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The radar adopted in this paper has Nt = 2 transmitting antennas and Nr = 4 receiving
antennas. Since there is a fixed distance between each receiving antenna, the received signal
has a phase difference, which can be obtained from the doppler frequency shift. Therefore,
fast Fourier transform (FFT) based on doppler FFT can obtain the angle of the target relative
to the radar to have more comprehensive object attribute information.

According to the signal emission and reflection diagram in Figure 3, the reflected echo is
accompanied by interference clutter. The intermediate frequency signal can be obtained if the
transmitted wave and reflected wave are mixed. Through signal processing, the characteristic
diagram of motion can be obtained. The three-dimensional FFT processing process of FMCW
radar signal is as follows: FFT operation is performed on each sampling index of intermediate
frequency signal in each sweep period, and the same processing process is performed on each
chirp signal. That is range dimension FFT (range). The obtained results are saved in each
column of the matrix to obtain the distance information of the target. Then, the exponential
dimension of the sweep period is calculated by FFT to obtain the doppler characteristics. After
the two-dimensional FFT operation is performed, the range-doppler diagram is obtained.
Finally, FFT calculation is performed on the same frame data obtained by multiple receiving
antennas to obtain the angle information of the target.

Algorithm 1 Static filtering algorithm

Input: CFAR (Constant False-Alarm Rate) processing result matrix Rc f ar; distance unit vector Bpre
where the target in the previous frame is located; distance unit vector Bcur where the target is
located in the current frame.
Output : Static interference cancellation result matrix Rsta.
Calculation process

1. Initialize Rsta to Rc f ar, clear Cs, Cd, and Bcur

2. Count the number of targets detected by Rc f ar, denoted as Cd

3. for each coordinate in Rc f ar(xi, yi) do

4. if the coordinate yi is the doppler zero frequency offset value then

5. Increment the record distance coordinate xi in Bcur and increment Cs by a count

6. end if

7. end for

8. Sort Bcur and Bpre in ascending order

9. if Cd and Cs counts are not equal

10. Find the same distance coordinates in all Bcur and Bpre and remove duplicate targets from Rsta

11. end if

3. Design of Convolutional Neural Network

In traditional target detection, all target spatial feature information is contained in
a single two-dimensional image. Therefore, the two-dimensional CNN can be used to
analyze the spatial characteristics of the two-dimensional image to complete the target
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detection and classification. Micro gesture recognition consists of continuous motion time
slice information within a period. Each time slice contains the state information of the
current moment, and constant time slices have the evolution process of the target space
position. It can describe a specific state of motion of the human body. Therefore, to
recognize micro gestures, it is necessary to perform feature mining in conjunction with
time series space. The two-dimensional CNN does not have the learning ability of motion
time series features. The article introduces the time series-space standard feature extraction
method of the three-dimensional CNN.

3.1. Learning Model

In gesture recognition, one-dimensional CNN identify raw data [32]. This method has
high-performance requirements for training algorithms and is rarely used. The extracted
data features are two-dimensional images. Meanwhile, the three-dimensional CNN [33] is
based on the two-dimensional CNN. First, the training process of the two-dimensional CNN
is introduced and then the three-dimensional CNN used in the experiment is introduced [34].

The core operations of the two-dimensional CNN include two-dimensional convo-
lution operations and two-dimensional pooling operations. In the two-dimensional con-
volutional operation, the output is the two-dimensional feature map output by the upper
layer, and the two-dimensional convolution operation is performed with the convolution
kernel of the current layer. The activation function processes the output result, and the
two-dimensional pooling operation reduces the dimension. The whole process is shown in
Figure 4. Input 8 × 8 two-dimensional data map, and perform two-dimensional convolu-
tion operation with 3 × 3 convolution kernel to obtain 6 × 6 intermediate feature map. 3 × 3
two-dimensional spatial features are finally obtained through the 2 × 2 pooling operation.
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Unlike the two-dimensional CNN input and output are two-dimensional feature
maps, the three-dimensional CNN input is a sequence of continuous data frames. Then,
three-dimensional convolution operation and three-dimensional pooling operation are
used to extract temporal-spatial joint features. The final output contains three-dimensional
feature units of a continuous sequence of feature maps X(x, y, z) in the segment, the team
can be expressed as Equation (1) [35].

Y(x, y, z) = X(x, y, z)⊗ H(x, y, z) =
K1−1

∑
i=0

K2−1

∑
j=0

K3−1

∑
k=0

X(x + i, y + i, z + k)H(x, y, z) (1)

The symbol “⊗“ represents the convolution operation X(x, y, z) and H(x, y, z) denote
the three-dimensional feature unit in the previous layer and the three-dimensional convo-
lution kernel unit in the three-dimensional convolution operation. K1,K2, K3 represent the
three-dimensional convolution kernel’s length, width, and height information. The whole
process is shown in Figure 5. The input is 8 × 8 × 6 continuous data frames, and after
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an operation with 3 × 3 × 3 convolution units, the 6 × 6 × 4 three-dimensional feature units
of the middle layer are obtained. Then, after the 2 × 2 × 2 three-dimensional pooling oper-
ation, the feature unit of 3 × 3 × 2 is finally output. Comparing the two-dimensional CNN
in Figure 4, it can be found that the production of the two-dimensional CNN is a single
frame of two-dimensional data. Therefore, the entire network architecture can only achieve
data compression in the spatial dimension and complete spatial feature extraction. The
input of the three-dimensional CNN is continuous data frames. Through three-dimensional
convolution and three-dimensional pooling, the entire network can achieve compression in
both time and space dimensions at the same time and finally complete the time-space joint
feature extraction.
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3.2. The Three-Dimensional CNN Architecture Analysis

Although the gesture feature maps come from the same motion information, they are
not the same when viewed from different angles [35]. Considering the uniqueness of each
feature set, different feature sets representing the same gesture are trained, and features
from different angles are fused [36]. The three-dimensional CNN combines spatial and
temporal elements, and after training these three branch structures, different gestures can
be obtained by integrating the features.

Based on the three-dimensional CNN to recognize micro-motion gestures, the net-
work structure is shown in Figure 6. The network architecture contains four layers of
three-dimensional convolutions and two fully connected layers. In the third and fourth
convolutional layers, the convolutional operation of the stacked structure is introduced.
All convolution operations use a 3 × 3 × 3 convolution kernel structure with the smallest
dimension. They introduced the excitation function to enhance the network learning ability.
The network uses the ReLu activation function. As shown in Figure 6, the input data
format is (N f , h, w, c), and N f = 16 represents 16 consecutive data frames h, w, c represents
the data frame’s length, width, and height, respectively, and they are set to 112 × 112 × 3.
The three-dimensional convolution operation parameters are (lk, hk, wk, ci, co). lk, hk, wk
represent the convolution kernel’s three-dimensional length, width, and height. Set to
3 × 3 × 3. ci = 3 means that the three-dimensional convolutional layer has three input
channels co = 64 implies that the three-dimensional convolution operation has 64 output
channels. As the number of convolution layers deepens, the number of output channels
of the three-dimensional convolution operation will also increase layer by layer. The num-
ber of output channels of the second and third layers is set to 128, 256. To avoid the
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problem of too many training parameters caused by the deepening of network layers,
Three-dimensional max pooling is added after each convolutional layer to reduce the
dimension of feature units. The configuration parameters are (pt, ph, pw), pt represents the
compression ratio in the time series dimension, and ph, pw represent the spatial compres-
sion ratio of a single data frame. Feature serialization is performed on the output unit of
the last convolutional layer by two fully connected layers, then combined with the softmax
function, combined with the minimum information entropy criterion to achieve network
training, time-space joint feature extraction, and multi-gesture classification.

Signals 2022, 3, FOR PEER REVIEW  8 
 

 

Set to 3 × 3 × 3. ic  = 3 means that the three-dimensional convolutional layer has three input 

channels oc  = 64 implies that the three-dimensional convolution operation has 64 output 
channels. As the number of convolution layers deepens, the number of output channels of 
the three-dimensional convolution operation will also increase layer by layer. The number 
of output channels of the second and third layers is set to 128, 256. To avoid the problem of 
too many training parameters caused by the deepening of network layers, Three-dimen-
sional max pooling is added after each convolutional layer to reduce the dimension of fea-
ture units. The configuration parameters are ( , , )t h wp p p , tp  represents the compression 

ratio in the time series dimension, and hp , wp  represent the spatial compression ratio of 
a single data frame. Feature serialization is performed on the output unit of the last convo-
lutional layer by two fully connected layers, then combined with the softmax function, com-
bined with the minimum information entropy criterion to achieve network training, time-
space joint feature extraction, and multi-gesture classification. 

 
Figure 6. Architecture of the three-dimensional CNN. 

  

Figure 6. Architecture of the three-dimensional CNN.

4. Experimental Setup and Result Analysis
4.1. The Experimental Setup

The experimental equipment is the 77 GHz millimeter wave development board
IWR1642, as shown in Figure 7. The antenna is set to two transmitters and four receivers,
and the frame cycle time is set to 40 ms, that is, the time length of 100 frames for each
gesture. Each frame contains 128 chirped signals, and 128 sampling points are set for each
chirp to realize the discretization of the IF signal. Then, the dca1000 development board
is used to transmit the original data to the PC. The upper computer program reads the
signal’s amplitude and performs data preprocessing and feature extraction.
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Figure 7. IWR1642.

During the experiment, six kinds of dynamic gestures, shown in Figure 8, were selected
as the test gestures. The experimenter was required to complete the gestures in Figure 9
in different direction, positions and environments. The experiment was carried out in
a laboratory, corridor and open square, two indoor and one outdoor. Each experimental
environment is equipped with different equipment deployment and the location and
direction of the test object. As shown in Figure 9, ABCDE represents five directions, and the
red rectangular box represents six positions. The first, on the left of Figure 10 is the corridor
plan, which is 3.3 m high and 2.5 m wide. The experiment was conducted at 6:00 a.m.
without interference from others. The second experimental environment is the laboratory,
which has many sundries, such as desks, bookshelves, office chairs and computers. The
size is 5 m and 6 m. The first, on the right, is a relatively open outdoor experimental
environment. The same experimental time was 6 a.m.
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Figure 10. Experimental environment instance. (a) corridor environment, (b) laboratory environment
and (c) outdoor environment.

In these three experimental environments (Figure 10), five experimenters tested the
six gestures in Figure 8 in different positions and directions. Collect data from different
environments, positions and directions. Then verify the accuracy of cross-scene gesture
recognition after training. The experiment is to verify the gesture recognition effect in
different scene domains, so it only needs to determine an influencing factor, train other
factors and then take the data under this factor as the verification data set to verify the
recognition results. If it is necessary to verify whether the gestures in the corridor scene in
Figure 10a can be recognized in Figure 10b or Figure 10d, the data in Figure 10a need to be
trained and then the data in Figure 10b or Figure 10d should be used as a verification set
for verification to obtain the recognition accuracy of Figure 10a in the whole scene domain.
Similarly, the recognition accuracy of Figure 10b or Figure 10d can be obtained. The same
method can be used to verify the verification results to verify the gesture recognition
effect in different positions, directions and people. This way, the recognition rate of
different scene domains can be obtained. The feasibility of cross-scene gesture recognition
is further demonstrated.

4.2. The Experimental Analysis

In gesture recognition, multiple indicators are used to evaluate the classification
performance of the learning model. As shown below, TP indicates that the target gesture
is correctly classified as the target gesture. FP indicates that other gestures are incorrectly
classified as target gestures. FN indicates that the target gesture is incorrectly classified as
other gestures. TN indicates that other gestures are correctly classified as other gestures.
The performance indicators of the learning model include precision, recall, accuracy and
score, which can be calculated by formula. Fβ(β = 1) harmonic average of accuracy
and recall.

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)
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accuracy =
TP + FN

TP + FN + FP + TN
(4)

Fβ =
(β2 + 1)precision × recall

β2(precision + recall)
(5)

4.2.1. Training Model Parameter Setting

The parameter setting in the network structure is significant. When designing the
neural network structure, it is mainly necessary to consider the step size of the convolution
kernel, the number of convolution kernels, and the activation function. And the design
of the learning rate, optimization method, exit value, and the number of nodes is also
more critical. The recognition effect is best when these four parameters are set to (0.015,
0.01, 0.005, 0.001). Other parameters are default values. Compared with the training time
consumed by each round of data, the experimental results are shown in Figure 11. Through
exploratory analysis, the learning rate and the number of data nodes of the learning model
are essential parameters. They affect the accuracy of data training and gesture recognition
for optimal model performance.
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4.2.2. Optimization Analysis of Hardware Parameters

Different heights of experimental settings also affect the recognition performance. To
verify the effect of the height of the equipment on the results. Experiments were carried
out at heights of 0.80 m, 1.20 m, and 1.60 m, respectively. It can be seen that the height of
the device impacts the final recognition. It can be seen through many experiments that
the best recognition effect can be achieved under the condition of 1.6 m above the ground.
The specific effect is shown in Figure 12. Furthermore, it is speculated that the packet
delivery rate may affect the average recognition rate differently. By setting ten different
packaging delivery groups for verification, the comparison can prove that the recognition
rate of gesture 30 cm/s is the best, and the average recognition rate is above 94%. The
experimental results are shown in Figure 13.



Signals 2022, 3 886
Signals 2022, 3, FOR PEER REVIEW  12 
 

 

 
Figure 12. Influence of height on recognition rate. 

 

Figure 13. Influence of packet rate on recognition rate. 

4.2.3. Recognition Accuracy of Different Frequency Bands 
In this part of the experiment, three different experimental scenarios are designed to 

make comparisons. Through the experiment, the implementation of the algorithm is ana-
lyzed. In the crowded experimental environment full of obstacles, the reflected echoes of 
static objects are mixed with those of target objects. The frequency wireless signal deter-
mines its penetration ability and propagation path loss. The classification results are a 
visual summary through the classification of sample data and the recognition of three 
experimental scenes of the learning model algorithm. To verify that different environ-
ments significantly impact cognitive results, we collected the same data. The transmission 
frequencies of millimeter wave signals in three experimental scenarios are 24 GHz and 77 
GHz. In the three environments, all motion data are the same. The experimenter is col-
lected in the frequency bands of 24 GHz and 77 GHz, and the experimental data is put 
into the learning network model for recognition. The complete recognition results are 
shown in Figure 14. The experimental results show that the accuracy of gesture recogni-
tion is a 77 GHz bandwidth signal, which is higher than that of a 24 GHz bandwidth sig-
nal. Three experimental scenarios show that the 77 GHz band is more suitable for small 
human behavior perception. The unified use of the 77 GHz band signal makes the exper-
imental results reach the best due to the test signal.  

Figure 12. Influence of height on recognition rate.

Signals 2022, 3, FOR PEER REVIEW  12 
 

 

 
Figure 12. Influence of height on recognition rate. 

 

Figure 13. Influence of packet rate on recognition rate. 

4.2.3. Recognition Accuracy of Different Frequency Bands 
In this part of the experiment, three different experimental scenarios are designed to 

make comparisons. Through the experiment, the implementation of the algorithm is ana-
lyzed. In the crowded experimental environment full of obstacles, the reflected echoes of 
static objects are mixed with those of target objects. The frequency wireless signal deter-
mines its penetration ability and propagation path loss. The classification results are a 
visual summary through the classification of sample data and the recognition of three 
experimental scenes of the learning model algorithm. To verify that different environ-
ments significantly impact cognitive results, we collected the same data. The transmission 
frequencies of millimeter wave signals in three experimental scenarios are 24 GHz and 77 
GHz. In the three environments, all motion data are the same. The experimenter is col-
lected in the frequency bands of 24 GHz and 77 GHz, and the experimental data is put 
into the learning network model for recognition. The complete recognition results are 
shown in Figure 14. The experimental results show that the accuracy of gesture recogni-
tion is a 77 GHz bandwidth signal, which is higher than that of a 24 GHz bandwidth sig-
nal. Three experimental scenarios show that the 77 GHz band is more suitable for small 
human behavior perception. The unified use of the 77 GHz band signal makes the exper-
imental results reach the best due to the test signal.  

Figure 13. Influence of packet rate on recognition rate.

4.2.3. Recognition Accuracy of Different Frequency Bands

In this part of the experiment, three different experimental scenarios are designed
to make comparisons. Through the experiment, the implementation of the algorithm is
analyzed. In the crowded experimental environment full of obstacles, the reflected echoes
of static objects are mixed with those of target objects. The frequency wireless signal de-
termines its penetration ability and propagation path loss. The classification results are
a visual summary through the classification of sample data and the recognition of three
experimental scenes of the learning model algorithm. To verify that different environ-
ments significantly impact cognitive results, we collected the same data. The transmission
frequencies of millimeter wave signals in three experimental scenarios are 24 GHz and
77 GHz. In the three environments, all motion data are the same. The experimenter is
collected in the frequency bands of 24 GHz and 77 GHz, and the experimental data is
put into the learning network model for recognition. The complete recognition results are
shown in Figure 14. The experimental results show that the accuracy of gesture recognition
is a 77 GHz bandwidth signal, which is higher than that of a 24 GHz bandwidth signal.
Three experimental scenarios show that the 77 GHz band is more suitable for small human
behavior perception. The unified use of the 77 GHz band signal makes the experimental
results reach the best due to the test signal.



Signals 2022, 3 887
Signals 2022, 3, FOR PEER REVIEW  13 
 

 

 
(a) (b) 

Figure 14. Comparison of recognition accuracy in different environment. (a) Recognition rate un-
der 77 GHz bandwidth. (b) Recognition rate under 24 GHz bandwidth. 

4.2.4. Influence of Different Gesture Directions on Recognition Effect 
Data should be collected from different experimental directions to verify the influ-

ence of gesture experiments in different experimental directions on the recognition re-
sults. Taking into account the same experimental environment, experimental location, and 
experimental personnel, gesture experiments must be performed in five different direc-
tions (as shown in Figure 9). The experimental distance between the human body and the 
sensor is 0.8 m. The recognition effect of the five experimental directions is shown in Fig-
ure 15. The influence of different directions on the recognition effect is from high to low: 
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Figure 14. Comparison of recognition accuracy in different environment. (a) Recognition rate under
77 GHz bandwidth. (b) Recognition rate under 24 GHz bandwidth.

4.2.4. Influence of Different Gesture Directions on Recognition Effect

Data should be collected from different experimental directions to verify the influ-
ence of gesture experiments in different experimental directions on the recognition results.
Taking into account the same experimental environment, experimental location, and exper-
imental personnel, gesture experiments must be performed in five different directions (as
shown in Figure 9). The experimental distance between the human body and the sensor
is 0.8 m. The recognition effect of the five experimental directions is shown in Figure 15.
The influence of different directions on the recognition effect is from high to low: 3, 2, 4, 1,
and 5. The overall results show that the recognition results differ for different experimental
directions. From the experimental results (as shown in Figure 15), it can be seen that the
recognition effect of direction 3 is the best.
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4.2.5. Influence of Different Experimental Locations on Recognition Effect

We collected data from different experimental directions to verify the influence of
different locations on the experimental results. Experimental location refers to five different
locations set in the experimental environment, which are used to collect gesture data of each
location. Considering the same experimental environment, in experimental environment,
the experimenter carried out experiments in the transmission and reception process and
tested the influence of five different experimental locations in each experimental environ-
ment on the experimental results. As shown in Figure 9, the effects of E and D on the five
locations are arranged from high to low. The distance between the sensor and the human
body is set to 0.8 m, and the recognition results of the four environments are shown in
Figure 16; from the overall results, it can be seen that the recognition results of different
experimental locations are significantly different. The experimental results show that the
recognition effect obtained by the experiment at the E location is the best.

Signals 2022, 3, FOR PEER REVIEW  14 
 

 

of each location. Considering the same experimental environment, in experimental envi-
ronment, the experimenter carried out experiments in the transmission and reception pro-
cess and tested the influence of five different experimental locations in each experimental 
environment on the experimental results. As shown in Figure 9, the effects of E and D on 
the five locations are arranged from high to low. The distance between the sensor and the 
human body is set to 0.8 m, and the recognition results of the four environments are 
shown in Figure 16; from the overall results, it can be seen that the recognition results of 
different experimental locations are significantly different. The experimental results show 
that the recognition effect obtained by the experiment at the E location is the best. 

 
Figure 16. Influence of different location on recognition effect. 

4.2.6. User Diversity and Comparison of Different Models 
Four experimenters conduct experiments under different scene domains. Figure 17 

shows the average recognition rate of the four experimenters. Figure 18 compares three 
deep learning classification algorithms to analyze the relationship and accuracy between 
different algorithms. Whether in the laboratory or the laboratory corridor and hall, differ-
ent testers can maintain the accuracy of the experiment at a high level, and the testers will 
not cause great fluctuations in the test results. This paper uses the deep learning model to 
realize gesture recognition, and the three-dimensional CNN model is mainly used. Differ-
ent gesture sequences are collected by analyzing different network models CNN, LSTM 
and the three-dimensional CNN. By analyzing the F1 scores, the precision and recall rates 
of the three models are obtained. Figure 18 shows the F1 scores for three different algo-
rithms. The experimental results show that the average accuracy of the three-dimensional 
CNN algorithm is above 92%, and the three-dimensional CNN algorithm has the highest 
F1 score. It can fully consider the influence of various factors and has high robustness. 

 

Figure 16. Influence of different location on recognition effect.

4.2.6. User Diversity and Comparison of Different Models

Four experimenters conduct experiments under different scene domains. Figure 17
shows the average recognition rate of the four experimenters. Figure 18 compares three
deep learning classification algorithms to analyze the relationship and accuracy between
different algorithms. Whether in the laboratory or the laboratory corridor and hall, different
testers can maintain the accuracy of the experiment at a high level, and the testers will
not cause great fluctuations in the test results. This paper uses the deep learning model to
realize gesture recognition, and the three-dimensional CNN model is mainly used. Different
gesture sequences are collected by analyzing different network models CNN, LSTM and
the three-dimensional CNN. By analyzing the F1 scores, the precision and recall rates of
the three models are obtained. Figure 18 shows the F1 scores for three different algorithms.
The experimental results show that the average accuracy of the three-dimensional CNN
algorithm is above 92%, and the three-dimensional CNN algorithm has the highest F1 score.
It can fully consider the influence of various factors and has high robustness.
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4.2.7. Robustness Validation

Over time, temperature and humidity will affect the millimeter wave signal. Millimeter-
wave signals will scatter and absorb particles in the air during transmission to weaken the
signal strength. This is the inevitable loss of electromagnetic waves in the propagation process,
so it is necessary to consider this loss. It also has an obvious degree of persuasion for the overall
feasibility of the experiment. The time dimension is introduced to verify the performance of
the identification method. Figure 19 shows five different average false positive rates (FPR)
types. Make gestures at the same time every day for one week, and observe the FPR of six test
postures, which are 3.23%, 4.21%, 4.15%, 4.26%, 3.32% and 3.85%, respectively. Therefore, the
method proposed in this paper has sufficient robustness under time-varying conditions.
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4.2.8. Impact of Different Feature

The influence of the gesture feature map on the recognition effect is obvious. The
recognition effect has obvious differences between the range characteristic map and the
range-doppler characteristic map. In this paper, the recognition results of a single feature
map are obtained by analyzing different gesture features. As shown in Figure 20, the
recognition effects of a single feature are almost the same. Therefore, it is necessary
to extract the features between three-dimensional gesture images. By comparing the
three-dimensional and single gesture feature maps, we can see the obvious difference
in their recognition effect. Because the three-dimensional gesture feature is adopted in
this paper, the range, doppler and angle feature parameters are fused. In contrast, the
recognition effect of the fused gesture feature map is better and more accurate. This is
because a single gesture feature cannot represent the whole gesture. After fusion, each
feature will complement and extract all the contents of gesture features. Using a neural
network algorithm for recognition training, the recognition effect is more accurate and
higher. For the fused feature map, set different learning rates and the n observe the
recognition efficiency.
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4.2.9. Comparison with Previous Studies

Previous studies very similar to those mentioned in the article mainly include
Tao et al. [25] used the Dual-Channel CNN to train and classify the data. Yong et al. [27]
used the End-To-End multi-dimensional CNN training data. Zhaoyang et al. [28] used the
mixing CNN to train recognition on the concatenated gesture feature set. Jing Biao [29]
used the one-dimensional V3 structure and LSTM fusion network for gesture recognition
on raw echo data. Tao et al. [25] used range and doppler features to describe gestures.
So the description of motions is not comprehensive, and the average recognition rate of
gestures is 75%. Yong et al. [27] used the end-to-end CNN to train and recognize gestures
on a three-dimensional gesture feature set. The average recognition rate for motions is 78%.
Zhaoyang et al. [28] concatenate distance, doppler, and angle features. The average recog-
nition rate is 80%. Jing Biao [29] used the one-dimensional V3 structure and LSTM fusion
network to process raw echo data. Since the raw data is not preprocessed, the average
recognition rate is only 72%. The three-dimensional CNN trains a three-dimensional ges-
ture feature set. The gesture feature set describes gestures comprehensively and accurately.
Therefore, the average recognition efficiency is high, reaching 83%. The comparison of the
recognition effect is shown in Figure 21 below.
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4.2.10. Overall System Performance Analysis

The experiments are conducted across scene domains, so comparing the recognition
effects of different scene domains is essential. During the investigation, only the experimenter
was in the perceptual area. This avoids the influence of human factors on the experiment.
Five people, five orientations, and six gestures were set up in three experimental settings,
and ten data sets were collected for each motion. For experiments with known scenarios,
the training data used is 90% of the data in the environment. That is, 90% of each person’s
six gestures, the position and orientation are randomly selected, and the test data is 10% of
the data. The average recognition results for known scene domains are shown in Figure 22a.
For experiments with unknown scenarios, the training data is all data, and the test data is all
data. The average recognition results for the unknown scene domain are shown in Figure 22b.
Different positions and orientations and experimenters as experimental factors can affect
the accuracy of gesture recognition. Four location datasets are trained in three experimental
environments to compare the effects of observed locations on gesture recognition. The other
area validates the training results. The average recognition rate in the location scene domain
is 74.1% (Figure 22c). Due to the limited coverage of FMCW signals, data from different
locations cannot be fully adapted to other areas. If out of range, distance and velocity
resolution will drop dramatically. Therefore, the recognition rate also drops. In addition,
verify the effect of angle on gesture recognition accuracy. The verification results are shown in
(Figure 22d). The curve’s influence on the recognition effect is similar to that of the position,
and different angles will affect the recognition result of the gesture more or less. Finally, the
influence of the experimenter on the recognition rate is verified. The experimental results are
shown in (Figure 22e). The average recognition rate reaches 91.5%, which is higher than the
average recognition rate under other factors. This is because the length of human fingers and
the experiment time are negligible, so the recognition rate is very high.
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5. Conclusions

This paper uses the three-dimensional CNN for cross-scene recognition of gestures
collected by millimeter-wave radar. The experiment is to train and verify the gesture
data collected in one experimental scene in another practical set. It shows that gesture
recognition by millimeter-wave radar has nothing to do with the scene domain. To ver-
ify that, millimeter-wave radar recognizes gestures independent of the scene domain.
The experiments are designed with four scene domains (environment, location, orienta-
tion, and person). Motions are first collected from the scene domain. Then, the gesture
data is processed—extraction to distance-time features, distance-doppler features, and
distance-angle features. Using three gesture feature sets to describe gestures can solve the
problem that gesture features in different scenes are difficult to adapt to other positions and
gesture descriptions are incomplete. Then, these three feature sets are trained in the three-
dimensional CNN. At the same time, the time dimension is introduced into the training of
gesture features. Finally, gestures are recognized in different scene domains, illustrating
that millimeter-wave radar recognizes gestures regardless of scene domain. Experiments
show that motions in the scene domain (environment, location, orientation, and person)
can be identified by other gestures in the scene domain. The experimental results show
that the average recognition accuracy in the known scene domain is 87% and the average
recognition accuracy in the unknown scene is 83.1%. At the same time, the structure of
the neural network is also an external factor that affects the experiment. It is analyzed to
enhance the recognition system’s robustness and to verify its overall recognition effect.
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