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Abstract: Transmission line fault classification forms the basis of fault protection management in
power systems. Because faults have adverse effects on transmission lines, adequate measures must
be implemented to avoid power outages. This paper focuses on using the categorical boosting
(CatBoost) algorithm classifier to analyse and train multiple voltage and current data from a 330 kV
and 500 km-long simulated faulty transmission line model designed using Matlab/Simulink. From it,
93,340 fault data sizes were extracted. The CatBoost classifier was employed to classify the faults after
different machine learning algorithms were used to train the same data with different parameters.
The trainer achieved the best accuracy of 99.54%, with an error of 0.46% for 748 iterations out of 1000.
The algorithm was selected for its high performance in classifying faults based on accuracy, precision
and speed. In addition, it is easy to use and handles multiple data-sets. In contrast, a support vector
machine and an artificial neural network each has a longer training time than the proposed method’s
58.5 s. Proper fault classification techniques assist in the effective fault management and planning of
power system control thereby preventing energy waste and providing high performance.

Keywords: fault classification; CatBoost classifier; transmission line; machine learning; fault management

1. Introduction

An electrical power system consists of different interacting segments: generation,
transmission, and distribution. The transmission line is an integral part since it transfers
electricity from the generating station to the distribution network and to the end-user.
These components are interconnected through the transmission lines, which are subject to
faults and cannot be controlled manually except through advanced techniques [1]. When a
fault occurs, significant damage is done to the power system’s reliability, affecting power
output and causing loss of installations, outages, and system collapse. It is imperative that
a model be designed that can classify and locate a fault quickly and precisely so that it can
be isolated and identified for fault protection and management.

Fault classification is essential for protecting the network; therefore, measures must be
taken to achieve maximum protection to avert system collapse and preserve energy output.
Faults can be categorised as incipient or unpredictable [2]. Incipient faults are transient,
while unpredictable faults occur due to human interference, lightning, and extreme weather,
which directly affect the entire network.

Researchers in recent years have been brainstorming the best way to protect transmis-
sion lines from faults, which must be classified according to type to isolate the line quickly
and prevent system collapse [3]. However, feedback generated from fault classification can
significantly assist in detecting a fault location so that power can be restored quickly [4].
The recent literature has discussed fault classification using machine learning: an artifi-
cial neural network (ANN) [5–9], support vector machine (SVM), [1,2,10], decision tree
(DT) [11] and probabilistic neural network (PNN) [12].
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All these methods have been used for the classification of faults. However, some, like
the wavelet technique (WT), are helpful when time and frequency data are needed although
this technique is sensitive to noise and harmonics, and requires a high sampling rate. It
is time-consuming because getting a referred wavelet and the number of decompositions
is done by trials. Although WT detects faults accurately and instantly, it is has trouble
differentiating among various fault conditions [12]. WT and ANN are predominantly used
for fault detection and classification [13].

Many hybrid methods have produced good results. S-transform and ANNs were used
to classify faults on the transmission line. Though the ANN and SVM produced good
results in identifying faults, they needed a large volume of data for training, making them
complex to handle [14]. Furthermore, in [12], three ANN approaches were compared to
each other for fault classification: PNN, Back Propagation Neural Network (BPNN) and
Radial Basis Function Neural Network (RBFNN). These methods produced accurate results,
but they were used on faulty voltage and current signals and focused more on time and
speed of execution of the training. Despite the fact that most of these methods have been
used recently, there are some challenges, such as not being applicable for high-frequency
signals and high computational complexity, as found in the Hilbert–Huang Transform
(HHT) [15]. The convolutional neural network (CNN) is another technique used in fault
classification that is accurate and fast, but the computational cost for offline analysis is
relatively high [16]. Principal Component Analysis (PCA) in machine learning is a fast and
simple method that reduces re-projection error and is immune to noise. It is also used to map
data from multidimensional space to low-dimensional subspace to mitigate dimensionality
and perceive the variance of the data in the best way possible. The Kernel Principal
Component Analysis (KPCA) and the SVM were used for the real-time fault diagnosis of a
high-voltage circuit breaker, whereas a sample reduction algorithm based on a similarity
degree function was used to analyse the similarity among the samples to detect faults [17]
and with the dynamic kernel principal component analysis (DKPCA) [18]. However, if the
number of dimensions is greater than the number of data points, the convergence matrix is
always large, making it difficult to obtain a convergence matrix for data that has varying
properties and capabilities [16,19].

Deep-learning diagnosis techniques, such as the wavelet packet distortion and a
CNN [20], have also been used in fault classification. It applies the wavelet packet distortion
to generate a faulty data sample, while the CNN is used to classify the fault into different
categories. However, the wavelet packet function uses Daubechies wavelet (DB4) for
extraction, which does not have a theoretical justification. The adaptive intraclass and
interclass CNN (AIICNN) [21] was applied in the algorithm to enhance sample distribution
differences by applying designed intraclass and interclass constraints. The 1-D CNN
(1dCNN) had an added activation function to enlarge the heterogeneous and reduce the
homogeneous distance between samples for proper classification. A normalized conditional
variational auto-encoder with adaptive focal loss (NCVAE–AFL) was also used to classify
faults into different categories [22]. In [23], the CNN long short-term memory (CNN-LSTM)
was used to identify and locate a fault using the frequency response analysis (FRA) to
extract it. This method detected faults accurately and in a timely manner.

Each of the methods mentioned above had disadvantages and limitations. Some of the
main noticeable observations were the inability of most articles to explain fault classification
extensively concerning fault clearing time, thereby making it difficult to isolate the fault or
take on significant repairs within the shortest possible time. Moreover, discrete wavelet
transform (DWT) and DT [24] had a limited time resolution capability and had a low perfor-
mance for high-performance faults. Wavelet and Data mining [24], K-Nearest Neighbours
(KNN) and Decision Tree [25], are limited to the fault classification technique but without
considering the speed, accuracy and precision of the result. In [26], fault classification was
not determined using the S-transform technique, and the effect of noise in the transmission
line was not considered in the model [27]. Differential and Hibert–Huang transmission
methods are expensive and have a no-fault direction. In addition, for fault classification,
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the mathematical morphology and recursive least-square (RLS) methods [28] involves
using a mathematical morphology-based fault feature extraction scheme. This method has
high calculation and technical standards that necessitate professional implementation.

Researchers have widely used machine learning for its increased involvement of
communication and computation in transmission systems [28]. Research shows that most
techniques use a smaller dataset to train the algorithm, giving highly accurate results.
They also use either a single phase-to-ground fault or a double phase-to-line fault data for
training [15,29,30]. Another shortcoming of most of the methods is the inability to consider
the inevitable noise and disturbance in the transmission line networks. This method will
also address the effect of noise signals and disturbance and how they can be reduced or
eliminated for optimal system performance and accuracy of results.

Due to the shortcoming of the different algorithms and models discussed in the
literature on fault classification, the CatBoost classifier algorithm is proposed for the
training of fault data from single-phase, double-phase, and three phase-to-ground faults.
Twelve different dataset types were used for fault classification and the CatBoost classifier
was used to train the data. This classifier was proposed because of its accuracy, speed and
ability to train the multi-dataset of a transmission line fault within the shortest possible time.
The model was used for its ability to handle heterogeneous data and its categorical features.
It was also sensitive to hyperparameters and handled noisy data [31]. The uniqueness
of the proposed model is its ability to train noise data without affecting the accuracy
and performance of the system. The fault data was comprised of four fault conditions in
different scenarios, and the analysis was divided into two parts: one was the modelling of
the network to extract fault cases from the transmission line using Matlab/Simulink, and
the other was to detect and classify the faults using the data generated from the simulations
to detect and classify faults with the help of a trained classifier [32].

2. Modelling of 330 kV Transmission Line

Machine learning needs many datasets for practical training, and those datasets were
obtained from a model of a 330 kV, 500 km transmission line network as shown in Figure 1
below. The parameters from Tables 1 and 2 were used to create the model in Simulink
as in Figure 2. This model generated the fault data of a single line-to-ground, double
line-to-ground and three-phase-to-ground fault. These data were used to train machine
learning for fault classification. They were also applied to validate the data for accuracy,
root mean square error (RMSE) and precision of result.

Figure 1 represents the three-phase, 330 kV transmission line model developed and
implemented in this article. It consists of a Nigerian 330 kV transmission line which cut
across 500 km and was modelled using Matlab/Simulink. The ground resistance used
was 0.01 Ω based on the IEEE recommendation for ground resistance, which is ideally in
the 0–50 Ω range [33]. In addition, a minimum fault line voltage of 0.001 V (minimum
standard value) and an incipient fault angle (0 to −30◦) were used to derive the maximum
arc resistance value. Small ground fault resistance was chosen to detect a transient fault
because a higher resistance value would lead to excess voltage and current, so the system
might not classify minor faults. Therefore, the higher the fault resistance, the lower the
fault detection. A three-phase fault simulator was used to simulate the fault at different
locations on the transmission line for proper classification.

Figure 1. A 330 kV three-phase, 500 km transmission line model.
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Table 1. Parameters of 330 kV, 500 km transmission line.

Sequence Parameter Value Unit

Positive and negative sequence resistance R1, R2 0.01273 Ω/km
Zero sequence resistance R0 0.3864 Ω/km
Positive and negative sequence inductance L1, L2, L3 0.9337 × 10−3 H/km
Zero sequence inductance L0 4.1264 × 10−3 H/km
Positive and negative sequence capacitance C1, C2, C3 12.74 × 10−9 F/km
Zero sequence capacitance C0 7.751 × 10−9 F/km

Table 1 shows the model parameters where R1 and R2 are positive and negative
sequence resistances of phases 1 and 2, respectively. L1, L2 and L3 represent the positive
and negative sequence inductances of phases 1, 2 and 3, respectively, whereas C1, C2 and
C3 represent the positive and negative sequence voltages of phases 1, 2 and 3, respectively.
Finally, R0, C0 and L0 represent the zero resistance, capacitance, and inductance sequence,
respectively.

Table 2. Fault parameters of the proposed model.

System Components Parameters/Units Value

Phase to phase voltage voltage 330
Source resistance Rs Ohms (Ω) 0.8929
Source inductance H 16.58 × 10−3

Fault incipient angle θ in degree 0◦ and −30◦

Fault resistance Ron Ohms (Ω) 0.001
Ground resistance Rg Ohms (Ω) 0.01
Snubber resistance Rs Ohms (Ω) 1.0 × 10−6

Fault capacitance Cs F infinite
Switching time seconds 0.2

Figure 2. Simulink Model of 330 kV. 500 km transmission line.

Tables 1 and 2 represent input data for the modelling of the 330 kV 500 km trans-
mission line. Simulations were carried out by inducing a fault into the line at 300 km.
The parameters were carefully selected based on the standard of the International Electro-
technical Commission (IEC 60909) [34]. The fault voltage and current data were generated
from the model in a different scenario, and 12 fault conditions were considered: are a-g,
b-g, c-g, a-b, b-c, a-c, a-b-g, b-c-g, a-c-g, a-b-c, a-b-c-g and no-fault, as seen in Table 3, where
a = fault at phase A; b = fault at phase B; c = fault at phase C, and g is the ground fault.
The binary representation showed the fault and no-fault conditions representing 1 and 0,
respectively. It indicated the fault number assigned to each fault condition.
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Table 3. Fault types in binary representation

Class Fault Type L1 (a) L2 (b) L3 (c) G (g)
1 a-g 1 0 0 1
2 b-g 0 1 0 1
3 c-g 0 0 1 1
4 a-b 1 1 0 0
5 a-c 1 0 1 0
6 b-c 0 1 1 0
7 a-b-g 1 1 0 1
8 b-c-g 0 1 1 1
9 a-c-g 1 0 1 1
10 a-b-c 1 1 1 0
11 a-b-c-g 1 1 1 1
12 No fault 0 0 0 0

3. Methodology

It wa possible to achieve fault classification by using phase and zero-sequence current
fault data obtained from simulated models. The diagram in Figure 3 shows the data
processing model for machine learning used for this article. It involved accessing and
loading the data collected from the simulated model into the trainer. Next, the data collected
were processed by looking for the data points outside the fitted end of the rest of the data
to see if they could be ignored or considered [34].

Figure 3. The data processing model for machine learning.

The next step was to derive features by turning the information into a machine-learning
algorithm to improve accuracy, boost model performance, improve model interpretability
and prevent overfitting. This was preceded by building and training the model where a
confusion matrix was plotted to compare the classification made by design with the actual
data collected. Next, we improved the model by checking the correlation matrix to remove
variables that were not correlated. The fault data type was introduced in the 500 km, 500 kV
transmission line and the dataset was divided into three categories: training, testing, and
validation. Each dataset was trained and analysed for final validation, accuracy, errors
and performance.

3.1. Data Preparation and Extraction

The faulty data were extracted using the Simulink model from Figure 2, and the
waveforms were generated from the model to show the frequency of fault occurrence.
The graphs in Figures 4–7 show the waveform that validated the presence of a fault in the
network. The fault current and voltage were generated and used for machine-language
training to classify and locate faults in the transmission line. The waveform displayed in
Figure 4 showed standard sinusoidal voltage and current waveforms.
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Figure 4. Three -phase at no fault condition.

Under the no-fault state, the waveform is sinusoidal and has no distortion due to
noise or fault, so the resultant waveform was standard, as seen in Figure 4. When the fault
occurred, the fault current of the power transmission line became abnormally high, while
the fault voltage decreased to a low value.

Figure 5. Three-phase to ground fault (a-b-c-g).

Figure 6. Double-phase to ground fault (a-b-g).



Signals 2022, 3 474

Figure 7. Single-phase to ground fault (a-g).

Figure 5 shows a three-phase to ground fault where the current and voltage waveform
of phase Va, Vb, Vc and Ia, Ib, Ic were distorted by a sudden decrease in their magnitude. In
Figures 6 and 7, the voltage and current of phases B, C and A, were also distorted due to
faults in the line. All these waveforms showed a distortion due to faults. The switching
time of the fault model was set at 0.2 s and the fault location was 250 km along the
transmission line. Figures 4–7 illustrate fault detection in four different scenarios: no-fault,
single-phase-to-ground-fault, double-line-to-ground fault, and three-phase-to-ground fault.
The fault current and voltage data were generated, and machine language was used in
training the data to detect, classify and locate the fault on the transmission line. The current
in Figures 5–7 increased drastically, and the voltage fell to zero, as shown in Figure 6,
confirming the transmission line fault.

3.2. The Use of CatBoost in Fault Classification

The CatBoost classifier algorithm is used as a machine language tool to train datasets
for fault classification to improve its performance, ease of use, and automatic handling
of categorical features over other machine language techniques (e.g., the PCA, SVM and
ANN). It also requires no explicit pre-processing of data to convert all fault data categories
into numbers. A team of engineers from Yandex proposed the model in 2017 [35]. Gra-
dient boosting is a good machine language tool for solving heterogeneous, noisy data
and complex variables. It uses binary decision trees as base predictors, and it has the
robust characteristics of reducing hyperparameter tuning, and lowering the chances of
data overfitting. It combines a gradient boosting decision tree (GBDT) with categorical
features, focuses on categorical variables, and deals with gradient bias and prediction shift
problems [36]. It helps to improve the robustness of the algorithms by putting all sample
datasets into the algorithm for training. When transforming the characteristics of each
sample, the target value of the model was calculated before the sample, and the weight and
priority were subsequently added. Assuming a data sample size

D = {(Xj, Yi)}; j = 1, ...m, (1)

where Xj = (x1
j , x2

j , ...xn
j ) is a vector of n features and response feature Yi ∈ R, which

are binary (1 or 0), and a sample (Xj, Yi) identically and independently distributed by an
unknown distribution P(., .). The aim is to train a function H : Rn → R that minimises the
expected loss given in equation (2)

L(H) = EL(y, H(x)), (2)

where L(., .) is a smooth loss function and (X, y) is a sample of test data drawn from the
training data D [36].

The CatBoost also helps improve the algorithm’s robustness by putting all sample
datasets into the algorithm for training. When transforming the characteristics of each
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sample, the target value of the model is calculated before the sample, and subsequent weight
and priority are added. The CatBoost classifier requires minimal data preparation, and it
also handles missing values for numerical variables and non-encoded categorical variables.
The classification accuracy is used as a criterion to assess the result of fault classification.

3.3. Training of Datasets Using CatBoost Algorithm

About 93,340 datasets of four types of faults, including single-line, double-line to
ground, three-phase to ground fault, and no-fault were generated from the Matlab/Simulink
fault detection model. The data were divided into training and test datasets of 70% and
30%, respectively. The CatBoost classifier was used as a machine-language tool to train
the dataset. The choice of classifier was based on performance and ease of usage. It also
had to handle categorical features automatically (without any explicit pre-processing to
convert the categories of fault data into numbers), and reduce hyperparameter tuning and
the chances of data overfitting. The machine language trainer was simulated with the
following parameters:

The input data for the classifier were the fault current and voltage of the transmission
line model in Figure 2, and the parameters in Table 4 were used to train the data. The main
reason that the CatBoost classifier was preferred is that it is easy to use, efficient, works
well with categorical variables, and doesn’t require data pre-processing. It also completed
the training in limited time. An effective fault management system requires fast detection
and fault classification to protect the power system. This technique is superior to that of
other methods, which have longer training times. The parameters were carefully selected
through tuning and training to obtain better results and ensure the data was fitted.

Table 4. CatBoost Classifier training parameter.

CatBoost Model is Fitted True

Iterations 1000
Depth 10
Loss function Multiclass
Leaf estimation method Newton
Class weight 0.001, 0.01, 0.9, 0.001
Random strength 0.1

4. Results and Discussion

The parameter from Table 5 above was used to train the classifier, and the best test
accuracy was achieved at 748 iterations out of 1000, which is 99.54% with an error of 0.46%.
This result confirmed that the classifier model worked perfectly, and the different types of
faults were trained and classified with high accuracy. The no-fault condition was trained
separately, and an accuracy of 100% was obtained. This was trained separately to attain
a near-perfect classification due to the complexity of the dataset. Table 6 represents the
classifier’s confusion matrix, which describes the precision, recall, F1-score, and support.
An N×N matrix was often used to evaluate the performance of the classifier model, where
N was the number of target classes. The matrix compared the actual target value with the
predicted machine learning model and the error involved. The table shows that the no-fault
condition represented 0, the single line to ground fault was 1, the double line to ground
was 2, and the three-phase to ground fault was 3. Class 0 was kept at zero because it was at
a no-fault condition while the others were trained. The result shows that the model was
well fitted, and the four different fault types were well classified.
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Table 5. Confusion matrix for the fault classification.

Tr
ue

C
la

ss 0 0 0 6955 0
1 0 4862 2051 0
2 0 0 7048 0
3 0 0 2013 5073

0 1 2 3
Predicted Class

The accuracy of the model is given as

Accuracy =
TP + TN

TP + FP + TN + FN
(3)

where TP = True positive; TN = True Negative; FP = False Positive; and FN = False
Negative.Furthermore, ,

Precision =
TP

TP + FP
. (4)

tells how many of the predicted cases turned out to be positive, and determines whether
the model was reliable. In Table 6, the precision in single-phase to ground and three-phase
fault was 1, which showed that the model was worked perfectly well. ’Recall’ shows how
many of the actual positive cases were predicted correctly and is given by

Recall =
TP

TP + FN
. (5)

The double line to ground fault was predicted correctly compared to other faults,
as shown in Table 6. Also, the F1-Score was the harmonic mean of precision and recall and
is given by:

F1− Score =
2

1
Recall +

1
Precision

(6)

Table 6. Fault classification report.

Fault Type Classes Precision Recall F1-Score Support

A-G 1 1.00 0.70 0.83 6913
B-C-G 2 0.39 1.00 0.56 7048
A-B-C-G 3 1.00 0.72 0.83 7086
No fault 0 0 0 0 0

Micro Avg 0.61 0.81 0.69 21,047
Macro Avg 0.80 0.81 0.74 21,047
Weighted Avg 0.80 0.81 0.74 21,047

True-positive indicated that the classifier predicted a true event, and the event was
true, whereas true-negative indicates that the classifier predicted a false event, and the
event was false. The false positive classifier predicted that an event would occur, but it was
incorrect. Still, the event was not true, whereas the false-negative indicated that the event
was incorrectly predicted and was therefore false. The results from the fault classification
report in Table 6 also affirmed that the classifier produced perfect results. Therefore, it was
a better classifier for training multi-datasets than were those from the reviewed literature.

Table 7 compares the different machine-learning techniques used in fault classification
based on various methods and justifies the use of the algorithm, focusing on accuracy,
speed, and strength. The CatBoost classifier produced a better result than did the other
classifiers, as seen in Table 7, with an accuracy of 99.54%. The CatBoost technique was
chosen over other methods for its speed, accuracy and low training time for classifying
faults according to different categories. It can also accurately handle multi-datasets of
different fault currents and voltage at the same time.
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Table 7. Comparing different machine learning techniques for accuracy in fault classification.

Technique
Used

Input
Parameter Fault Types Data

Size
%
Accuracy Strength Weakness

WT, CNN [20] vibration
signal

400 different
fault
condition

2400 97.78%
speed of
8 s to
execute
and easy to use

The WT
Packet is
not
theoretically
proven.

ANN [37]
Three-phase
voltage and
current
waveform

10 different
fault
condition

7920 78.1%
Easy to
use and
implement,
Repro-
gramming
is not needed

Requires
a system
with a high
processor,
Longer
training
time.

Proposed
CatBoost
Classifier

Voltage
and current
signal

Single-phase
fault,double
phase fault,
three-phase
fault and
no-fault

93,340
X 6

99.54%

Higher
accuracy,
speed and
low training
time.multiple
feature
classification

It needs a
high-
performance
operating
system
to train
the data.

BPNN [11]
Voltage
and
current

AG, BG,
CG, ABG,
ACG, BCG,
AB, AC,
BC, ABC,
ABCG

1188 97.3%
easy to
execute,
it requires
less number
of neurons
for training.

Slow to use,
computationally
expensive, can’t
be used to
solve complex
andlarge
problems.
Slow
convergence.

RBFNN [11]
Voltage
and
current

AG, BG,
CG, ABG,
ACG, BCG,
AB, AC,
BC, ABC,
ABCG

1188 99.3%
Faster than
BPNN,
easy to use.

Not suitable
for non-linear
systems and
large dataset

PNN [11]
Voltage
and
current

AG, BG,
CG, ABG,
ACG, BCG,
AB, AC,
BC, ABC,
ABCG

1188 99.4%

It can handle
multi-dataset
to classify
faults.
Also, no
learning
process is
required.

Expensive to
implement,
and learning
can be slow,
high
processing
time if the
network
is extensive.

RDRP [19]
Voltage
signal
of 10 dB,
20 dB
and 30 dB

Single,
double and
three-phase
fault

480
93.9,
96.8%
and
96.8%

It can work
well with
small datasets

Not suitable
for multiple
datasets and
low prediction
accuracy.

CNN [16]
Three
phase
Voltage
and
current

10 different
fault
condition

92,077 99%
Used to solve
multi-channel
sequence
recognition
problem

The
computational
cost of offline
mode is
expensive
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5. Discussion

The CatBoost classifier produced exceptional results because its accuracy and precision
were better than the other methods used in the literature. In another research study, the use
of sparse representation classification with random dimensionality reduction projection
technique was used to classify faults [38]. This method generated results ranging from
93.9%, 96.8% and 98.8% for 10 dB, 20 dB and 30 dB, respectively, which varied according to
fault type [19]. In [14], S-transform and neural networks were used in fault classification,
and the average accuracy was 99.6%. Still, the research of [14] was based on a three-phase
fault in contrast to the four fault types used in this paper. The recursive neural network
(RNN) was used in [19], and about 500 pieces of fault data were used, but the classifier
failed to classify L-L and L-L-G fault types at 140 km. However, it was able to classify the
fault in some distance with an accuracy of 98.67%, so the classifier’s inability to classify all
the different types of faults at different locations made it unsuitable as a fault classification
technique. The CatBoost algorithm was proven to be a better machine learning tool in
fault classification and detection for the training of data and is highly recommended for
optimum, accurate results.

Figure 8 shows a separate analysis of the performance of the CatBoost model where
the single-phase and three-phase fault performs optimally with accuracy of 100% while the
recall value was higher for the double phase-to-ground fault.

Figure 8. Performance of the different faults types.

The novelty of this paper is the use of the CatBoost classifier for transmission line
fault classification. Table 7 enumerates some of its distinctive features over other machine-
learning algorithms, including an overall result accuracy of 99.54% and an individual
line fault accuracy of 100% in a three-face fault classification. The execution speed 58.5
s compared with that of the SVM. The model also handled a multi-dataset, combined
multiple categorical features, and overcame gradient bias. It also prevented data overfitting
and data pre-processing during training compared to techniques that use trial and error for
parameter tuning, in contrast to other machine learning algorithms like SVM, K-NN, CNN
and RNN.

The Effect of Noise and Disturbance in the Proposed Algorithm

Power quality disturbance (PQDs) and noise signals have adverse effects on fault
classification in transmission line accuracy. During feature selection and extraction, it is nec-
essary to consider noise and signal disturbance because of voltage swell, sag, interruption
and flicker; transient oscillation; harmonics; and transient impulses. In the proposed model,
noise signals and PQDs were considered and compared with other articles, and it was
observed that the CatBoost classifier performed better, with accuracy remaining at 99.54%
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both in noise and noiseless signals. This showed that the method effectively reduced the
effects of noise and disturbance on classification accuracy. In [39], the ANN technique
was used for classification with a noiseless signal accuracy of 87.55% and 82.44% at 20 dB
noise. In [40], the DWT was used for feature extraction, and the SVM was used for fault
classification with an accuracy of 100% without disturbance and 98 and 95.6% accuracy at
30 and 20 dB noise, respectively.

The novelty of the proposed method is the ability of the model to “de-noise” the
signal for optimal performance, as seen in Figures 9 and 10. The current signal in the
three phase-to-ground faults was de-noised for optimal model performance before it was
integrated into the CatBoost classifier. In Figure 9 the base current rose to 30 per unit (PU)
which caused a disturbance in the system but was reduced to 28 PU as seen in Figure 10.
The process can continue to achieve a zero signal to noise ratio in the system.

Figure 9. Fault Current with Noise Signal.

Figure 10. Fault Current With De-Noise Signal.

In addition, the power quality can be improved by this method for quality control, and
online and offline fault classification with noise and noiseless data. This can be applied in
fault management and protection in high-voltage transmission lines, and the distribution
network and technique can help in fault management and protection when noise and
disturbances are inevitably present.
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6. Conclusions

Faults affect the transmission line and cause significant damage to equipment and
power disruptions to the customers or end-users. These faults occur due to bad weather
conditions or faulty equipment, and transient faults are the result of human interference.
Hence, there is need to model a system that will classify, detect and isolate faults accurately
within the shortest time of detection.

This paper proposed the use of the CatBoost classifier as the preferred algorithm for
fault classification because of its high accuracy and ease of training. This technique is
achieved first by designing a 330 kV, 500 km transmission line using Matlab/Simulink to
extract the fault current and voltage to identify the fault phase for each faulty voltage and
current waveform. A 93,340 fault dataset was used to train the algorithm, and the result
provided a better accuracy of 99.54%. The classifier algorithms are capable of training
multi-dataset categorical data such as the SVM, ANN and XBoost classifiers.

This paper addressed the classification of a multi-dataset of faulty voltage and current
in transmission lines focusing on speed, accuracy and precision for fast detection and
isolation of faults. The results also served as a guide on transmission line fault protection
management systems and design. The CatBoost classifier was justified for the transmission
line fault classification model after being compared to other methods in other literature.
This paper can be improved by varying the fault resistance to different values from 0.01 to
50 Ω and beyond. The model can also be optimised for real time data mining and automatic
training for an effective fault protection mechanism.
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