)

/)

=

|v% y signals

Article

Verilog Design, Synthesis, and Netlisting of IoT-Based
Arithmetic Logic and Compression Unit for 32 nm HVT Cells

Raj Mouli Jujjavarapu !

check for
updates

Citation: Jujjavarapu, R.M.; Poulose,
A. Verilog Design, Synthesis, and
Netlisting of IoT-Based Arithmetic
Logic and Compression Unit for 32
nm HVT Cells. Signals 2022, 3,
620-641. https://doi.org/
10.3390/5signals3030038

Academic Editor: Chi-Yi Tsai

Received: 20 July 2022
Accepted: 7 September 2022
Published: 13 September 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Alwin Poulose %*

School of Electronics Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu,

Daegu 41566, Korea

Center for ICT & Automotive Convergence, Kyungpook National University, 80 Daehak-ro, Buk-gu,
Daegu 41566, Korea

* Correspondence: alwinpoulosepalatty@knu.ac.kr

Abstract: Micro-processor designs have become a revolutionary technology almost in every industry.
They brought the reality of automation and also electronic gadgets. While trying to improvise these
hardware modules to handle heavy computational loads, they have substantially reached a limit
in size, power efficiency, and similar avenues. Due to these constraints, many manufacturers and
corporate entities are trying many ways to optimize these mini beasts. One such approach is to design
microprocessors based on the specified operating system. This approach came to the limelight when
many companies launched their microprocessors. In this paper, we will look into one method of
using an arithmetic logic unit (ALU) module for internet of things (IoT)-enabled devices. A specific
set of operations is added to the classical ALU to help fast computational processes in IoT-specific
programs. We integrated a compression module and a fast multiplier based on the Vedic algorithm
in the 16-bit ALU module. The designed ALU module is also synthesized under a 32-nm HVT cell
library from the Synopsys database to generate an overview of the areal efficiency, logic levels, and
layout of the designed module; it also gives us a netlist from this database. The synthesis provides a
complete overview of how the module will be manufactured if sent to a foundry.

Keywords: microprocessors; operating systems; internet of things (IoT); arithmetic logic unit (ALU);
compression module; Vedic multiplier; fast multiplier; HVT cell; synthesis; netlist

1. Introduction

Before diving into the specifics of hardware module design and synthesis, it is essential
to understand the internet of things (IoT)-enabled devices” hardware requirements and
challenges. An IoT-enabled device can be anything that consists of a processing unit and
multiple other units to support wired or wireless communication with the internet. In this
design scenario, we assume that the designated device is a futuristic, intelligent, hub-style
unit. In this reference, the hub is similar to the hub module used in internetworking,
with additional features that enable smooth and bright data transactions between various
IoT devices in a discrete locality. This device might sound similar to an IP-router, but it is
different, as it handles most of the data transactions in the medium access control (MAC)
layer. It is more closely related to a switch with an advanced set of protocols that the
user describes depending on its utility. On a grander scale, these devices can handle deep
learning algorithms, performing edge computing for applications, requiring a timeless
response from other devices. Such applications might include vehicle-to-everything (V2X)
communications in autonomous cars, where these devices could be deployed as roadside
units to support advanced communications involving machine learning algorithms [1].
Machine learning in 5G and beyond communications has become a new research domain,
as they try to predict the channel. The channel prediction becomes more relevant when the
communications involve fast-moving vehicles. Here, the deployment of roadside units will

Signals 2022, 3, 620-641. https:/ /doi.org/10.3390/signals3030038

https:/ /www.mdpi.com/journal/signals

https://doi.org/10.3390/signals3030038
https://doi.org/10.3390/signals3030038
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/signals
https://www.mdpi.com
https://orcid.org/0000-0003-4487-137X
https://orcid.org/0000-0001-7100-8665
https://doi.org/10.3390/signals3030038
https://www.mdpi.com/journal/signals
https://www.mdpi.com/article/10.3390/signals3030038?type=check_update&version=1

Signals 2022, 3

621

become a powerful tool for efficient and effective communications. The loT-based hubs
and other similar devices might satisfy their hardware and timely needs.

In an intelligent farm, it is inevitable to witness a tremendous number of sensors and
other automation-related components. In a typical intelligent farming setup, we can expect
the data collected at these sensors to be sent to the cloud before processing or at least
to a central unit for further processing and future action generation. In the experiment
conducted and stated in [2], we can see that some locations have higher download rates
and lower upload rates and vice versa; these anomalies are far too common in a farm
situation, thereby making it unreliable for large-scale deployment. These approaches are
proven effective but pose many challenges when scaling because they are vulnerable to
cyber threats and dependent on internet linkage factors. Suppose there exists an intelligent
hub system by the ideology of distributed computing. In that case, the hub can only
transfer data to the required external hubs and distribute computation among themselves,
which keeps the security threats away from physical access by a good factor and creates
a distributed processing environment. As mentioned in [3], the relative locations of IoT-
enabled devices become a significant factor when dealing with edge computing, along
with factors such as network address translation (NAT) overload, and internet protocol (IP)
address hindrance. To tackle these issues, edge computing might have done a significant
job, but with supportable hardware at our hands, this could be scaled quickly.

Summing up the above-stated applications and their challenges, it is clear that many
other unstated applications require smart hub-like devices to perform computation on data
at the source end and transmit only limited content at high rates. It becomes evident that
the hardware used must become more specific and complex to achieve this criterion. It is
not contemporary to see specialized hardware on the go; many data centers already use
this approach in manufacturing specialized hardware for their data center requirement.
The solution we present here integrates networking as part of the computational challenge
to enable a reliable infrastructure for IoT applications. Looking at the IoT architecture
provided in [4], these devices mentioned as smart hubs could fit into IoT gateways, enabling
adequate security and reliability on the ubiquitous IoT devices.

An arithmetic logic unit (ALU) is a processor component that lets the processor
perform mathematical and logical operations on the data. For IoT hardware, we propose
a modified version of the ALU module that also enables compression, hence calling it
arithmetic logic and compression unit (ALCU). By integrating the compression block into
the ALU unit, we utilize the factor of real-time communication to its roots. Usually, it is
traditional to transmit data after the data are processed. Nevertheless, in the case of ALCU,
we can perform transmissions while the data are being processed. This feature is not helpful
in all scenarios, but during linear data processing programs, such a feature cuts down
the computational time by transmitting data as they start processing. By providing the
compression block in the ALU, we also give the programmer access to decide which data to
send at which instance of the calculation. This feature increases the complexity but, on the
other hand, provides a sufficient amount of control over networks to the programmer. This
module makes the IoT device highly customizable to the requested environmental setup.
Applications such as real-time rendering and other complex data sets already take much
computational time. Their required transmission bandwidth is also considerably large,
even with 5G and beyond. In the attempt to start transmission while rendering occurs,
this module might find its use in such an environment. As presented in [5], optimized
geometric compression algorithms utilize various algorithms for higher compression rates
and transmit over American standard code for information interchange (ASCII). This
module can perform such algorithms with a considerable decrease in computational time,
as it performs ASCII generation in a single time stamp.

After the ALCU design, we synthesized the module to generate data on the area used
by the module and logic levels under a 32 nm HVT cell structure to understand the practical
aspect of the design. The main contributions from this paper are summarized as follows:

Signals 2022, 3

622

* We designed an ALCU hardware module for IoT applications-based devices, such as
relays, routers, and switches.

* The fast multiplier algorithm is implemented and is derived from the Vedic multiplier
algorithm; this algorithm is proven to reduce hardware complexity and delay.

¢ For simplicity reasons, the bit length of the module under consideration is set to a
16-bit size and a single bit overhead.

¢ The proposed ALCU is synthesized using Synopsys 32 nm HVT cells. The required
netlist is generated, and data relating to hardware area and logic levels are also
specified. The circuits illustrated in the paper are directly developed based on the
synthesized module.

¢ Anew module called a compression block is also included in the ALCU as the function
compression, a process frequently used in communication devices.

The rest of the paper is organized as follows. The literature survey is presented in
Section 2, and our implementation is discussed in Section 3. In Section 4, we present our
methodology used to implement the ALCU, and in Section 5, we added the synthesis and
netlist results with its discussions. Section 6 presents the discussion of our results with
the significance of the proposed ALCU. Finally, Section 7 concludes our article with future
research directions.

2. Literature Survey

An ALU deals with operations involving adding, subtracting, multiplying, dividing,
and other logical entities. Making these algorithms consume less area and also have the
least delay is essential. In reality, achieving both conditions at an extreme level is impossible.
The processor performs these operations repetitively, as almost all the programs involve
this operation in some form or the other. In this proposed module, we are trying to include
a new set of functions into ALU; hence the priority of the algorithms is to manage the
tiniest area.

For addition operations, we replicated a ripple carry adder; as stated in [6], a ripple
carry adder is the amalgam of less area consumption but high delay driven, as it needs
to generate a carry and take it one adder after the other. If we closely observe the ripple
carry adder architecture, it becomes clear that the most significant bit relies on the output
of its previous bit and so on up until the last bit. This rippling effect is solely responsible
for the delay generation in the adder. The subtractor used in the module also benefits
the same adder module with an additional primitive gate before every second input.
The primitive gate in question is the XOR gate. It allows the second input binary number to
be considered as 1’s complement, and by adding a carry of ‘1’, we can make it equivalent
to 2’s complement. A considerable amount of research is conducted in innovating the low-
power-consuming architecture. Many scholars have constantly put efforts into making a
low-power-consuming ripple carry adder. One such attempt is [7]; here, they implemented
an 8-bit ripple carry adder using 9-transistor adders and successfully demonstrated a
decrease in power consumption. The minor power consumption becomes a vital feature
for any IoT-based device. Many other types of adders consume lesser power and delays,
but the area of these architectures becomes considerably more complex in size. For instance,
if we see the results given by [8], with their experiment on adder architecture comparisons,
it shows us that the Brent-Kung adder is performing the task with the slightest delay and
the sparse Kogge—Stone adder has demonstrated minor power consumption.

Multiplication is simply a repetition of addition on a set number of times. Still, if this
approach is taken to build the hardware architecture, it will occupy a large area. For this
reason, we have many fast multiplication architectures. One such schematic is the Vedic
multiplier, considered one of the quickest and low power-consuming multipliers. The ad-
vantage of using a Vedic multiplier is that the growth of power and area corresponding
to the number of bits is much less compared to other fast multipliers [9]. The overall
performance of a multiplier depends on its building blocks; in the Vedic multiplier case,
we use many adders of various bit lengths. As stated in [10], we can improve the delay

Signals 2022, 3

623

performance of a Vedic multiplier by replacing its adders with the carry save adder (CSA).
In the case of [11], they replaced the multiplexers of the carry select adder with a binary to
excess converter to take advantage of the fact that it uses the same number of gates as a
ripple carry adder but produces results in much less time.

Compression plays a vital role in the storage and transmission of data. Depending
upon the level of compression applied to a piece of data affects the resolution of the data.
Compression and resolution are trade-off features. Many compression algorithms have
floated out of research and development to facilitate adequate storage and transmissions.
These algorithms are also data specific and utility specific. As we are focused on the
transmission of binary data, the data structure or format concept does not come under our
consideration. The classic data-encoding technique used is ASCII, which is today replaced
by UNICODE. UNICODE's large size of bit capacity brings all the languages in the world
to the table, giving them access to transmission. However, for our research purpose, we
will look closely into ASCII. By allowing the user to perform encoding on the go, we can
avoid a separate encoding block, saving more time in transmission. As mentioned in [12],
ASCII coding is of 7-bit length, but the computer byte length is 8 bits; hence we either keep
the most significant bit to a zero or use it as a parity bit. Hardware modules for encoding
and compression will go further in facilitating the device in saving the overall processing
time and transmission data size. As the device in consideration here typically deals with
text or numeric data, the chosen compression technique is ASCII. However, an IoT-enabled
camera device could benefit from image compressing techniques, such as JPEG [13].

Designing a highly efficient adder can show its effect on the core software applica-
tions. It impacts features such as accuracy, time, and size of implementation. For instance,
in paper [14], we can observe a comparative study of gate-level approximate adder designs
and their performance in the image-processing domain. This style of adder generally has
two blocks: precise addition block and imprecise block. The least significant bits are allo-
cated to the imprecise block and the most powerful to the other. The evaluation criteria were
to perform a fast Fourier transform and inverse it to understand the different adders’ speed
and quality effects on the image. Presently, there is a large amount of focus on designing
ALUs under the criteria to save area and achieve low power consumption [15-17]. For in-
stance, in [18], we can observe the scholars focusing on utilizing the gate diffusion input
technique to achieve these mentioned features. In our paper, we used a special multiplier
called a Vedic multiplier; this multiplication technique resonates with the multiplication
methods used when performing with a hand. This method comes into the limelight with
delay reduction [19].

3. Implementation

The approach followed in implementing this paper is a simpler version of the system
on chip (SoC) methodology. In SoC designing approach [20], there are various steps, namely
the following:

* Design planning.

* Functional evaluation.

* Design for test (DFT).

e Synthesis, floor planning, and STA.
* Design closure.

* Manufacturing tests.

e Future challenges.

In this paper, we have performed only up to synthesis, as the rest of the procedure
is focused on the production and corporate challenges. The design is evaluated, tested,
and synthesized. After the synthesis, a specific netlist is generated, the output that could
be used in later stages of this methodology. The hardware prerequisites for implementing
these procedures are listed in Table 1.

Signals 2022, 3

624

Table 1. System requirements.

System Components Values
Computer IBM or Compeatible
Processor Pentium-4 or above
Hard Disk 20 GB or above
Ram 2GB or above
VDU VGA minimum software requirements
Operating System Windows XP* or Linux
Additional Software Design Compiler, Icarus-iverilog

4. Methodology

Designing an ALCU can be made more accessible by giving it a modular structure,
where one can add various manageable blocks to be reused later. This ALCU consists of
three blocks: arithmetic blocks, logic units, and compression blocks. Arithmetic blocks
consist of a 16-bit addition module, 16-bit subtraction module, 16-bit division, and 16-bit
multiplication module. The logic block consists of a 16-bit Bit-wise AND module, 16-bit
Bit-wise OR module, and a 16-bit inverter module. The compression blocks use a 16-bit
Base64 encoder module. Table 2 summarizes ALCU and its operations, and Figure 1 shows
our ALCU block diagram.

— ADDER

\\‘—

VEDIC
MULTIPLIER
e Mux
Mux
— INVERTER
/]‘_‘ Mux
—— L
——FBUBTRACTOR —————— :
Mux
LOGICAL E
OR
P
/—— Mux
——— DIVIDER
—— BASEG4 Pos2 S1 S0 5
CONTROL BLOCK

Figure 1. ALCU block diagram including Base64.

Signals 2022, 3

625

Table 2. ALCU and its operations.

Selection Bits Operation Result
000 Addition A+B
001 Subtraction A—-B
010 Multiplication A xB
011 Division A/B
100 Bitwise AND A&B
101 Bitwise OR A||B
110 Inverter A
111 Base64 compression Base64(A)

4.1. Arithmetic Block

Arithmetic units perform the following functions: addition, subtraction, multiplication,
and division. The 16-bit output is received since the input is 16 bits. The arithmetic will
only display one output at a time; a selector is required to pick one of the operators. Hence,
we use an 8:1 multiplexer with C2, C1, and CO as control lines; A and B are 16-bit inputs;
and Y is the 16-bit output. The selection modes would be:

e If Control bits = ‘000"
Then addition takes place.
e If Control bits = ‘001"
Then subtraction takes place.
e If Control bits = ‘010"
Then multiplication takes place.
e If Control bits = ‘011"
Then division takes place.

4.1.1. 16-Bit Ripple Carry Full Adder

A full adder is an adder that takes three inputs and outputs two results. The first
two inputs are A and B, while the third is an input labeled as C;;, as indicated in Figure 2.
The output carry is denoted by C,,¢, while the normal output is denoted by S, which stands
for SUM. If “Carry in” is 0, the behavior of a full adder is identical to that of a half adder.
However, if “Carry in” is 1, the sum’s behavior is the inverse, and “Carry out” changes into
an OR. As long as any of the inputs are 1, Carry out is 1. A full adder logic is designed to
accept eight or more inputs to construct a byte-wide adder and cascade the carry bit from
one adder to the next. Hence, this design can be used to create a 16-bit binary adder. We
cascade 16 full adder blocks together, passing the Carry over from the first full adder to
the second [21], from the second to the third, and so on. Bits of A[1] till A[16] and B[1] till
B[16] are given simultaneously as a single bit to each one of the adders, and an initial Cj,
of 0is given. A full adder operation takes place in each block, and Carry is passed along
to the following full adder block. The adder blocks individually transmit out the sum of
the bits one by one. Figures 3 and 4 show the circuit and waveform results from our full
adder implementation.

In Figure 3, we can observe four 4-bit ripple carry adders connected as a single ripple
carry adder unit to generate a 16-bit output, along with the final carry output as an overhead.
Figure 4 illustrates the simulated results of this circuit, with the first two waves being the
two 16-bit inputs, ‘sel” describing the selector control signal, and ‘out7971" as the 16-bit
output followed by the overflow bit.

Signals 2022, 3 626

B[16] A[16] B[15] A[15)] B[2] A[2] B[1] Al1]
UL] Fudl Adddes Bhock Cou[15 Full Addder Bk P E_"‘_'_zl_ Aeischer o Caur [1] .
Co - Ci[16] Cul15] L] Fuull Adkder Bksck — iy
5[16] 5[15] 5[2] s[1]

Figure 2. The 16-bit ripple carry full adder block diagram.

Figure 3. Circuit for the full adder generated through Verilog.

Time
a[15:0]
b[15:0]
sel[2:0]
out7971[15:0]
ovf

Figure 4. Waveform results of the addition module.

Signals 2022, 3

627

Coul[16] d——

Bl16]

4.1.2. 16-Bit Ripple Carry Subtractor

Binary subtraction is the binary addition of a negative number. Hence, the full adder
module can still be used to create the binary subtraction operation with a few changes.
Binary subtraction is performed by 2" complementing the B bit and adding them to the A
bit as illustrated in Figure 5. The M line here acts as the control line. A value of 1 is given
from the M line to each EXOR gate and as the input to Carry in (C;,) for the full adder
block. The ripple carry subtractor can be designed to accept more than 1 bit parallelly to
create a bit wide array subtractor. So this means that it could also be used for making a
16-bit carry subtractor. These blocks with a full adder and EXOR cascade together, forming
a 16-bit ripple-carry subtractor [22]. The control line passes ‘1" as both the Carry in and
each existing EXOR gate, which performs the EXOR operation with each of the B bits (B[1]
to B[16]). The full adder block adds the input bits and gives out SUM S parallelly for each
bit (S[1] to S[16]). The overflow is carried forward to the adjacent block as Carry in, so the
Carry out for the B[1] and A[1] would be Carry in for the second full adder block. This
process carries on till the final block, where the Carry is finally given out as Carry out (Cyyt).
The acquired sum bits would give the difference between the 16-bit A array and the 16-bit
B array. This same block can also be used as a ripple carry full adder by giving ‘0" as input
through the control line M. Figures 6 and 7 show the circuit and waveform results from
our subtractor module.

Figure 6, similar to Figure 3, displays a ripple carry structure, but this time with an
additional XOR gate at the second input, this XOR gate is connected to input carry and
a second bit to perform 2’s complement. The four visible blocks are 4-bit ripple carry
subtractor architectures with an AND gate for the last two carries to generate an overflow
output. Figure 7 demonstrates the waveform that this module generates on simulation.
The first two inputs are at the top; the output and overflow are the bottom two waveforms.

Bl15] Bi2] Bl1]

l AlE

l

Full Adder Black

S[16]

L L L)

l l l

Cout]14] Cout]?] Cout[fl]
_ bl = P s e Y — -—
o eeey | FUll Adder Block | " Full Adder Block | " Full Adder Block
Cn16] Cinf15] cin[2) Cin

Coutiia)

3[13] 2] 31

Figure 5. The 16-bit ripple carry full subtractor block diagram.

Signals 2022, 3

628

Time
af15:0]
b[15: P]
sel[2:0]
out7971[15:0]
ovi

Figure 6. Circuit for the full subtractor generated through Verilog.

Figure 7. Waveform results from subtractor module.

4.1.3. 16-Bit Vedic Arithmetic Multiplier

The multiplication of real, float, and complex numbers is a task that is continuously
requested by many internetworking devices. The system calls for these actions are so
frequent that deploying specific hardware for this function becomes more appropriate.
Just by using the adder module, it is possible to deploy a multiplier in software, but by
including hardware into the processor, we can expect to tackle processor delays. There are
many types of multipliers; a specific category, fast multipliers, involves the least delay result
generation. We have the Vedic multiplier [23] among these fast multipliers. Contributions
to improving area efficiency and power efficiency for implementing a Vedic multiplier in
very large-scale integration (VLSI) have grown in popularity these days. In [24], we can
observe research integrating the Vedic multiplier into a reduced instruction set computer
(RISC) processor. The path delays can be modified based on how efficiently the adder block
behaves in a multiplier. Many researchers modify the adder block and keep the general
Vedic multiplier structure constant to improve the multiplier’s area, power, and delay
characteristics [25-27].

A binary multiplier is an electronic circuit used to multiply two binary numbers. This
involves a technique of partial multiplication, which is then followed by being added
together to obtain the final result. Contrary to actual multiplication in processors, which
is just “Repetitive Addition”, Vedic multiplication is efficient and fast because it does
not require “for” loops. Figure 8 shows the block diagram of a 16-bit multiplier, and
Figures 9 and 10 show the circuit and waveform results from our multiplication module.

Signals 2022, 3 629

b[15:4] a[15:8] b[15:8] a[7:0] b[7:0] a[15:8 b[7:0] a[7:0]
. | k| 4 ¥ . | Y . | L 4
8x8 multiplier 8x8 multiplier 8x8 multiplier 8x8 multiplier

block block block block

{0000000,40[15.8])

{q3[15.E]:DUEDOxtD} . {00000000,92[15:00} {g1[15:0]} q0[15:0]
v v v v qo[15:
Adder Adder
¥ ¥
Adder
v Y
q[31:8] q[7:0]

Figure 8. The 16-bit multiplier block diagram.

Figure 9. Circuit for the 16 x 16 Vedic multiplier generated through Verilog.

If we observe Figure 9, we can notice that it is generally divided into two blocks.
The first half shows the adder structures to generate the multiplication output. The next is
a complex OR gate structure that produces an overhead. Figure 10 is the waveforms for
this structure following a similar structure as its previous blocks.

Signals 2022, 3

630

Time
a[l5:0
b[15:0
sel[2:0
out7971[15:0
ovf

]
]
]
]

Figure 10. Waveform results from 16 x 16 multiplication module.

4.1.4. 16-Bit Restoring Divider

Division is one of the fundamental arithmetic operations; it could be on the application
layer using a subtractor and adder. However, we decided to integrate it into the hardware
to improve efficiency and speed. To integrate it into the hardware, we have taken the
algorithm for a famous approach called restoring division for an unsigned integer. Our
hardware division in this paper can only deal with unsigned integers. The next upgrade
could be to improve it to involve signed floating numbers. The flowchart for this algorithm
is illustrated in Figure 11.

s y

START

.

A=0,
Q = DIVIDENT,
M = DIVISOR,
COUNT =16

.

= SHIFT LEFT AUQ

| aA=a-m |
v
NO YES
i i
Z Qo=0,
e AzA-M
L p| count- |l¢—
COUNT=0 > STOP

Figure 11. Division operation.

Signals 2022, 3

631

ol |

This algorithm required a minimum of four registers of specified parameters to initial-
ize before conducting the procedure. Most of the operations are performed inside registers
called accumulator and quotient. Depending upon the sign of the accumulator, the initial
value is restored, henceforth getting its name as a restoring divider. There is a special
register working as a counter, and this counter is initialized based on the bit length of
the operation. In our case, this register is given a decimal value of 16. This algorithm
can provide the reminder and quotient, but only the quotient is taken as output for our
ALCU. This module also lacks an overflow output. This algorithm’s most intriguing aspect
is converting it into a working circuit based on gates. The Verilog syntax for converting
this algorithm into a structural code would be highly complex. Hence, it is coded into
behavioral code and synthesized. This synthesis is capable of generating a structural netlist
for the algorithm. This approach does have its pros and cons, the advantages being that the
construction of this module becomes relatively simple, but the generated structural syntax
might not be well optimized to use the least amount of logic. Compared to many other
division algorithms, the restoring approach is fairly time consuming due to the operation of
restoring a register in every cycle. In the background, it involves many memory allocation
and transfer operations. Due to the bit size of 16, this algorithm proves to be sufficient in
execution time and efficiency. The algorithms that prove more efficient than a conventional
restoring divider are non-restoring, radix-2 non-restoring, etc. [28].

Considering a circuit capable of performing a restoring division on a four-bit binary
number, we can see that at least 15 adders and 15 subtractors are employed, excluding other
modules, such as comparators, shifters, and multiplexers. This proves that the complexity
improves exponentially for a 16 and above bit divider. On synthesizing this algorithm for
16 bits numeric, Figure 12 shows our implementation, and Figure 13 shows the waveform
results from the 16 x 16 division module.

Figure 12. Circuit for the 16-bit non-restoring divider generated through Verilog.

Signals 2022, 3

632

Time
a[15:0]
b[15:0]
sel[2:0]
out7971[15:0]
ovf

Figure 13. Waveform results from the 16 x 16 division module.

As we see in Figure 12, connections exist on the left side of the circuit, from every other
stage to the end stage. This additional structure could be minimized if a non-restoring
algorithm is utilized. Typically, this divider algorithm consists of a definite ‘for” loop; in
the Verilog schematic, a for loop can be considered a set of adders aligned with the total
count being the integer length. The replication of these adders is what is displayed in the
schematic with a staircase arrangement. We have this kind of deduction from the schematic
since the divider design is completely based on behavioral design rather than structural.
As mentioned earlier, restoring division comes under a category called slow division. Fast
division algorithms work a fundamental principle of estimation before conducting the
division process; they first estimate a value closest to the quotient and work from there to
reach a substantial answer. The estimation approach is always a computationally heavy
task to perform. Estimation can be performed in presentation, and the above layers and
hardware could be used to perform the rest of the architecture. Restoring division assumes
that the result lies between zero and counter initial value. This assumption makes the
algorithm go through all the cycles of counter length before generating the correct value.
Colossal research is still creating efficient and low latency-based hardware for division.
This is because improving such basic aspects of the processor might improve the processor
performance to a different standard. We also need to consider the register word length while
dealing with restoring division. The register size for a 4-bit division is 5 bits. The algorithm
might have an unconventional notation for such divisions as the bit size expands.

4.2. Logical Block

The logical block performs the following operations: logical AND, logical OR, and log-
ical NOT. Depending on the operation selected, it either accepts two inputs or one. It uses
the same multiplexing (MUX) as used by arithmetic blocks.

e If Control bits = “100":
Then bitwise AND takes place.
e If Control bits = 101"
Then bitwise OR takes place.
* If Control bits = “110”":
Then Inverter operation takes place.

4.2.1. Bitwise AND

Bitwise AND module performs ‘AND’ operation for a given 16-bit input and gives an
output for each bit individually. It takes two binary numbers of equal length, resulting in
the operation, where each bit from the A array is compared to its counterpart in B. Thus,
if both bits in the compared location are 1, the bit in the resultant binary representation is 1
(1 x 1 =1); otherwise, the resultis 0 (1 x 0 =0and 0 x 0 =0). The bitwise AND operator
can be implemented to clear certain bits (or flags) of a register, where each bit represents a
distinct Boolean state. This method effectively stores many Boolean values while utilizing
as little memory as feasible. For example, 0110 (decimal 6) can be considered a set of four

Signals 2022, 3 633

flags, where the first and fourth flags are clear (0), and the second and third flags are set (1).
The third flag can be removed by performing a bitwise AND with a pattern with just a zero
in the third bit. Figures 14 and 15 show the circuit and waveform results from our bitwise
AND implementation.

Figure 14. Circuit for the bitwise AND generated through Verilog.

Time
al[l15:0] =0 gty 0000000110101101

Bl15:0] =0 B 501101 G0000000000010 01

ot TETL[15:0] =0 (o R S =[x 1Ll

Figure 15. Waveform results of the bitwise AND module.

4.2.2. Bitwise OR

Bitwise OR module performs ‘OR’ operation for two given 16-bit inputs and provides
an output for each bit individually. However, unlike the “AND’ operation, the binary
representation of different lengths still works, considering the excessive missing bits as ‘0".
If both bits are zero, the result is 0; otherwise, it is 1. Figures 16 and 17 show our bitwise
OR implementation’s circuit and waveform results.

Signals 2022, 3

634

Time

0]

o W
e
oW

= (D
—

el

o]
=
p=?
Tl

(0]

0]
0]

:0]

:0]

Figure 16. Circuit for the bitwise OR generated through Verilog.

Figure 17. Waveform results of the bitwise OR module.

4.2.3. Bitwise Inverter

The bitwise NOT operation module performs an inverter operation for a 16-bit input
and provides an output for each bit individually. Figure 18 shows the waveform results of
the bitwise inverter module.

Figure 18. Waveform results of the bitwise inverter module.

4.3. Compression Block

Base64 is an encoding and decoding technique for converting binary data to the ASCII
text format and vice versa [29]. It sends data across a media that only supports ASCII forms,
such as email messages and extensible markup language (XML) data. Base64 divides every
three bits of binary data into six-bit units. The newly generated data are encoded in a
64-radix number system and seven-bit ASCII text. Because each bit is split into two bits,
the translated data are one-third, or 33 percent, more significant than the original data.

Signals 2022, 3

635

Files are typically formed up of 8-bit characters. However, for network communication via
routers and switches, 7-bit length values are preferable. As a result, delivering the files in
an 8-bit format causes file distortion. Base64 encoding is used to overcome this problem.
The string is transformed to an ASCII value for a given random string input. These ASCII
bits are concatenated together and written in binary 8-bit format. This concatenated number
of bits is divided into 6-bit chunks. Each of the 6 bits in the Base64 table is decoded to
values in a 7-bit ASCII-friendly format. The compression block consists of a 16-bit Base64
encoder, and this operation takes place when a selection of “111” is given into the ALCU as
control bits. Figure 19 shows the compression procedure.

HEY Encode

input: H E Y
bits: [e|s1]e[e]|s]e|efe[e]sfe|o]e[s]efs[e]s]e]s][s]e]e]x
F—— 6-bits —— - - - -

X: 18 4 21 25

alphabet[x]: S E v z

SEVZ

Figure 19. Compression procedure.

Figures 20 and 21 show our implementation in Verilog. As we can notice in the figures,
this block set has two parts; the first part converts the 8-bit byte data into a 7-bit ASCII
encoding, but for transmission convenience, we need 6-bits for BASE 64, and the next
part deals with the conversion of this 7-bit data stream to 6-bit stream. In Figure 20, we
notice that the circuitry is complicated, but could be simplified if the output bit length
and input length are considered. As mentioned before, the bit length is 16, which means
we have two input ports of 16-bit size. The top part of the schematic has 32 ports for
this reason. The output of a BASE 64 is only 6-bits in length. Hence, we can notice the
ending or the bottom part of a shorter length in terms of ports. Our particular module
is designed only to read one input port; hence, the logic levels are only arranged under
the right part of 16 bits. In Figure 21, an ASCII converter is attached at the end of the
BASE 64. Many computers from external mediums follow this standard and are easily
understood by a computer of any generation. This module is full of registers, similar to a
memory unit. It has various register blocks; as we notice, the output is only 7 bits in length
in those rectangular blocks. The input comes at 6-bit lengths each; hence, it must store the
additional bits before transmission.

Signals 2022, 3

Figure 20. Circuit for the Base64 encoder generated through Verilog.

Figure 21. Circuit for the ASCII encoder (Part of Base64 Encoder) generated through Verilog.

Signals 2022, 3

637

5. Synthesis and Netlist Results

Considering that this is academic research focusing on module development, we
avoided many vital steps for hardware design, such as layout, floor planning, and print-
ing. Layout and floor planning are time consuming and often involve expert engineers
manually rearranging cells to save area for the processor. This part of the design is very
industry specific and becomes harder depending upon the technology used in fabricating
the hardware components. A 7 nm fabrication technology might have different initials
from those of a 128 nm. Hence the layout is avoided, as it consumes more time and is
manufacturer specific. Another vital factor that was overlooked in this research is the
delay concept. The code of ALCU considers no delay in any module component. This
becomes a more significant problem when the module is produced physically, but due to
the academic coverage of the research, we neglected this view. The ALCU designed here
is based on a microprocessor without an interlocked pipelined stages (MIPS) architecture.
This architecture is considered ancient in present days; there will be more on this in the
future scope. The ALCU also consists of only eight components; as per today’s standards,
it is optimal to have more components and a bigger ALCU for efficiency. As discussed
before, floor planning is an essential step in manufacturing an integrated circuit. Many
methods prevail in understanding the shapes and sizes of modules to fit them in the least
amount of area possible; some methods include polish notation, sequence pair, etc. [30].

Synthesis is a process that is conducted to translate the written circuit code into an
appropriate schematic. This conversion is highly effective when the code is in a structural
format rather than behavioral. Hence, there exist many rules that are to be followed and
optimized to generate a working schematic. Writing every integrated circuit into a structural
format is complex and time consuming. Many syntheses tools take advantage of automation
tools and give a slight degree of freedom to code in behavioral form. For instance, infinite
loops and similar syntax are excluded from synthesis, as they make little sense for the
hardware [31]. Netlist is a complete description of all the components involved in the
circuitry. It provides a brief statistic on the area consumed, logic levels used, and various
active and passive components involved in the specific integrated circuit [32]. The data
logs generated during a netlist generation give us an overview of how the hardware looks
when produced. Figure 22 shows the log data results from our implementation.

For this synthesis, we used a library that produces a netlist based on the semiconductor
properties based on the high-voltage threshold. This set of semiconductors is doped so that
the threshold voltage is kept higher than the standard threshold. This approach has pros
and cons, with the least leakage current but a slower reaction to the provided input. We
can use a low threshold voltage for faster performance, but the leakage current increases
dramatically. Many electronic design automation (EDA) tools in today’s world consist
of libraries producing a multi-voltage threshold netlist. In this category, the components
are optimized from the mixture of high- and low-threshold components depending upon
their impact and relevance. To cite an instance, in [33], we can witness a transistor level
construction of a carry look-ahead adder with multiple voltage thresholds, achieving low
power and high performance.

Signals 2022, 3

638

Cell Count

Hierarchical cell Count:
Hierarchical Port Count:
Leaf Cell Count:

Buf/Inv Cell Count:

Buf Cell cCount:

Inv Cell Count:

CT Buf/Inv Cell Count:
Combinational Cell Count:
Sequential cell count:
Macro Count:

Combinational Area: 9.686227
Noncombinational Area: 2958.498325
Buf/Inv Area: @.939847
Total Buffer Area: 109.79
Total Inverter Area: 331.15
Macro/Black Box Area: 0.000000
Net Area: . 265987

Cell Area:
Design Area:

Figure 22. Log data results.

6. Results Discussion

In this paper, we synthesized an ALCU module and upgraded a conventional ALU
module to integrate it with customized IoT-based devices. In this section, we discuss the
relation between the results obtained and their application, as mentioned in the literature
survey. The synthesis results (referring to Figure 22) show that their values are reported
in micro-meters, which significantly improves over conventional systems. The literature
survey comprehensively studies various units used in this module and its architecture.
Starting with the adder module, we observe that the proposed ALCU used a ripple carry
adder, which is stated to consume a minor area and considerably high delay time. Even
though there is a much better adder to tackle both problems, we chose a ripple carry due to
its simplicity and smallest area. We expect our module to be an integral part of processors
that will be installed in IoT devices, which range in various sizes; hence, area consumption
is given a higher priority. The multiplier is a vital component of this module; therefore,
more emphasis is placed on considering the proper technique. As stated in the case of
the adder, it was our priority to focus more on area consumption. In the case of a Vedic
multiplier, as mentioned in the literature review, it consumes less area and power. This
construction is very beneficial, as it tackles both issues together. A Vedic multiple presented
in this paper can be considered a standard multiplier approach in an ALCU because its
small size reduces the system complexity. Even though much smaller area-consuming
multipliers exist when 16 bits are considered, scalability will be a severe issue. Due to these
considerations, a Vedic multiplier is the best option for an ALU design.

The divider module was added, but no special considerations were laid on this module,
as the research of this paper does not focus on improving division algorithms. The concept
of integrating a compression block was a significant contribution to this approach. It is
conventional to have a compression block separately outside the processor or in terms of

Signals 2022, 3 639

software rather than hardware. A hardware module helps this process to happen faster,
but it has no involvement from the processor, as it directly deals with the memory unit for
data compression. Connecting it with the processor gives the programmer some control
over compressing during the program runs. We believe our approach lets the users save
time during processing and transfer. The related work states that various compression
techniques exist for different data formats. We used a simple ASCII compression block,
but in reality, we can use the required compression technique based on the IoT device the
processor is developed for. For instance, if a camera is designed, we can use an image
compression or video compressor to establish a much more efficient processor. If the
compression of the image is included in the processor, we can expect a live streaming
facility with lesser data rates. In our case, we used ASCII, which means this processor could
transfer text data at higher speeds. This style of architecture would have little importance
when storage devices are concerned, but it is helpful when real-time devices are the focus.

7. Conclusions

The ALCU constructed in this paper is based on a 16-bit architecture capable of
performing eight different operations. It involves eight components for mathematical,
logical, and compression operations and a multiplexer to choose from these eight operations.
The ALCU is coded in Verilog using Icarus and GTK waves. The code is then synthesized
using a Synopsis 32 nm library. This synthesized netlist is then used to create all the
displayed circuit diagrams. The processor presented in the paper deploys a central module
to manage IoT devices and users. The benefits of our approach are that more overhead
can be used for security, and the reliability of an IoT device could be improved. Our
approach opens the door to upcoming concepts, such as swarm intelligence and IoT
operating systems. This ALCU component can be used to integrate into next-generation
IoT operating system-specific microprocessors. In our next research stage, we will provide a
microprocessor architecture that uses this ALCU module to bring a hub-style IoT device for
upcoming loT applications. Additional research is also underway to implement application-
specific ALCU modules.

Author Contributions: Writing—original draft, R M.].; Writing—review and editing, A.P. All authors
have read and agreed to the published version of the manuscript.

Funding: This research did not receive any external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This research was supported by the School of Electronics Engineering, Kyung-
pook National University, Daegu, South Korea.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Le,H.A; Van Chien, T.; Nguyen, T.H.; Choo, H.; Nguyen, V.D. Machine Learning-Based 5G-and-Beyond Channel Estimation for
MIMO-OFDM Communication Systems. Sensors 2021, 21, 4861. [CrossRef] [PubMed]

2. JiHye, O.; Noh, D.-H.; Sohn, Y.-H. Empirical test of Wi-Fi environment stability for smart farm platform. In Proceedings of
the 2017 4th International Conference on Computer Applications and Information Processing Technology (CAIPT), Kuta Bali,
Indonesia, 8-10 August 2017; pp. 1-5.

3. Giang, N.K; Lea, R.; Blackstock, M.; Leung, V.C. Fog at the edge: Experiences building an edge computing platform. In
Proceedings of the 2018 IEEE International Conference on Edge Computing (EDGE), San Francisco, CA, USA, 2-7 July 2018;
pp- 9-16.

4. Johnston, S.J.; Scott, M.; Cox, S.J]. Recommendations for securing Internet of Things devices using commodity hardware. In

Proceedings of the 2016 IEEE 3rd World Forum on Internet of Things (WEF-IoT), Reston, VA, USA, 12-14 December 2016;
pp. 307-310.

http://doi.org/10.3390/s21144861
http://www.ncbi.nlm.nih.gov/pubmed/34300599

Signals 2022, 3 640

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Chow, M.M. Optimized geometry compression for real-time rendering. In Proceedings of the Visualization ‘97 (Cat. No.
97CB36155), Phoenix, AZ, USA, 24-24 October 1997; pp. 347-354.

Koyada, B.; Meghana, N; Jaleel, M.O.; Jeripotula, P.R. A comparative study on adders, 2017 International Conference on Wireless
Communications. In Proceedings of the Signal Processing and Networking (WiSPNET), Chennai, India, 22-24 March 2017;
pPp. 2226-2230.

Padmini, G.; Rajesh, O.; Raghu, K.; Sree, N.M.; Apurva, C. Design and Analysis of 8-bit ripple Carry Adder using nine Transistor
Full Adder. In Proceedings of the 2021 7th International Conference on Advanced Computing and Communication Systems
(ICACCS), Coimbatore, India, 19—20 March 2021; pp. 1982-1987.

Harish, B.; Sivani, K.; Rukmini, M. Design and performance comparison among various types of adder topologies. In Proceedings
of the 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 27-29 March
2019; pp. 725-730.

Thomas, J.; Pushpangadan, R.; Jinesh, S. Comparative study of performance vedic multiplier on the basis of adders used. In
Proceedings of the 2015 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), Dhaka,
Bangladesh, 19-20 December 2015; pp. 325-328.

Murugesh, M.B.; Nagaraj, S.; Jayasree, J.; Reddy, G.V.K. Modified high speed 32-bit vedic multiplier design and implementation.
In Proceedings of the 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore,
India, 24 July 2020; pp. 929-932.

Ram, G.C,; Lakshmanna, Y.R.; Rani, D.S.; Sindhuri, K.B. Area efficient modified vedic multiplier. In Proceedings of the 2016
International Conference on Circuit Power and Computing Technologies (ICCPCT), Nagercoil, India, 18-19 March 2016; pp. 1-5.
Wang, J.; Kissel, Z.A. Introduction to Network Security: Theory and Practice; John Wiley & Sons: Hoboken, NJ, USA, 2015.
Isenburg, M.; Snoeyink, J. Coding with ASCII: Compact, yet text-based 3D content. In Proceedings of the First International
Symposium on 3D Data Processing Visualization and Transmission, Padua, Italy, 19-21 June 2002; pp. 609-616.
Balasubramanian, P; Nayar, R.; Maskell, D.L. Gate-Level Static Approximate Adders: A Comparative Analysis. Electronics 2021,
10, 2917. [CrossRef]

Chandralekha, V.; Navya, L.; Syamala, N.; Sanapala, K. Design of 8 bit and 16 bit Reversible ALU for low power applications. In
Proceedings of the 2020 IEEE 5th International Conference on Computing Communication and Automation (ICCCA), Greater
Noida, India, 30-31 October 2020; pp. 477-480.

Verma, G. Design and Analysis of ALU for Low Power IOT Centric Processor Architectures. In Proceedings of the 2020 Global
Conference on Wireless and Optical Technologies (GCWOT), Malaga, Spain, 6-8 October 2020; pp. 1-5.

Anand, S.; Indu, S. A Low Power and High Speed 8-bit ALU Design using 17T Full Adder. In Proceedings of the 2020 7th
International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 27-28 February 2020; pp. 514-519.
Sarkar, S.; Chatterjee, H.; Saha, P.; Biswas, M. 8-Bit ALU Design using m-GDI Technique. In Proceedings of the 2020 4th
International Conference on Trends in Electronics and Informatics (ICOEI)(48184), Tirunelveli, India, 15-17 June 2020; pp. 17-22.
Gadda, N.; Eranna, U. 64-bit ALU Design using Vedic Mathematics. In Proceedings of the 2020 International Conference on
Emerging Trends in Information Technology and Engineering (ic-ETITE), Vellore, India, 24-25 February 2020; pp. 1-4.

Jain, A.; Saha, A.; Rao, J. Soc design methodology: A practical approach. In Proceedings of the 18th International Conference
on VLSI Design held jointly with 4th International Conference on Embedded Systems Design, Kolkata, India, 3-7 January 2005;
pp. 10-11.

Wanhammar, L. DSP Integrated Circuits. In Academic Press Series in Engineering; Elsevier: Amsterdam, The Netherlands, 1999;
pp- 1-29. ISBN 9780127345307.

Doyen, L.; Henzinger, T.A.; Legay, A.; Nickovic, D. Robustness of sequential circuits. In Proceedings of the 2010 10th International
Conference on Application of Concurrency to System Design, Braga, Portugal, 21-25 June 2010; pp. 77-84.

Sona, M.K.; Somasundaram, V. Vedic multiplier implementation in VLSI. Mater. Today Proc. 2020, 24, 2219-2230. [CrossRef]
Vishnu, S.N.S.; Gandluru, A.; Ramesh, S. 32-Bit RISC Processor Using VedicMultiplier. In Proceedings of the 2022 3rd International
Conference for Emerging Technology (INCET), Belgaum, India, 27-29 May 2022; pp. 1-5.

Dhanasekar, S.; Bruntha, PM.; Ahmed, L.J.; Valarmathi, G.; Govindaraj, V.; Priya, C. An Area Efficient FFT Processor using
Modified Compressor adder based Vedic Multiplier. In Proceedings of the 2022 6th International Conference on Devices, Circuits
and Systems (ICDCS), Coimbatore, India, 21-22 April 2022; pp. 62-66.

Katreepalli, R.; Haniotakis, T. Power-delay-area efficient design of vedic multiplier using adaptable manchester carry chain adder.
In Proceedings of the 2017 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 6-8 April
2017; pp. 1418-1422.

Ande, B.; Kalidindi, L.D.; Mallula, PK.; Dantuluri, P.V.; Vegesna, N. High-Speed Vedic Multiplier Implementation Using
Memristive and Speculative Adders. In Proceedings of the 2022 International Conference on Computing, Communication and
Power Technology (IC3P), Visakhapatnam, India, 7-8 January 2022; pp. 186-189.

Patankar, U.S.; Koel, A. Review of basic classes of dividers based on division algorithm. IEEE Access 2021, 9, 23035-23069.
[CrossRef]

Bates, M.P. Interfacing PIC Microcontrollers: Embedded Design by Interactive Simulation; Newnes: Oxford, UK 2013.

http://dx.doi.org/10.3390/electronics10232917
http://dx.doi.org/10.1016/j.matpr.2020.03.748
http://dx.doi.org/10.1109/ACCESS.2021.3055735

Signals 2022, 3 641

30. Laskar, N.M.; Sen, R.; Paul, P.; Baishnab, K. A survey on VLSI floorplanning: Its representation and modern approaches of
optimization. In Proceedings of the 2015 International Conference on Innovations in Information, Embedded and Communication
Systems (ICIIECS), Coimbatore, India, 19-20 March 2015; pp. 1-9.

31. Rudell, R.L. Logic Synthesis for VLSI Design. Ph.D. Thesis, University of California, Berkeley, CA, USA, 1989.

32. Bhunia, S.; Tehranipoor, M. Hardware Security: A Hands-On Learning Approach; Morgan Kaufmann: Burlington, MA, USA, 2018.

33. Kim, D.W.; Kim, J.B. Low-power carry look-ahead adder with multi-threshold voltage CMOS technology. In Proceedings of
the 2008 9th International Conference on Solid-State and Integrated-Circuit Technology, Beijing, China, 20-23 October 2008;
pp- 2160-2163.

	Introduction
	Literature Survey
	Implementation
	Methodology
	Arithmetic Block
	16-Bit Ripple Carry Full Adder
	16-Bit Ripple Carry Subtractor
	16-Bit Vedic Arithmetic Multiplier
	16-Bit Restoring Divider

	Logical Block
	Bitwise AND
	Bitwise OR
	Bitwise Inverter

	Compression Block

	Synthesis and Netlist Results
	Results Discussion
	Conclusions
	References

