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Abstract: Our contemporary society has never been more connected and aware of vital information
in real time, through the use of innovative technologies. A considerable number of applications have
transitioned into the cyber-physical domain, automating and optimizing their routines and processes
via the dense network of sensing devices and the immense volumes of data they collect and instantly
share. In this paper, we propose an innovative architecture based on the monitoring, analysis,
planning, and execution (MAPE) paradigm for network and service performance optimization. Our
study confirms distinct evidence that the utilization of learning algorithms, consuming datasets
enriched with the users’ empirical opinions as input during the analysis and planning phases,
contributes greatly to the optimization of video streaming quality, especially by handling different
packet loss rates, paving the way for the achievable provision of a resilient communications platform
for calamity assessment and management.

Keywords: monitoring; analysis; planning and execution; cloud native infrastructure; machine
learning; 5G/NFV; network services

1. Introduction

As the fourth industrial revolution unfolds, we bear witness to the emergence of
immersive ideas and technologies such as autonomous vehicle interconnection, remote
automated management, machine-to-machine interactions, and emergency response ef-
ficiency optimization. The scaling of these ecosystems to a metropolitan or even global
magnitude forms a concept described as the Internet of Things (IoT), wherein sensors and
actuators operate and interact with our environment in a seamless and energy-efficient
way, making volumes of information available across interoperable platforms [1,2]. How-
ever, legacy and on-premises architectures do not posses the capacity or the intuitiveness
to accommodate or support the accessibility of IoT information. In order to materialize
implementations of tremendous scale and ubiquitous distribution, commercial hosting
infrastructures have transcended the limitations of obsolete technologies by embracing the
common principles and patterns of cloud-native infrastructure (CNI) [3]. CNI contributed
to the emergence of cloud-native computing (CNC), which constitutes an innovative ap-
proach in the development of globally scaled cloud-native applications (CNAs) [4,5].

Nevertheless, universal distribution requires careful orchestration of data synchroniza-
tion in order to secure its consistency. Low interaction latencies and IoT data consistency
can only be achieved by including next-generation networks (NGNs) of equivalent scalabil-
ity and flexibility. The indisputable state-of-the-art NGN candidate capable of integrating
ideally with CNI is 5G [6]. This highly scalable, fifth-generation telecommunications
technology standard offers more than just high speeds with low latency and increased
bandwidth capacity. In fact, 5G is becoming dominant by incorporating novel concepts such
as software-defined networks (SDN) and network function virtualization (NFV) [7]. Both
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architectures constitute the foundation for introducing functionality and resource disaggre-
gation solutions to new business scenarios over NFV infrastructures (NFVIs) [8]. Hence,
5G incorporates virtualization functionalities, over either standard virtual machines (VMs)
or operating-system-level virtualization containers [9,10]. By doing so, it chains together
virtual network functions (VNFs) and network services (NS), executing distinct processes
not only on standard hardware appliances but also on CNC-enabled infrastructure [11].
Moreover, by means of network slicing, efficient VNF administration and maintenance can
be achieved via its integrated management and orchestration (MANO) capabilities [12].

In this new digital era, where the boundaries of traditional computing are exceeded
by entering the cyber-physical domain through robots, sensors, and autonomous processes,
new vulnerabilities and attacks are introduced, affecting a wide range of real-time, mission-
critical, and industrial control systems [13,14]. Standardization, as well as network design,
configuration, deployment, and operation, constitutes the bedrock of the telecommunica-
tion network security guidelines and is essential to meet the requirements of the broad
cybersecurity environment. Furthermore, compliance with the General Data Protection
Regulation (GDPR) is mandatory and requires specialized human resources to study the
regulations and then implement any changes in company procedures, IT applications, and
infrastructures [15].

Nonetheless, the problems of self-adaptation and optimal placement of computational
and networking CNI resources with near real-time responsiveness form the minimum
common denominator that constrains the consolidation of CNAs of a global caliber and
poses a threat to their functional effectiveness. To overcome this barrier, additional robust
strategies should be adopted, while operating in unison with the MANO architecture.
Thus, the MAPE framework was conceived as a shell for an overall CNA management and
orchestration platform. At its core, the MAPE model iterates the following steps: introduc-
ing mechanisms to monitor a target system and its environmental variables, considering
observations in tandem with the system’s architectural model, assessing improvement
and optimization possibilities, intuitively deciding on a course of action, and ultimately
deploying any possible selected alterations. It was primarily conceptualized by IBM in
2006 as a reference architecture, and its implementation was achieved mostly by the open-
source solutions the company was supporting during this time [16]. In the modern era, the
MAPE concept was furthered by the Sonata MANO platform [17] as it was gradually being
incorporated in the 5G ecosystem. Since then, conditions have become more favourable
for elaborating MAPE in CNA-related projects, as described primarily in Section 3, and
its principles can easily be embodied in many use cases to overcome existing architectural
limitations [18].

From this perspective, it is obvious that guaranteeing a specific QoS level is not an easy
task, as the architecture of modern NSs has become more complex, and at the same time,
the users’ requirements have increased. Even though technologies and frameworks for
the management and orchestration of the physical and virtual resources are available, the
analysis of each NS performance based on the users’ requirements and their life-cycle man-
agement in real time is not guaranteed. In this context, we study an intelligent MAPE-based
optimization scheme that utilizes machine learning (ML) techniques. The performances of
NSs, as well as the availability of the resources of the physical and virtual infrastructure,
are analysed by trained ML models, in order to quickly and aptly adapt the orchestration
actions of CNI resource allocation and scaling in highly dynamic and unknown critical
environments. Our study confirms that the inclusion of quality-of-experience (QoE) metrics
as input to the applied ML algorithms contributes greatly to the optimization of video
streaming quality. Our proposal for an intelligent optimization service can be also viewed
from a more generic perspective and applied in other use cases where cyber-physical
systems are deployed to automate and optimize operations, such as those in the smart
manufacturing sector and new-generation warehouse and logistics systems [19,20]. In
these use cases, a digital twin of the processes in action are at the focus of the activities
of the international research community and of IT solution designers. Our approach can
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be applied and tailored to these use cases to enhance current approaches with respect
to intelligence and security. The synchronization between cyber systems and physical
entities (as also in the case presented in this paper) is a crucial parameter for achieving
the overall goal of action optimization in each case. Our experimental results show that
the fluctuations in QoE metric values provide the advantage of swifter and more optimal
service recuperation while handling parameters easily susceptible to change such as frame
rate, bit rate, and packet loss.

The remainder of this paper is organized as follows. In Section 2, we present re-
lated work, while in Section 3, the proposed MAPE-based architecture is illustrated. The
adopted methodology of MAPE’s analysis service is documented in Section 4. Finally,
Sections 5 and 6, respectively, provide a concise description of the experimental results and
conclude the paper with a presentation of future work.

2. Related Work

Over the past half century, the deployment of network management systems (NMSs)
was the established practice for applying monitoring and management operations to
computer networks [21], and exemplary attempts have been made to modernize their
functionality. The authors of [22] conceptualized a novel architecture for network man-
agement where applications are treated as software-oriented equipment, and therefore all
resources, either physical or intangible, can be managed under the same model. By incorpo-
rating a mechanism known as active network technology [23], they theorized the dynamic
construction of the governing functions and the active distribution of the related code
across the network system. Although the idea may be conceptually relevant to adaptive
network administration, its core architecture is based on obsolete technologies. Thus, the
aforementioned model may not be applicable in modern, cloud-based applications where
self-adaptation and optimal placement of resources with near-real-time responsiveness
may be considered as prerequisites.

Another approach to network services optimization uses virtual network embedding
(VNE) strategies [24]. The solution proposed in [25] seeks to address the problem of
mapping virtual networks (VNs) of incoming virtual network requests (VNRs) onto a
substrate underlay in an optimal way by maximizing the metric of revenue. The authors
decompose the VNE problem into the two distinct subproblems of virtual node mapping
(VNM) and virtual link mapping (VLM) and then deal with them separately. A greedy
algorithm is used to solve VNM by choosing a set of eligible substrate nodes for each
virtual node and then assigning the computational demands to the prominent one in every
case, based on its available resources. However, the absence of coordination between the
VNM and VLM results in disproportionally distancing the neighboring virtual nodes on the
substrate topology, thus increasing the overall cost of the embedded paths and consequently
resulting in low acceptance ratios, high network latencies, and low long-term revenue.

The adoption of cloud computing technology introduces new challenges regarding
virtual resources management and network services performance. In this context, the
authors in [26] propose an evolution-oriented, cloud-specific solution that focuses on
security properties. The developed framework provides support for the evolution of
applications by means of monitoring mechanisms that enable the analysis of experiences
gathered during the deployment phase. To mitigate future security risks and vulnerabilities
that cannot be predicted, the proposed solution integrates an evolution process oriented
around real-time analysis and control operations, which includes the distributed and
heterogeneous functionalities of cloud applications in the process loop. Consideration of
novel security mechanisms and comparisons between the respective implementations are
beyond the scope of this study. In [27], the authors introduce techniques that are oriented
around policy management, in order to securely orchestrate cloud infrastructure. Intuitively,
the proposed framework provides the capability of expressing these policies in multiple
programming languages, supporting also various levels of abstraction. However, the
challenges that remain represent a significant obstacle. The development of a formal policy
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language designed to express the desired policies that would cover key areas ranging
from resource management and security to monitoring and access control is yet to be
substantiated and materialized.

Nevertheless, the modernization process of integrating applications and services
into IoT-oriented CNAs dictates compliance with the same set of principles, in order to
overcome the challenges of self-adaptation, allowing these managed systems to auto-
adjust with minimal or no human intervention. The Rainbow project [28] implemented
an automated monitoring and analysis loop in autonomic computing that provides a
framework for monitoring and administering actions upon system state alterations. The
authors defined several fundamental sources of uncertainty and then tried to address them
one by one. On these grounds, they developed their own self-adaptation language that
tries to emulate the system administrator’s decision process. Although Rainbow achieved a
balance between combining a centralized controller with a set of distributed infrastructures
and a failure-tolerant design, it exhibited a lack of strategic data security functions and
cognitive mechanisms for successfulness determination.

More recent research has focused on innovative technologies such as NFV. The authors
in [29] presented a multi-objective optimization service function chain placement (MOO-
SFCP) algorithm based on reinforcement learning RL. The goal of the algorithm is to
optimize the resource allocation model, including several performance indexes such as
underlying resource consumption revenue, revenue cost ratio, VNF acceptance rate, and
network latency. The proposed algorithm was evaluated through extended simulation
experiments. The authors in [30] presented a MANO framework for the automation of end-
to-end network slicing, with the implementations of core network and transport network
slices. Their approach aims to enhance the scalability and elasticity of the running services
in 5G.

In this paper, we propose an innovative framework based on the principles of the
MAPE paradigm, which combines state-of-the-art technologies (i.e., NFV, ML analysis,
monitoring) to address specific management and orchestration issues in the IoT domain.
Moreover, the consideration of QoE metrics in ML optimization modes constitutes a novelty
that contributes decisively to the optimization of video streaming quality, as is established
in a profound way in the following sections.

3. MAPE Framework Architecture

In this section we present architectural decisions and the components that compose the
proposed solution, following the MAPE paradigm in use cases regarding IoT-enabled CNAs
that run on central or fog-level cloud infrastructures and require automated and intelligent
orchestration of services. The proposed architecture integrates with the appropriate tools
that allow for the quality control of the MAPE services and the infrastructure resources
focusing on QoS provisioning capabilities, enabled by monitoring certain related metrics
that are collected from both the underlying infrastructure and the running VM-based or
container-based services.

Notwithstanding the obstacles, the state of the art is mature enough to integrate the
MAPE framework into use cases regarding IoT-enabled CNAs that run on central or fog-
level cloud infrastructures and require automated and intelligent orchestration of services.

From this viewpoint, MAPE principles can be applied in many applications in the
IoT domain that are sensitive to deviations in QoS levels. These types of applications
could include e-health, autonomous ground and aerial vehicles, ecosystems providing
streaming video from disaster sites, crops, etc. [31]. The increasing number of self-driving
vehicles will eventually produce staggering amounts of data. Consequently, the network
infrastructure should demonstrate quick and precise reflexes, in order to transparently
handle the countless events triggered and optimally adapt the underlying network and
computing resources to ambiguous issues and circumstances. A versatile and robust
framework such as MAPE, with integrated learning mechanisms, would enable the close-
to-real-time identification of state changes in the monitored vehicular ecosystem. Following
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the gathering of the desirable performance metrics from moving or stationary sources and
sensors, the planning and execution service would commence targeted reallocations of the
available computational and networking resources. These tailored alterations would aim
to improve not only the overall road safety but also parameters such as the efficiency of the
highway energy budget and traffic orchestration, after each iteration.

MAPE is responsible for gathering performance metrics from the running VNFs
and application services, as well as the status of assigned resources in both computation
and networking terms. These metrics are necessary for the process of optimization of
network resources and for QoS provisioning. The proposed MAPE-based design shown in
Figure 1 is composed of the following subcomponents that realize the MAPE concept: the
monitoring service, the analysis service, and the planning and execution service. The roles
and functionalities of these subcomponents are explained in the following paragraphs.

Figure 1. Monitoring and analysis architecture.

3.1. Monitoring and Metrics Acquisition

The monitoring service (MS) aims at the automated collection of different types of data
for every instantiated VNF, orchestrated by the MANO framework, including CPU usage,
memory allocation, active/passive network throughput, and packet loss. Additionally, it is
compliant with the flexibility for adding new monitoring entities, as well as the support
for alerting mechanisms tailored to VNF-specific and NS-specific alerting rules. Finally,
MS supports near-real-time responsiveness, accessibility, and scalability, as well as easy
integration with MANO functional blocks, to provide the monitoring information needed
to fulfil the management and orchestration tasks.

The MS collects several metrics to track not only the condition of resources in the
integrated NVFI environments but also the performance of the network and the effects of
the data traffic at the application layer. To share metrics in real time, a publish/subscribe
type of message bus is realized by utilizing the open-source Apache Kafka platform [32].
Kafka is a software-defined implementation of a stream processing bus, aiming to provide
a unified, high-throughput, low-latency platform for managing real-time data feeds. Kafka
runs on a cluster of one or more servers called brokers. The collected metrics are stored
for processing in an InfluxDB time series database, which empowers the handling of
massive volumes of timestamped data produced by IoT-enabled devices [33]. It must be
highlighted that the Kafka bus is accessible to all the internal and external services that
may be interested in accessing, retrieving, and consuming either stored data or current
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metrics from the monitored entities. Overall, the major types of Kafka clients using the
Kafka broker are:

(a) Various data adaptation and transformation services wishing to push data from
monitored environments, enrich the collected metrics, and prepare their proper
consumption by other MAPE services.

(b) An InfluxDB database that keeps records of collected metrics, either raw or pro-
cessed, for future reference by external services.

(c) ML-based processing and planning, with the goal of optimizing the performance of
the running services based on QoS criteria.

The detailed technical specifications of MS are beyond the scope of this study.

3.2. Analysis and Optimization Services

The overall architectural loop of control for dynamic service self-adaptation receives
input from the MS subsystem, collects monitoring metrics and preprocesses data, analyses
information based on specific ML algorithms, makes predictions towards service optimiza-
tion, applies actions by orchestrating resources, and executes service reconfiguration. The
reference control model for resource optimization in the proposed solution is shown in
Figure 2.

Figure 2. Continuous optimization process.

The analysis service (AS) component should consider metrics received from the MS,
which when combined, become as informative as possible regarding the system’s current
state or future trends. For this purpose, the origin of incoming monitoring metrics should
be diverse and inclusive, invoking infrastructure, application-level, and QoE metrics.

During the implementation phase, we considered the direction of the type of learning
that should be applied, thus realizing the optimization engine (OE). Common approaches
include supervised learning (SL), unsupervised learning (UL), and reinforcement learning
(RL) [34,35]. Regarding the first case, the provided input is a labelled dataset, from which
the model can learn. SL basically copes with two types of problems: classification problems
where a discrete value should be predicted and regression problems in the case of continu-
ous data. As far as UL is concerned, the provided input is not labelled, and it might not be
complete or clean. UL is a type of self-organized learning that assists in finding unknown
patterns in the data without existing labels. Utilizing the latter, a predefined input might or
might not exist. RL is a type of learning that is based on the interaction of an agent with the
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environment. An action is executed in an environment, and the feedback received assists
the learning of the agent, imitating a trial-and-error approach.

Of these types of learning, SL and RL are considered more appropriate for our case. In
both of these cases, a proper dataset should be created. Throughout the implementation
phase, versions of SL might include deep learning (DL) [36], as well as streaming linear
algorithms implemented in Apache Spark [37]. The goals of these SL approaches will be to
detect network anomalies and congestion, overutilization of resources, or underutilization
of the overall system. On the other hand, RL will deal with the state modelling of the
system, inherently focusing on all or most of its aspects, given that the collection of exploited
monitoring metrics is diverse and describes the underlying system as precisely as possible.
In our study, the AS part will include optimizations related to streaming video content (see
Section 4.5).

Quality of Experience

Quality of experience (QoE) is a widely used metric that expresses the satisfaction
that a user receives by interacting with an application or a service. It is similar to the
user experience (UX) concept, which originates from the telecommunications field. QoE is
defined by the International Telecommunication Union (ITU) as “the degree of delight or
annoyance of the user of an application or service. It results from the fulfilment of his/her
expectations with respect to the utility and/or enjoyment of the application or service in
the light of the user’s personality and current state”.

Since the quality of the transmitted video is one of the main targets of the proposed
solution, the integration of an objective or subjective QoE model aiming at calculating
the mean opinion score (MOS) value is considered necessary. The MOS computation con-
tributes to the enhancement of the OE’s operation, ensuring that trustworthy decisions
are made regarding the corrective actions necessary for the improvement of the deployed
services. The MOS measurement, employed in the QoE and telecommunications engi-
neering domains, expresses the overall quality of a stimulus or system. It is a commonly
used measure for audiovisual quality evaluation. In the context of this study, the ITU’s
suggested objective model was examined and is further explained in Section 4.2.

4. Methodology of MAPE’s Analysis Service

In this section, a detailed deployment assessment of MAPE’s AS module is presented.
As mentioned above, we decided to proceed with the SL and RL approaches. As far as
SL is concerned, two discrete implementations were examined: a DL variant of a simple
FFNN utilizing a specialized DL library, i.e., DeepLearning.scala (DLS) [38] and an LRE
variation, both utilized as Apache Spark applications. The RL approach is based on Markov
decision processes (MDP) [39], whereas the RL alternative adopts the state-space, modelling,
and reward functionalities [40].

4.1. Supervised Learning: A Deep Learning Approach

DL is commonly performed by utilizing different variations of gradient descent. The
initial calculation is a first-order derivative of the loss function, and consequently the weight
is updated. This procedure is known as backpropagation [41], which is a pivotal concept
of various DL algorithms. Combined with other optimization actions, DL transforms the
weights of the NNs, thus producing a knowledge model learned from training data.

The proposed DLS framework combines object-oriented and functional programming
constructs, aiming to form statically typed dynamic NNs from higher-order functions such
as map/reduce, by implementing automatic differentiation (AD) with attributes that are
uncommon in other frameworks [42]. Prior to AD, prominent DL structures followed either
the define-and-run or the define-by-run foundational procedures. The former allows users to
create computational graphs such as immutable abstract syntax trees (ASTs) [43], which can
be evaluated during the framework runtime and scheduled for multiple device execution
but are lacking in metalanguage interoperability. Considering the latter, a forward-pass
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calculation is executed by means of user-produced code. The internal states are generated
by running a backward pass, thus exhibiting increased interoperability with the hosting
language and therefore easily using control flows and native function calls.

On the other hand, DLS introduced the monadic deep learning mechanism [44], in
the context of which the NNs are immutable, therefore combining the advantages of
both define-and-run and define-by-run procedures. Complex NNs can be instantiated by
executing simple code, while the code is differentiable, containing trainable variables that
learn the underlying knowledge.

4.2. Reinforcement Learning: State-Space Modelling and Rewards

The optimization goals established in Section 3.2 can be materialized by assuming
that the overall system presents approximately the same behaviour when it finds itself
in a specific state, at least for relatively long periods of time. In order to encapsulate
the complexity of the system, the required RL model would not be realistic in terms of
resources and training time. Consequently, methods for a dynamic partitioning of states
can be employed, aiming at the minimization of their total number. In the context of our
study, the number of states utilized was relatively small, and the choice was to define static
states, exploiting the statistical characteristics of the employed measurements.

Either a model-based or a model-free formulation of the algorithm can be selected for
the process of reaching an optimal policy. In the former, the RL agent attempts to model the
exact behaviour of the environment, while during the latter, the RL agent assesses whether a
specific action is effective and the degree of that effectiveness without modelling the precise
behaviour. Regarding the model-based approach, either dynamic programming algorithms
or alternatives such as prioritized sweeping (PS) [45] are deployed for the computation of
the optimal policy. PS maintains a detailed registry in order to limit the computational cost
and focus all the effort on critical areas of the system. Certain computational thresholds are
set between each real-world observation such as transitioning from one state to another.
Once these limits are exceeded, the process refreshes not only the probability estimate but
also the transition probabilities of successors observed in previous iterations.

On the other hand, the Q-learning algorithm is the most common representative of
the model-free procedure. Despite being computationally efficient with a small memory
footprint, this methodology performs only local updates. As a result, at the end of each
iteration the process is limited to refreshing the value of the chosen action and consequently
updating the initial state’s policy. To converge to an optimal policy, Q-learning would
require a vast volume of observations. Hence, the model-based approach was adopted,
and PS was selected as the strategy for calculating the optimal policy.

The most vital element of an RL algorithm is the reward mechanism. It must be
designed carefully, as it is able to assist the fast convergence of the algorithm but could
lead to false optimal policies [46]. At the beginning of our experiments, the definition of
the reward function was the percentage of fluctuations of the MOS value. However, as
our experiments progressed, additional reward components were introduced, aiming at
optimizations in different parts of the system and introducing the concept of cost. The
final reward received after the execution of an action is a weighted sum of these reward
components, defined as follows:

• Mean Opinion Score: This reward component is defined as the percentage increment
or decrement in the MOS, following the execution of a certain optimization action.
If the MOS value is reduced after an action, then the reward is negative, otherwise
it is positive. Therefore, assuming MOSinit, MOSa f ter are the computed MOS values
before and after an action’s execution, respectively, the reward is defined as:

r(MOSinit, MOSa f ter) =
MOSa f ter −MOSinit

MOSinit
, MOS ∈ (0, 5] (1)
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• Bit Rate and Frame Rate: This reward component depends on the percentage increment
or decrement in certain parameters, specifically the video transmission’s bit rate and
frame rate. This reward is computed as a mean of the increment or decrement in
both types of measurements. Let binit, ba f ter, finit, fa f ter be the values of bit rate and
frame rate before and after the execution of an optimization action. Then, this reward
component is defined as:

m(binit, ba f ter, finit, fa f ter) =
1
2
(

ba f ter − binit

binit
+

fa f ter − finit

finit
), b, f > 0 (2)

• Number of VNF Instances: This reward component depends on the number VNFs
that are running per NS, also considering the ones that might occur after a scale-out
or scale-in operation. A positive reward is produced in cases where the number of
running VNFs is decreased, and a negative reward is produced if the number of
running VNFs increases. Let ninit, na f ter be the number of VNFs before and after an
action’s execution. Then, this reward component is defined as:

v(ninit, na f ter) = na f ter − ninit, n > 0 (3)

Two of the reward components are focused on the quality of the video transmission
before and after the execution of an optimization action, while the third is focused on the
cost of the action. The total reward is computed as

reward = w1 · r(MOSinit, MOSa f ter) + w2 ·m(binit, ba f ter, finit, fa f ter)+ (4)

w3 · v(ninit, na f ter), wi ∈ [0, 1] (5)

The adjustment of the reward weights can lead to an effective joint optimization
between QoE and cost by penalizing the VNF’s scaling-out operations according to needs
and resource availabilities.

4.3. Analysis Flow and Components

The analysis (A) part of MAPE comprises two main components: the metric collector
(MC), performing essential preprocessing operations on the monitoring data, and the actual
analysis part, i.e., a DL classifier or an RL agent, performing the actual analysis of the
processed metrics. The analysis architecture is modular, in the sense that its components
can be easily replaced with alternative implementations without disruption of the overall
operation, provided that their input and output data can be handled appropriately and
follow a specified format.

4.3.1. Metric Collector

The subcomponent responsible for the collection and combination of these raw metrics
according to time, origin, NS, and VNF is the metric collector component, written in Scala
and deployed as an Apache Spark application. This component subscribes to the central
Kafka bus and to the appropriate topics of interest, receives the raw metrics, and forms
them into proper feature vectors, grouping them by running the VNF and VDU. Obviously,
the topics receive all the enabled metrics supported by a monitoring tool, hence we should
note that metrics published to and received from Kafka that are not included in the list of
employed metrics are simply omitted.

Having received the raw metrics, the MC performs the necessary normalization actions
and transforms them into feature vectors, before grouping them per running VNF. A timing
deviation of one second is considered acceptable for two measurements of the same VNF
being packed into the same feature vector. If a round of measurements is not properly
synchronized, then the stale measurements will be discarded and will be updated with the
most recent values until a complete and synchronized feature vector is formed.
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When a synchronized set of measurements is collected, forming a feature vector, a
simple min-max normalization is applied to the features. It is important to note that an
extensive profiling of the incoming measurements was conducted a priori, to enable the
min and max values and the statistical data of each metric to be known and thoroughly un-
derstood. Following the realization of a measurement vector, the MC component publishes
the outcome to the central Kafka bus. Thence, it is consumed by the RL agent of the AS
module, and in retrospect, after being processed, a possible suggestion intended for further
consideration by the planning module is published to the Kafka bus.

4.3.2. DL Classifier

The DL classifier is a subcomponent of the analysis part of MAPE, written in Scala
and deployed as an Apache Spark application. The DL classifier subscribes to the topics of
the central Kafka bus, where the formatted and normalized measurements from the MC
are published. The DL classifier utilizes the DeepLearning.scala framework. The NN is
trained in advance, and the weights of the layers that yield the minimum squared loss
are recorded.

When the DL classifier receives a set of formatted and normalized measurements and
before these measurements are given as input to the trained NN, they must be sorted to
follow the order of the features in the training-set vectors. When the measurements are
sorted, the inference follows, and the feature vector is classified accordingly. There are three
possible outcomes in the classification procedure, i.e., regular, irregular, and underutilized,
as summarized in Table 1, leading to no action, scale-out, or scale-in operations, respectively.

Table 1. Classification of operational states.

Class Description

Regular The system operates as expected,
and the deployed resources are adequate.

Irregular The system does not operate as expected,
and the deployed resources are inadequate.

Underutilized The system is underutilized, and the deployed
resources are more than actually needed.

The DL classifier produces a classification for the overall state of the NS and notifies the
planning part of MAPE accordingly. The updated payload that is published to the central
Kafka bus includes the output of the analysis, i.e., the predicted class and optimization
actions suggested to planning. Planning receives the published payload from the related
Kafka topic and proceeds accordingly.

4.3.3. RL Agent

The RL agent is a component that can be used interchangeably with the DL classifier.
Like the DL classifier, it also subscribes to the central Kafka bus and receives formatted
metrics from the related topics published by the MC. The available optimization actions
are identical in both implementations; however, the operation of the RL agent inherently
differs in the decision-making procedures, since the DL classifier produces the classification
of an NS state and makes an unambiguous suggestion for action, while the RL agent maps
the NS state to a state of the internal environment and selects the optimal action.

The RL agent can generally target specific aspects of the system via an appropriate
tuning of the reward function, which integrates a cost component in our implementation
as well as the actual QoE metrics. In this manner, the end user or cloud provider can set
custom optimization objectives. For instance, if the cost is not of interest and theoretically
there are infinite available resources, the weight of this reward component can be set to
zero, and the RL agent will only optimize the end-users’ QoE. In cases where both the cost
and end-users’ QoE is of interest, a different combination of weights can lead to a different
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mapping of the environment, different optimal actions, and thus different decisions. The
RL agent selects the action that maximizes the reward and proceeds to publishing the
messages in the related topic to be used by planning. The updated payload includes the
action suggested to planning, as in the DL classifier approach.

It should be highlighted that, according to the flow diagram illustrated in Figure 3,
the RL agent of the AS module can easily be replaced by other optimization techniques,
provided that the replacement uses the same feature vectors and produces a suggestion in
the expected format. Such alternative solutions can be made available by integrating prop-
erly modified VNE optimization strategies that rely on algorithms to instantiate virtualized
demands on a physical infrastructure. Adhering to specific optimization objectives, thus
closing the loop of control as MAPE does and adapting autonomously to the demands of
VNRs for resources, VNE solutions follow the same fundamental rules as our orchestration
framework. However, depending on the specifics of the respective optimization objective,
the embedding results may vary considerably, and the satisfaction of the resulting out-
come can be compromised [47]. Integrating such embedding mechanisms with our MAPE
architecture is out of the scope of this paper.

Figure 3. Components of MAPE’s AS module.

4.4. Employed Metrics

As described in Section 3.2, our study focuses on the optimization of on-site video
streaming. Thus, both networking and computational measurements play an integral part
in the perseverance of the visual content quality. Furthermore, the QoE concept is adapted
to ensure the adequate quality of the video content, despite the ITU’s original definition.
Moreover, the OE, and especially the AS module, should be able to determine the overall
state of the system efficiently and as accurately as possible. In this context, a combination of
infrastructure (OpenStack NFVI), application-level, and QoE metrics have been employed
to produce an accurate image of the system. Additionally, several metrics from collectd
have been selected [48]. The collection of the utilized metrics is summarized in Table 2.
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Table 2. Employed monitoring metrics.

Origin of Metric Metric Name Description

OpenStack NFVI

cpu_util
memory_util

network.incoming.packets.rate
network.outgoing.packets.rate

The CPU’s utilization as a percentage
The memory’s utilization as a percentage

The rate of incoming packets
The rate of outgoing packets

Application
frame_rate

bit_rate
packet_loss

The frame rate of the video transmission
The bit rate of the video transmission

Network packet loss

collectd

aggregation_cpu-average_user
aggregation_cpu-average_system

interface_if_octets_rx
interface_if_octets_tx

interface_if_packets_rx
interface_if_packets_tx

load_load_shorterm
load_load_midterm
load_load_longterm

memory_percent_free
memory_percent_used

processes_fork_rate
processes_ps_state_running
processes_ps_state_sleeping

tcpconns_tcp_connections_ESTABLISHED

The aggregated user CPU usage
The aggregated system CPU usage

Count of bytes received on the interface
Count of bytes transmitted by the interface
Count of packets received on the interface

Count of packets transmited by the interface
The short-term load
The mid-term load
The long-term load

The percentage of free memory
The percentage of used memory

The fork rate of processes
Count of running processes
Count of sleeping processes

Number of established TCP connections

QoE mean_opinion_score The MOS value, denoting the
quality of the transmitted content

4.5. Opinion Model for Video Content Streaming

MAPE’s AS module is engineered to focus on optimizations related to streaming
visual content using any device, from 5G-enabled mounted cameras to IoT wearables,
UAVs, and UGVs, and this research aims to present and evaluate preliminary results
for relevant field-originated video transmissions. According to ITU’s model for video
telephony applications [49], perceived video quality Vq is expressed, at a high level, as:

Vq = 1 + Icoding exp

(
−

PplV

DPplV

)
(6)

where Icoding denotes the basic video quality affected by the coding distortion, regarding
a specific combination of video bit rate BrV expressed in kilobits per second (kbps) and
video frame rate FrV expressed in frames per second (fps). In addition, DPplV represents the
degree of video quality robustness due to packet loss, whereas PplV represents the packet
loss rate. The video quality baseline affected by coding distortion Icoding is defined by:

Icoding = IO f r exp

−
(

ln(FrV)− ln(O f r)
)2

2D2
FrV

 (7)

where O f r represents the optimal frame rate that maximizes the video quality at each video
bit rate and is expressed as:

O f r = v1 + v2Brv

{
1 ≤ O f r ≤ 30

v1, v2 : constants
(8)
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IO f r is the maximum quality of a video for a constant bit rate, defined as:

IO f r = v3 −
v3

1 +
(

BrV
v4

)v5

{
0 ≤ IO f r ≤ 4

v3, v4, v5 : constants
(9)

and DFrV represents the degree of video quality robustness due to the frame rate, ex-
pressed as:

DFrV = v6 + v6BrV

{
0 < DFrV

v6, v7 : constants
(10)

Additionally, the packet loss robustness factor DPplV , which represents the degree of
video quality robustness against packet loss, is given by:

DPplV = v10 + v11 exp
(
− FrV

v8

)
+ v12 exp

(
−BrV

v9

){
0 < DPplV

v8, v9, . . . , v12 : constants
(11)

The coefficients v1, v2, . . . , v12 appearing in Equations (6) through (11) depend on
codec type, video format, key frame interval, and video display size.

4.6. Optimization Actions

In our research, the optimization actions of the OE are focused on the horizontal
scaling of services by handling computational and networking resources provided by the
NFVI. Thus, the MANO (OSM) optimizes the life-cycle management of the NS/VNFs based
on dynamic allocation of fundamental virtualization resources such as containers, VMs,
and virtual networks. In cases of anomalies, congestion, or overutilization, the NS will be
scaled out and another VNF will be aggregated. On the other hand, in cases where the
NS has already been scaled out and is underutilized, the AS module, acknowledging the
misplacement of resources, suggests the necessary scale-in actions and the additional VNF
is scheduled for deletion, hence the respective resources are released.

The optimization actions are identical in both the DL and RL solutions (see Table 3).
However, the way that each of these approaches reaches a decision is inherently different.
The DL solution classifies an incoming vector of measurements and decides whether
an optimization action should be executed, while the RL solution, having modelled the
environment, maps the incoming vector of measurements to a state and performs the
optimal action.

Table 3. Available optimization actions.

Actions Description

Scaling out A VNF is added into the existing NS, and
the NS is reconfigured to balance the traffic flow

Scaling in
A VNF is removed from the existing NS, and
the NS is reconfigured to balance the traffic flow
through the remaining ones

No operation The NS is in a stable state, and no corrective
action needs to be executed

4.7. Collection of Training Datasets

The learning approaches applied in our deployment include SL and RL techniques and
have different needs in terms of essential training datasets. In both variations of the use-
case scenario, the same metrics were employed as inputs, ranging from CPU and memory
utilization to frame rate, packet loss, and even more qualitative parameters such as the
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QoE-oriented mean opinion score. Equivalently, the set of optimization functions, which
includes scale-out and scale-in actions, is the resulting outcome for the two examined
cases. The complete lists of inputs and outputs utilized in our use-cases are given in
Tables 2 and 3, respectively.

For the collection of these datasets, we streamed from a video transmission, evaluating
its quality. The initial idea was to experiment with various values for the background
traffic and number of streaming clients, which would bring the monitored system into a
variety of states with respect to networking and computational performance. Our intention
was to collect sets of monitoring measurements, including both resource consumption and
network-related metrics. Finally, it was of great importance that the collected measurements
depicted close-to-real-life conditions.

In the context of SL, a labelled dataset is necessary for the model to be properly
trained and tested. Hence, the manual classifications of the visual quality of the streamed
content and the association of these manual classifications with the monitoring metrics
were collected in parallel. The SL-oriented training dataset collection flow begins with the
initiation of a video transmission, followed by the introduction of background traffic and
the beginning of the video streaming content with different numbers of clients. It then
concludes with the visual classification of the quality of the streaming content as either
“regular” or “degraded”, a classification which corresponds to regular and irregular states
of the overall system, while matching these classifications to the collected measurements
with appropriate timestamps. After the visual classification of the streaming content and
the extraction of a labelled dataset, the collected data are normalized, proceeding to the
training of an NN, utilizing DLS. A total of 5000 feature vectors were utilized for the
training, selected from a total of approximately 7000. Furthermore, for the training of the
NN, the usual 60-20-20 split was applied to our dataset, i.e., 60% of the samples were used
for training, 20% were used for validation, and the other 20% were used for testing. At this
point, we should underline the fact that the focus of the present work is on the validation
of our proposed solution in the context of interoperability and performance optimization.
Nevertheless, since we performed the collection of the employed dataset, we decided to
keep it as balanced as possible, in order to ensure a more trustworthy model.

The collection approach for a training dataset differs in the RL solution. Ideally, an RL
agent is capable of exploring the environment of deployment and identifying via trial and
error the actions that yield the best rewards for the convergence of the model. However,
an RL agent with zero prior knowledge will start by executing random actions, and by
receiving negative or positive rewards it will commence the discovery of the environment
and the evaluation of states. Therefore, the preliminary collection of prior experiences is
essential. Once again, we experimented with different values for the background traffic and
number of connected clients. The RL-based training dataset collection flow starts with the
initiation of a video transmission and the introduction of background traffic. The beginning
of the video streaming content with different numbers of clients and the observation of
the environment and a primary recording of a set of measurements follows afterwards.
Thereafter, the execution of a random optimization action, either scale-in,scale-out, or
nooperation, occurs. It is then sequenced by the observation of the environment and the
recording of a set of measurements depicting the state of the system after the optimization
action. The collection flow is concluded with the recording of the experience in the form of
transitioning from one state to another after the execution of the action.

Starting with a set of collected experiences, the RL agent initially performs training
by processing them, computing and recording rewards for the state transitioning and
thus updating the model of the environment. Consequently, the RL agent is continuously
trained, since the execution of the same set of actions under the occurrence of a system
condition transition may not yield the same positive rewards. In this way, the RL agent
adapts and updates the acquired model of the environment accordingly.
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4.8. Planning and Execution

The role of the execution service (ES) is to consider the outcomes of the service-specific
OE and AS modules and to apply them by interacting with the necessary components or
services. This element has been designed to support NFVO-based operations per NS or
individual VNFs, media-specific operations per individual VNF, or hybrid operations. To
achieve this functionality, the ES mechanism is responsible for communicating with the
NFVO via the northbound interface (NBI) [50]. However, the current implementation of ES
supports the action of scaling out an NS to one or more additional VNFs, as explained below.

Typically, an instantiated NS is composed of several VNFs that must be scaled and
operated independently but still belong to the same service and hence must be completely
described in the corresponding NS package. Scaling out distributes the workload of the
NS across existing and newly instantiated resources, thus increasing the level of availabil-
ity and extending the throughput capacity of the service. MAPE’s ES leverages NFVO
functionalities to apply the NS’s scaling actions. During the scale-out process, the NFVO
commits computational and networking resources, establishes connectivity across all the
instantiated nodes, and organizes the new service. Once the scaling action is completed,
the records of the NFVO are updated, and the NS is orchestrated accordingly.

5. Experimental Results

By exploiting the features of the DLS library, various types of NNs can be quickly
trained and deployed. For the purposes of this study, a simple FFNN was utilized, struc-
tured as a three-layered NN. A combination of infrastructure-oriented, application-level,
and QoE-based metrics were employed as inputs to the FFNN. A summary and a more
detailed description of the incorporated metrics are given in Table 2 and Section 4.4, re-
spectively. The outputs of our FFNN are the optimization actions of horizontal scaling of
services, as summarized in Table 3 and detailed in Section 4.6.

5.1. QoE: Experimenting with Frame Rate, Bit Rate, and Packet Loss

The MOS was evaluated as a metric of great importance; hence, a series of comparisons
of MOS values against different combinations of packet loss, frame rate, and bit rate were
considered essential. The model adopted was the one defined by ITU and described in
Section 4.5.

The plot in Figure 4 illustrates the impact the packet loss metric has on the MOS, with
the settings for the frame rate and bit rate configured to 24 fps and approximately 8 Mbps,
respectively. The observation that the computed MOS value declines to under the value
of 1.5 when a loss rate of the order of 2% emerges validates the dominant role the packet
loss plays in the context of this QoE model. Such a reduction is considered unacceptable,
whereas a MOS value of at least 3.5 exceeds the acceptance threshold.

Afterwards, the packet loss is set to a ratio of 0.05%, with a constant bit rate of
approximately 8 Mbps. As expected, the higher the fps, the greater the increase in the MOS
value, as Figure 5 suggests. It should be highlighted that a frame rate of at least 16 fps is
considered to be a minimum threshold for acceptable video transmissions.

Finally, in Figure 6, we set a constant packet loss of 0.05% and a frame rate of 24 fps.
It can be discerned that the MOS fluctuates constantly at a satisfactory level, above the
threshold value of 4.0, with a lower bound at around 7 Mbps.
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Figure 4. MOS with respect to packet loss (ITU-T Recommendation P.1070).

Figure 5. MOS with respect to frame rate (ITU-T Recommendation P.1070).

Figure 6. MOS with respect to bit rate (ITU-T Recommendation P.1070).
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5.2. Statistics for Inactive and Active MAPE

In this subsection, we evaluate the performance of the proposed solution using an NS
that accepts requests for streaming video sessions. The tested NS consists of two VNFs, a
proxy server, and an application server which receives users’ requests and responds with
HTTP status code 200 when the NS is capable of providing a new session and with HTTP
status code 500 if there are not enough resources to serve a new user. The evaluation of
the proposed framework is based on two discrete trials that were conducted repeatedly. In
the first trial, the MAPE is inactive and we simply make observations on the state of the
overall system, while in the second trial the MAPE is activated.

In both trials, we considered metrics that adequately depict the overall state of the NS,
i.e, (a) the number of current active sessions, (b) the throughput per VNF, and (c) the average
response time. Moreover, the status codes of the server were recorded, to give a clearer
image of the end users’ experience during the disruption of the NS’s regular operation.

As already stated, during the first trial, the MAPE is inactive, and the stressing of the
NS begins, resulting in a disruption of its overall operation. As demonstrated in Figure 7,
we can observe an increasing number of the current active sessions (Figure 7a), as well as
the rising VNF throughput (Figure 7b), incoming as much as outgoing. The disruption of
the NS has a negative impact on the average response time (Figure 7c) of the service, which
consequently leads to server failures, recorded as internal server errors, i.e., instances of
HTTP status code 500 (Figure 7d). It is clear that the increasing number of sessions leads to
a disruption of the regular operation of the NS when there is no option for corrective action.

Next, we executed the same experiment but this time with the MAPE framework
activated. Once again, the monitoring metrics suggest an imminent disruption of the NS’s
regular operation if we note the increasing number of current active sessions (Figure 8a)
and the rising throughput per VNF instance (Figure 8b). Moreover, we observe a fluctuation
in the average response time (Figure 8c). In this case, the MAPE identifies the high demand,
and as the number of the current active sessions rises, the overall system state is classified
as irregular (Figure 9a), eventually leading to a scale-out action, i.e., to deploying a second
instance of the VNF under pressure. In Figure 9b we can observe the NS’s scaling status.

In Figure 8b, we can observe the impact of the scale-out action on the throughput,
which is now split between the two available VNF instances. The throughputs for the
running VNFs are almost identical, proving that the NS has been configured to balance its
load. Furthermore, as the lifetime of the additional VNF increases, the average response
times of both VNF instances become smoother (Figure 8c). Additionally, we can clearly
see the improvement in the server’s performance, with almost zero internal server errors
(Figure 8d). This fact demonstrates that the MAPE framework detects and predicts the
increasing demand for the service and proactively introduces another VNF instance to
handle the increasing load. Indeed, with the addition of the VNF instance, the overall state
of the system is classified as regular (Figure 9a).

After the sudden high demand for the service, with the situation properly addressed
by the MAPE framework, a decrease is observed, expressed through a steady decline in
the number of current active sessions (Figure 8a), as well as the average response time
(Figure 8c). At this point, the MAPE framework classifies the overall system as underutilized
and suggests a scaling-in operation, leading to the deletion of the additional VNF instance
and the reconfiguration of the NS to re-route all the incoming and outgoing traffic via the
remaining one(s). Indeed, Figure 9a shows the classification of the NS’s state as underutilized.
Meanwhile, in Figure 9b, the scaling status of the NS, which now includes a single VNF, is
shown. As expected, during the first moments after the deletion of the additional VNF a
sudden increase in the remaining VNF’s throughput and average response time is observed;
however, the NS state is regularized quickly.
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(a)

(b)

(c)

(d)

Figure 7. Statistics for inactive MAPE. (a) Active sessions; (b) throughput per VNF; (c) average
response time; (d) HTTP response codes.
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(a)

(b)

(c)

(d)

Figure 8. Statistics for active MAPE. (a) Active sessions; (b) throughput per VNF; (c) average response
time; (d) HTTP response codes.
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(a)

(b)

Figure 9. NS state class and scaling status. (a) NS state classification; (b) NS scaling status.

6. Conclusions

In our research, we studied the MAPE framework for optimizing video streaming
services, based on the innovative and emerging principles of IoT, CNC, 5G, and ML. One of
the problems that NGN applications are facing is that, despite the fact that the technologies
that we are using (i.e., SDN, NFV) support life-cycle management of runtime, it is difficult
to guarantee the QoS using traditional monitoring mechanisms that identify the problems
when they occur. In modern applications, in order to provide a specific experience level,
we must analyse each service separately, predict the potential issues, and act proactively
to avoid any negative impact on the QoS. In this context, in the presented work, we in-
troduced the MAPE approach using the NFV architecture, and we presented preliminary
results from prediction algorithms for transmitting visual content, given the requirements
of the responding teams operating in the field, as expressed by the QoE MOS specification.
According to the results, ML integration ensures the quality and trustworthiness of the
optimization actions. From this perspective, it is established that the framework allows
the system to react quickly in accordance with scaling factors and the placement of all
available sets of resources, with the goal of optimizing the service’s performance and
consequently satisfying the users’ requirements at execution time, especially under ambigu-
ous networking and computational circumstances, by invoking parameters of a mutable
nature such as the frame rate, bit rate, and packet loss. Furthermore, the deployment of
inherent security features renders our developed MAPE architecture fundamentally secure,
ensuring the robustness of the system, as well as the integrity and privacy of stored and
transported information.

Nevertheless, this research should be furthered and the next milestones ought to
be set. To the best of our knowledge, there are currently no available datasets from
other MAPE implementations to contrast with our solution. The provision of a justified
comparison to other relevant solutions, as soon as they become available, is a priority in
our research roadmap.

Moreover, the effort to extend the set of ML algorithms, with the target of offering
better coverage of the users requirements, while also training new models better and
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offering them as open-source models, represents a milestone in our forthcoming work.
Alternatively, possible optimization solutions utilizing VNE optimization strategies could
be substituted for the established OE, in order to extend the comparison baseline for
optimization models.

Additional steps can be taken regarding the enrichment of MAPE’s by-design secu-
rity. The integration of blockchain practices may prove to be a key security measure, to
completely avoid the possibility of corrupted QoE MOS values and misleading states in
action mapping. Blockchain adopts the same decentralized and distributed directives as the
MAPE framework, rendering it compatible with the principles of MAPE’s core architecture.
However, there are certain limitations that should be challenged. Blockchain ledgers can
grow very large over time, which may lead to storage depletion. Furthermore, a substantial
sacrifice in response time and slower optimization actions are possible eventualities.
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Abbreviations

AD Automatic Differentiation
AS Analysis Service
AST Abstract Syntax Trees
CNA Cloud Native Applications
CNC Cloud Native Computing
CNI Cloud Native Infrastructure
DL Deep Learning
DLS DeepLearning.scala
ES Execution Service
FFNN Feed-Forward Neural Network
GDPR General Data Protection Regulation
IoT Internet of Things
ITU International Telecommunication Union
MANO Management and Orchestration
MAPE Monitoring Analysis Planning Execution
MC Metric Collector
MDP Markov Decision Processes
ML Machine Learning
MOS Mean Opinion Score
MS Monitoring Service
NBI Northbound Interface
NFV Network Function Virtualization
NFVI Network Function Virtualization Infrastructure
NFVO NFV Orchestrator
NGN Next-Generation Networks
NMS Network Management Systems
NS Network Services
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OE Optimization Engine
OSM Open-Source MANO
PS Prioritized Sweeping
QoE Quality of Experience
QoS Quality of Service
RL Reinforcement Learning
SDN Software-Defined Networks
SL Supervised Learning
UL Unsupervised Learning
UX User Experience
VLM Virtual Link Mapping
VM Virtual Machines
VN Virtual Networks
VNE Virtual Network Embedding
VNF Virtual Network Functions
VNM Virtual Node Mapping
VNR Virtual Network Requests
Mathematical Symbols
Brv Video bit rate
DFrV Degree of video robustness due to frame rate
DPplV Degree of video quality robustness due to packet loss
FrV Frame bit rate
MOS Mean opinion score
n Number of running VNFs
O f r Optimal frame rate
PplV Packet loss rate
Vq Video quality
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