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Abstract: Direct computation of the discrete Fourier transform (DFT) and its FFT computational
algorithms requires multiplication (and addition) of complex numbers. Complex number multiplica-
tion requires four real-valued multiplications and two real-valued additions, or three real-valued
multiplications and five real-valued additions, as well as the requisite added memory for temporary
storage. In this paper, we present a method for computing a DFT via a natively real-valued algorithm
that is computationally equivalent to a N = 2k-length DFT (where k is a positive integer), and is
substantially more efficient for any other length, N. Our method uses the eigenstructure of the DFT,
and the fact that sparse, real-valued, eigenvectors can be found and used to advantage. Computation
using our method uses only vector dot products and vector-scalar products.

Keywords: discrete fourier transform; DFT eigenvectors; harmonic analysis

1. Introduction

The DFT is a function that decomposes a discrete signal into its constituent frequencies.
Computing the DFT is often an integral part of DSP systems, and so its efficient computation
is very important. As is well known, the founding of DSP was significantly impacted by
the development of the Cooley–Tukey FFT (Fast DFT) algorithm [1]. If x is a discrete signal
of length N, the DFT of x is given by

X(k) =
1√
N

N−1

∑
n=0

x(n)e−j 2π
N nk, (1)

where k = 0, 1, . . . , N − 1. If F is the Fourier transform matrix whose elements are the
complex exponentials given in (1) taken in the proper order, the DFT X of x can be written

X = Fx (2)

The matrix F is unitary, i.e., the scaling factor 1√
N

from (1) is included in F. This is in

contrast to the conventional DSP definition of F, where the 1√
N

scaling factor is pushed into

the inverse transform as the scale 1
N . Here, we assume that this scaling factor is included

in F.
As is well known, multiplication of two complex numbers in C1 requires either

four real multiplications and two real additions or three real multiplications and five real
additions. Using traditional approaches of calculating the DFT using the various FFT
algorithms does not completely eliminate the need for complex multiplications. Although
complex multiplications can be easily implemented in sophisticated software like MATLAB
or high level programming languages like Python, it is a harder task in hardware or low
cost/low performance digital signal processors. For example, complex multiplication in
VHDL or C programming language needs additional libraries, and the code or hardware
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produced is irregular (not vectorizable). Thus, we were motivated to look into a DFT
computation method that eliminates the need for complex multiplications and additions.

The aforementioned Cooley–Tukey FFT algorithm is the most common method used
for computing the DFT [1], though in a modified form to exploit the advantages of the
N = 22 = 4 butterfly using the split-radix method [2]. This algorithm uses the divide
and conquer approach that decomposes the DFT of a composite length N into smaller
DFTs to reduce the resulting computational complexity. As mentioned before, using the
Cooley–Tukey FFT algorithm requires the multiplication by complex twiddle factors (these
are constants of magnitude 1 in C) which stitch the smaller length DFTs together when
recombining to produce the larger N length DFT. Even considering the prime factor FFT
algorithm [3], the smallest un-factorizable DFT will require complex arithmetic.

Our proposed method uses the real-valued eigenvectors of the DFT for computation
and a combiner matrix that essentially replaces the twiddle factor multiplications. Our
method uses only vector dot products and vector-scalar products. Therefore, our method
has the potential to perform well on hardware with dedicated multiply-and-accumulate
(MAC) units or on hardware designed to operate on one-dimensional arrays like vector
processors. The eigenvectors obtained from the ortho-normalization of DFT projection
matrices are slightly sparse, which further improves computational efficiency. However,
there are a few disadvantages with our method. If the size of the DFT is a power of 2,
the Cooley–Tukey FFT outperforms our method. Furthermore, the CORDIC algorithm
[4] will perform better on hardware that can efficiently do bit shifts. Another limitation,
though relatively unimportant in today’s environment of inexpensive memory, is the need
for extra memory to store the pre-computed eigenvectors. Our work done in [5] showed
the relationship between the eigenstructure of the discrete Hirschman transform and the
eigenstructure of the DFT. That work inspired us to develop the method presented here.
By extension, our method can also be used to calculate the discrete Hirschman transform
first introduced in [6]. This method can also be extended to other ortho-normal transforms
which have real eigenvectors.

Our analysis has found that the proposed method requires fewer multiplications than
when using a single stage Cooley–Tukey algorithm. In fact, if the proposed method is
combined with recursive algorithms like the prime factor FFT, the number of multiplications
are comparable to the Cooley–Tukey FFT of size 2k; k ∈ Z+. Moreover, this method is not
restricted by the size of the DFT; unlike the Cooley–Tukey FFT which requires the input
length N to be an integer power of 2, or the prime factor FFT which requires N to be a
product of coprime numbers.

The methodology is derived in Section 2, which shows the relationship between an
input (data) vector, the DFT eigenvectors, and the Fourier transform output. Section 3 deals
with the computation of the inverse DFT. The DFT eigenvectors with some favourable
properties were derived by Matveev [7] and Section 4 provides a brief description of that
technique to find the eigenvectors. In Section 5, a 5-point DFT example is shown using
our method developed in this work. Accuracy of the proposed method is discussed in
Section 6. In Section 7, the number of real-valued operations required for calculating the
DFT using our algorithm is derived.

2. Methodology

A Fourier transform matrix F is diagonalizable and can be decomposed into its Jordan
form F = VΛV−1 where V is a matrix whose columns are the eigenvectors of F and Λ is a
purely diagonal matrix containing the eigenvalues of F. Since F is unitary, the eigenvalues
in Λ have magnitude one and the eigenvector matrix V is also unitary. What may be
less well-known is that it is possible find a real and orthonormal set of eigenvectors for
F [7]. We use VH as the complex conjugate transpose of V and VT as the transpose of V.
However, since V is real, VH is the transpose of V, i.e., VH = VT. Of course, since V is
unitary, V−1 = VH = VT. So, we have the more useful Jordan form

F = VΛVT (3)
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Definition 1. The function diag(·) converts a vector to a diagonal matrix.

Let ei be a Euclidean basis vector where the ith element is 1 and all other elements
are zero. Thus, e0 =

[
1 0 · · · 0

]T, e1 =
[

0 1 0 · · · 0
]T and so on. If a =[

a0 a1 · · · aN−1
]T, diag(a) is defined as

A = diag(a)

=
N−1

∑
i=0

aieieT
i

=


a0 0 · · · 0

0 a1 0
...

... 0
. . . 0

0 · · · 0 aN−1


Theorem 1. If a and b are vectors, and A = diag(a) and B = diag(b), then Ab = Ba.

Proof. Let a =
[

a0 a1 · · · aN−1
]T and b =

[
b0 b1 · · · bN−1

]T.

Ab = diag(a) · b

=
N−1

∑
i=0

aieieT
i b

=
N−1

∑
i=0

aieibi =
N−1

∑
i=0

bieiai

=
N−1

∑
i=0

bieieT
i a

= diag(b) · a
= Ba

This completes the proof.

If X is the Fourier transform of the vector x and F is the Fourier transform matrix,

X = Fx

= VΛVTx

= VΛx̃

= VX̃λ (4)

where x̃ = VTx, X̃ = diag(x̃) and Λ = diag(λ) such that λ is a column vector containing
the eigenvalues of F. Note that Λx̃ = X̃λ from Theorem 1.

In (4), λ adds the columns of the matrix product VX̃ in a particular manner defined
by the eigenvalues of F. It is well known that there are only four unique eigenvalues for
the Fourier transform: ±1 and ±j, where j =

√
−1 is the imaginary unit [8,9]. Denote the

algebraic multiplicity of the DFT eigenvalues as m1, m−1, mj and m−j for the eigenvalues
1, −1, j and −j, respectively. So, for an N-point DFT, we have m1 + m−1 + mj + m−j = N.
From [7], these multiplicities are

m1 =

⌊
N
4

⌋
+ 1 mj =

⌊
N − 1

4

⌋
m−1 =

⌊
N + 2

4

⌋
m−j =

⌊
N + 1

4

⌋ (5)
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Without loss of generality, let λ in (4) be constructed such that the unique eigenvalues
are grouped together as shown in (6). This grouping simplifies our derivation. Note that
the eigenvectors in the columns of V will correspond with their respective eigenvalues in
the vector λ.

λ =
[

1 · · · 1 −1 · · · −1 j · · · j −j · · · −j
]T (6)

Let u be an N × 2 matrix as defined in (7) where the first row contains m1 1’s and m−1
−1’s and the second row contains mj 1’s and m−j −1’s.

u =

[
1 · · · 1 −1 · · · −1 0 · · · 0
0 · · · 0 1 · · · 1 −1 · · · −1

]T

(7)

From (6) and (7) it is clear that

λ = u
[

1
j

]
= uz

where z =
[

1 j
]T. Now (4) can be rewritten

X = VX̃uz (8)

2.1. Formulations of Equation (8)

If the input vector x is complex such that x ∈ CN , we can split the real and imaginary
components by x = xr + jxi where xr = real(x) and xi = imag(x). Since X̃ = diag

(
VTx

)
,

we can rewrite (8) by splitting the real and imaginary parts such that X̃r = diag
(
VTxr

)
and

X̃i = diag
(
VTxi

)
. It is clear that X̃ = X̃r + jX̃i. Now (8) becomes

X = VX̃ruz + jVX̃iuz (9)

= VX̃ruz + VX̃iuzi (10)

where zi = jz =
[

j −1
]T. Alternatively, (9) can be implemented by modifying u and

keeping z unchanged for the imaginary part. In this case (9) changes to

X = VX̃ruz + VX̃iuiz (11)

where ui is given by (12). The first column of ui contains mj -1’s and m−j 1’s and the second
column contains m1 1’s and m−1 -1’s. Thus, ui can be formed by swapping the columns of
u followed by negating the first column.

ui =

[
0 · · · 0 −1 · · · −1 1 · · · 1
1 · · · 1 −1 · · · −1 0 · · · 0

]T

(12)

In (10) and (11) both terms on the right-hand-side contain real and imaginary parts.
This can be shown by factoring (10):

X = V
(
X̃ru + X̃iui

)
z

= VWz

where the N × 2 matrix W = X̃ru + X̃iui. The first column of W contributes to the real
part of the DFT and its second column contributes to the imaginary part of DFT. Therefore,
(8) and (9) can be manipulated such that the components of the input that lead to the real
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and imaginary parts of the DFT are grouped together before computing W. Let x̃r = VTxr,
x̃i = VTxi and m′ = m1 + m−1. Create vectors y1 and y2 such that

y1 =
[
x̃r(0), . . . , x̃r

(
m′ − 1

)
, x̃i
(
m′
)
, . . . , x̃i(N − 1)

]T
y2 =

[
x̃i(0), . . . , x̃i

(
m′ − 1

)
, x̃r
(
m′
)
, . . . , x̃r(N − 1)

]T
where the notation x̃s(k) represents the kth element of the vector x̃s and s = r, i. Let
Y′ =

[
Y1 Y2

]
where Y1 = diag(y1) and Y2 = diag(y2). It is clear that Y′ is a N × 2N

matrix. Define a 2N × 2 matrix u′ as given in (13). The first column of u′ is comprised of
m1 1’s,

(
m−1 + mj

)
-1’s followed by m−j 1’s; and the second column consists of m1 1’s, m−1

-1’s, mj 1’s and m−j -1’s.

u′ =
[

1 . . . 1 −1 . . . −1 1 . . . 1 0 . . . 0
0 . . . 0 1 . . . 1 −1 . . . −1 1 . . . 1 −1 . . . −1

]T

(13)

With this information, the third formulation of (9) is obtained:

X = VY′u′z (14)

Another method to implement (9) is by rearranging the VT matrix. Define V′ as

V′ =
[

v0 . . . vm′−1 0 . . . 0
0 . . . 0 vm′ . . . vN−1

]T

where the column vector vk is the kth eigenvector of F. V′ is a N × 2N matrix. Let
x1 = [xr ; xi] and x2 = [xi ; xr], where the semicolon represents the start of a new row. Thus,
x1 and x2 are 2N× 1 vectors. Let X̃1 = diag(V′x1), X̃2 = diag(V′x2) and X′ =

[
X̃1 X̃2

]
,

where X′ has size N × 2N. Now (9) can be rephrased as

X = VX′u′z (15)

Here we have presented four different formulations of (9) via (10), (11), (14) and (15).
Each of these formulations affects a different factor in (8). In these equations the only
complex component is contained in either z or zi. The vector z or zi is not necessary for the
computational algorithm, only for theoretical completeness. Thus, all the multiplications
and additions are real-valued. Therefore, we say that this method of computing the DFT is
natively-real valued because it can be computed using operations whose operands are all
real numbers (in R).

2.2. Real Inputs

If x is real such that x ∈ RN , the four different forms given in (10), (11), (14) and (15)
simplify to

X = VX̃ruz

which is exactly (8) since X̃ = X̃r. This is very straightforward in (10) and (11). In both
these cases the second term is 0 since xi = 0. For the other terms, the matrix product Y′u′

or X′u′ simplifies to X̃ru. Since x is real, the product VX̃u in (8) results in an N × 2 matrix
whose first column contains the real component of the DFT X, and the second column is
the imaginary component of X. As mentioned before, the vector z is not necessary for the
computational algorithm; z just clarifies that the first column is real and the second column
is imaginary.
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2.3. A Filter Bank Model/Interpretation

Since X̃ = diag
(
VTx

)
, the diagonal entries of X̃ are formed by the inner product of

the DFT eigenvectors and the input x. Let V =
[

v0 v1 · · · vN−1
]

where the column
vector vk is a DFT eigenvector. Thus

X̃ =


〈v0, x〉 0 · · · 0

0 〈v1, x〉 0
...

... 0
. . . 0

0 · · · 0 〈vN−1, x〉

 (16)

where the notation 〈a, b〉 represents the inner (dot) product of two vectors a and b. We
use this to develop a filter bank description for the linear algebra in the above discussion.
Specifically, we define the time reversed vector v0(−n) of v0. Now, filter the sequence x
through the FIR filter v0(−n) to produce the N + N − 1 = 2N − 1 length output sequence
x f ilt

0 . Down-sample this output x f ilt
0 by N (i.e., selecting the middle term) yields the dot

product 〈v0, x〉, i.e., 〈v0, x〉 = x f ilt
0 (N − 1), where x f ilt

0 (N − 1) is the Nth element of x f ilt
0 . A

similar procedure is applied to the other eigenvectors.
Now consider the matrix product VX̃. Each diagonal entry of X̃ scales the corre-

sponding column of V, i.e., each eigenvector is scaled by the corresponding filter output.
These scaled eigenvectors are then added or subtracted in the specific manner defined
by u to give the real and imaginary components of the DFT result. This is why we call u
the “combiner”. The combiner adds and subtracts the real parts (from the ±1 elements
of u) and the imaginary components (from the ±j of u). The vector z is only provided for
theoretical completeness so that we can combine the real and imaginary components for
the DFT X. These steps are summarized in Figure 1.

Figure 1. A block diagram showing the signal flow for our proposed DFT algorithm. Here X̃i is
the (i + 1)th diagonal entry of X̃. The scaler block multiplies the eigenvectors by the filter output
(producing VX̃) while the combiner block multiplies the scaled result with u(producing the real and
imaginary components of X).

3. Inverse DFT

The IDFT (inverse DFT) computation follows a similar development. The IDFT has
the same unique eigenvalues as the DFT, only they differ in the eigenvalue multiplicity for
eigenvalues j and −j. Due to the conjugation difference in the DFT and the IDFT, the multi-
plicities of these eigenvalues are exchanged. Consequently, the eigenvalue multiplicities of
the IDFT are

m1 =

⌊
N
4

⌋
+ 1 mj =

⌊
N + 1

4

⌋
m−1 =

⌊
N + 2

4

⌋
m−j =

⌊
N − 1

4

⌋ (17)

Similarly, the eigenvectors are unchanged from the DFT for the eigenvalues 1 and −1,
but they are exchanged for eigenvalues j and −j. Thus, the eigenvector matrix for the IDFT
VIDFT can be obtained directly from the DFT eigenvector matrix V.
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Using VIDFT, the steps described in Section 2 can be used to compute the IDFT. The
block diagram of the IDFT follows directly from these definitions used to replace the DFT
computations used to derive Figure 1. As in the case for the DFT, symmetries found in the
input sequence can be used to improve the computational efficiency. Moreover, if the input
or the output sequence is known to be real valued, the computational efficiency can be
improved further. If the input to the IDFT is real, the procedure is similar to the DFT with
real inputs.

However, if the output of the IDFT is known to be real, the input will be complex and
will have some symmetries which can be exploited to improve computational performance.
Let x = IDFT(X), where X = Xr + Xi such that Xr = real(X) and Xi = imag(X). If x
is real, Xr will be even symmetric and Xi will be odd symmetric (ch. 5 [10]). It is also
known that the DFT eigenvectors are either even symmetric (for eigenvalues ±1) or odd
symmetric (for eigenvalues ±j) [8]. These eigenvector symmetries are further explored
in Section 7. Let vev represent an even symmetric eigenvector for eigenvalues ±1 and vod
denote an odd symmetric eigenvector for eigenvalues ±j. It is well understood that the
product (Hadamard product) of two even sequences or two odd sequences will be even,
and the product of an even and an odd sequence will be odd. We also know that the sum of
the elements of an even sequence will be twice the sum of the first half of the sequence and
the sum of the elements of an odd sequence will be zero. Combining this information for
the calculation of the inner products for X̃r and X̃i in (10), we get 〈Xr, vod〉 = 〈Xi, vev〉 = 0
and 〈Xr, vev〉, 〈Xi, vod〉 require approximately N/2 multiplications each. Therefore, the
last N −m′ diagonal entries of X̃r and the first m′ diagonal elements of X̃i will be 0 where
m′ = m1 + m−1. Thus, both the terms of (10) will be purely real. Similarly, for (14), Y′ = Y
since Y2 = 0 again leading to a reduction in the number of operations. Comparable patterns
also exist for (11) and (15).

4. Computing Orthonormal Eigenvectors of the DFT

Several methods exist to find the real and orthonormal eigenvectors of the DFT.
The method described by McClellan and Parks [8] only yields real eigenvectors. These
eigenvectors can be orthonormalized using the Gram–Schmidt process. Matveev [7]
uses DFT projection matrices and their Grammian determinants to find the orthonormal
eigenvectors directly. Alternatively, the DFT projection matrices [7,9] can be used in
conjunction with the Gram–Schmidt process to obtain orthonormal eigenvectors. Our
method performs equally well regardless of the method used to find the orthonormal
real-valued eigenvectors.

4.1. Matveev Method

The first step in the Matveev method is to compute the four projection matrices of the
DFT corresponding to each unique eigenvalue. If Pe is a projection matrix corresponding
to an eigenvalue e, F is the Fourier transform matrix and I is the identity matrix,

P1 =
1
4

(
F3 + F2 + F + I

)
P−1 =

1
4

(
−F3 + F2 − F + I

)
Pj =

1
4

(
jF3 − F2 − jF + I

)
P−j =

1
4

(
−jF3 − F2 + jF + I

)
(18)

The rank of each of these matrices is tied to their corresponding eigenvalue multiplicity.
Thus, the matrix Pe will be rank me. Therefore, to compute the orthogonal eigenvectors
only the first m1 and m−1 columns of P1 and P−1 are considered; the first column of Pj and
P−j are ignored and only the next mj and m−j columns are considered. The first columns
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of Pj and P−j are ignored because they are zeros. The kept columns form independent
eigenvectors of F corresponding to each respective eigenvalue.

Let the elements of the matrices in (18) be represented as Pe(m, n). For example, if
the indexing starts from 0, the element in the second row and first column of P−1 will be
P−1(1, 0). Therefore, the last element will be P−1(N − 1, N − 1). Let the columns of these
matrices be represented as pe,k, where pe,k is the kth column vector of Pe. For example, the
third column vector of Pj will be pj,2, again assuming the indexing starts from 0. Note that
these projection matrices are symmetric. Therefore, the kth column will also be the kth row.

The orthogonal eigenvectors are given by the determinants of the following matrices.
For eigenvalues e = {1,−1},

βe,0 = pe,0

βe,1 =

∣∣∣∣ Pe(0, 0) pe,0
Pe(1, 0) pe,1

∣∣∣∣
βe,k =

∣∣∣∣∣∣∣∣∣
Pe(0, 0) Pe(0, 1) · · · Pe(0, k− 1) pe,0
Pe(1, 0) Pe(1, 1) Pe(1, k− 1) pe,1

...
. . .

...
...

Pe(k, 0) Pe(k, 1) · · · Pe(k, k− 1) pe,k

∣∣∣∣∣∣∣∣∣
where βe,k form a set of orthogonal eigenvectors corresponding to eigenvalues e = {1,−1}
and 1 ≤ k ≤ me − 1. βe,1 gives the eigenvector when k = 1. Because these matrices contain
scalars Pe(m, n) and vectors pe,k, the determinant can be computed by expanding along the
last column and multiplying these vectors by their corresponding cofactors. Similarly, for
eigenvalues e = {j,−j},

βe,0 = pe,1

βe,1 =

∣∣∣∣ Pe(1, 1) pe,1
Pe(2, 1) pe,2

∣∣∣∣

βe,k =

∣∣∣∣∣∣∣∣∣
Pe(1, 1) Pe(1, 2) · · · Pe(1, k) pe,1
Pe(2, 1) Pe(2, 2) Pe(2, k) pe,2

...
. . .

...
...

Pe(k + 1, 0) Pe(k + 1, 2) · · · Pe(k + 1, k) pe,k+1

∣∣∣∣∣∣∣∣∣
where βe,k is the general equation. Here also 1 ≤ k ≤ me − 1. Note that if e = {j,−j}, for
the projection matrix Pe the elements of the first row Pe(0, k), first column Pe(k, 0) and the
first column vector pe,0 are not considered since they are zeros. The determinant for these
matrices can be computed using the method explained in the previous paragraph for the
real eigenvalues.

In both cases, the resulting vectors βe,k are orthogonal but not unit length. After
normalization, the columns of the eigenvector matrix matrix V are

ve,k =
βe,k∥∥βe,k
∥∥

Although (18) contains powers of the Fourier transform matrix, it is not necessary
to numerically calculate those powers. Using the properties of the DFT, F3 = FH, where
FH represents the complex conjugate transpose of F. F2 will be a real matrix such that
F2 =

[
I0 IN−1 IN−2 · · · I2 I1

]
, where Ik is the kth column of the identity matrix I

assuming the indexing starts from 0.

4.2. Gram–Schmidt Orthonormalization

Numerically similar orthonormal eigenvectors can be found from (18) via the Gram–
Schmidt orthonormalization process. As discussed before, the matrices Pe are not full
rank. Therefore, we only consider the first m1 and m−1 columns of P1 and P−1; ignore the
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first column of Pj and P−j and consider the next mj and m−j columns. In our observation,
using Gram–Schmidt orthonormalization on the DFT projection matrices gives the fastest
and most numerically accurate results when run on MATLAB©. Accuracy tests and their
results are discussed in Section 6. We observed that the eigenvectors obtained using the
Matveev method is somewhat sparse. That same sparse structure is retained by the Gram–
Schmidt orthonormalization of the DFT projection matrices as well as the Gram–Schmidt
orthonormalization of McClellan and Parks eigenvectors.

4.3. Structure of Eigenvectors

The eigenvectors obtained using McClellan and Parks method are collinear to the
eigenvectors from the DFT projection matrices and they differ only in magnitude. As
discussed before, orthonormalizing these eigenvectors make them slightly sparse. These
orthonormal eigenvectors have the following structure:

V±1 =



a0 0 0 0
a1 b1 0 0 · · ·
a1 b2 c2 0
a1 b3 c3 d4
...

...
...

...
a1 b3 c3 d4
a1 b2 c2 0 · · ·
a1 b1 0 0


V±j =



0 0 0
b1 0 0 · · ·
b2 c2 0
b3 c3 d4
...

...
...

−b3 −c3 −d4
−b2 −c2 0 · · ·
−b1 0 0


where the matrix V±1 represents the set of orthonormal eigenvectors corresponding to
eigenvalues ±1 and V±j represent the orthonormal eigenvectors corresponding to eigen-
values ±j. The columns of these matrices represent the eigenvectors. The vectors in V±1
is even symmetric and the vectors in V±j is odd symmetric. Additionally, if the size of

DFT N is an even value, the
(

N
2 + 1

)
th row of V±j will be 0 to retain the odd symmetry.

The sparsity of the eigenvectors are shown in Figure 2. From this plot, it is clear that the
orthonormal DFT eigenvectors are somewhat sparse. This sparse nature can be exploited
to reduce the number of operations required while computing the DFT as discussed in
Section 7.

Figure 2. Plot showing the percentage of elements in the orthonormal eigenvectors that are zero
against the length of DFT. Note the slight upward trend of the plot. Eigenvectors of larger DFTs are
sparser than eigenvectors of smaller ones.
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The orthonormal eigenvectors of an 8-point DFT are given below to highlight the
sparsity. The eigenvectors are the columns of the matrix V8. The eigenvalue multiplicities
of an 8-point DFT are 3, 2, 1, 2 for eigenvalues 1, −1, j, −j, respectively. Therefore, the first
three columns of V8 are the eigenvectors corresponding to the eigenvalue 1, the next two
columns are for eigenvalue −1, the column after that is for eigenvalue j and the last two
columns correspond to eigenvalue −j.

V8 =



0.823 0 0 0.569 0 0 0 0
0.215 0.573 0 −0.311 0.168 0.354 0.612 0
0.215 −0.081 0.143 −0.311 −0.575 −0.500 0.289 0.408
0.215 −0.299 −0.490 −0.311 0.168 −0.354 0.204 −0.577
0.215 −0.389 0.692 −0.311 0.476 0 0 0
0.215 −0.3 −0.490 −0.311 0.168 0.354 −0.204 0.577
0.215 −0.081 0.143 −0.311 −0.575 0.500 −0.289 −0.408
0.215 0.573 0 −0.311 0.168 −0.354 −0.612 0


5. An Example with 5-Point DFT
5.1. Forward DFT

The eigenvalue multiplicity for a 5-point DFT is m = {2, 1, 1, 1} for the unique eigen-
values {1,−1, j,−j}, or we can just say that the eigenvalues are {1, 1,−1, j,−j}. The
orthonormal eigenvectors from the Matveev method as described in Section 4 computed in
MATLAB© to double precision are

V =


0.851 0 0.526 0 0
0.263 0.5 −0.425 0.193 0.68
0.263 −0.5 −0.425 −0.68 0.193
0.263 −0.5 −0.425 0.68 −0.193
0.263 0.5 −0.425 −0.193 −0.68

 (19)

Now, suppose that the input signal is x =
[
−2 0 3 1 1

]T. Then

x̃ = VTx =


−0.387
−1.5
−3.178
−1.554
−0.294


If X̃ = diag(x̃) and X̂ = VX̃, then

X̂ =


−0.329 0 −1.671 0 0
−0.102 −0.75 1.352 −0.3 −0.2
−0.102 0.75 1.352 1.057 −0.057
−0.102 0.75 1.352 −1.057 0.057
−0.102 −0.75 1.352 0.3 0.2


=
[

x̂0 x̂1 x̂2 x̂3 x̂4
]

From the eigenvalue multiplicity we know that the DFT X of x is

X = x̂0 + x̂1 − x̂2 + j(x̂3 − x̂4)
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⇒ X =


1.342

−2.203− 0.1j
−0.703 + 1.113j
−0.703− 1.113j
−2.203 + 0.1j

 (20)

5.2. Inverse DFT

As mentioned in Section 3, the eigenvectors for the inverse operation can be con-
structed from (19) by interchanging the eigenvectors corresponding to the eigenvalues j
and −j. Thus, the eigenvector matrix for the 5-point IDFT is

VIDFT =


0.851 0 0.526 0 0
0.263 0.5 −0.425 0.68 0.193
0.263 −0.5 −0.425 0.193 −0.68
0.263 −0.5 −0.425 −0.193 0.68
0.263 0.5 −0.425 −0.68 −0.193


If y is taken from (20), ỹ = VIDFTy.

ỹ =


−0.387
−1.5
3.178
0.294j
−1.554j


If Ŷ = VIDFT · diag(ỹ),

Ŷ =


−0.329 0 1.671 0 0
−0.102 −0.75 −1.352 0.12j −0.3j
−0.102 0.75 −1.352 0.057j 1.057j
−0.102 0.75 −1.352 −0.057j −1.057j
−0.102 −0.75 −1.352 −0.12j 0.3j


The eigenvalue multiplicity for the 5-point IDFT is {2, 1, 1, 1} for eigenvalues {1,−1, j,

−j}. Summing the columns of Ŷ using the information from the eigenvalue multiplicity,
we get

x = ŷ0 + ŷ1 − ŷ2 + j(ŷ3 − ŷ4)

where ŷk is the kth column of Ŷ. Thus,

x =


−2
0
3
1
1


This is the signal that we started with while computing the forward DFT.

6. Accuracy and Performance of DFT Eigenvector Computation

The two different methods used to calculate the orthonormal eigenvectors yield
different computational accuracies. These differences arise due to the limitations imposed
by the finite-precision data types that are used in real-world machines, and the varying
methods used to produce the sparse eigenvectors. We compare the DFTs created using the
Matveev method and the Gram–Schmidt orthonormalization of DFT projection matrices.
All tests are run using the double-precision floating point data type on MATLAB version
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2020b on a machine with Intel(R) Core(TM) i7-6700HQ @ 2.60GHz 4 core CPU, 8 GB RAM
and Windows 10 operating system.

Figure 3 indicates the computational error due to imprecise DFT eigenvectors. Suppose
x is a vector in Rn and y = IDFT(DFT(x)). The figure shows the mean squared error (MSE)
of x− y in decibels. The DFT and IDFT is calculated using Matveev eigenvectors, Gram–
Schmidt orthonormalization of DFT projection matrices, and using the MATLAB fft() and
ifft() functions. The MSE is calculated via (21), (22) and (23) where n is the length of the
vectors x and y and the operator ‖x‖ represents the 2-norm of x. The error shown in
Figure 3 is caused by the limitation imposed by the machine that was used to compute the
eigenvectors. More powerful machines can be used to pre-compute the eigenvectors to a
high enough precision such that this error can be eliminated.

MSE = 10 log10(µ) (21)

where

µ =
1

1000

1000

∑
i=1

σi (22)

and

σ =
‖x− y‖2

n
(23)

Here σi represents ith sample out of 1000 samples as explained below.
For each n-point DFT, 1000 vectors are randomly generated such that each element of

a vector x is an integer that lies between −128 and 127. These limits are chosen because
we can represent the pixels of an 8-bit image after centering the pixel values to 0. For each
vector x, the corresponding y and σ are computed. Equation (22) gives the average σ value
of the 1000 samples and (21) gives the average MSE in dB. The plot in Figure 3 shows the
error after computing the forward and inverse DFT. Therefore, the error while finding the
DFT in one direction will be slightly lower than what is shown and will depend on the
size of DFT. Clearly, the computational performance of the eigenvector methods suffers
a bit, especially as the length of the DFT increases. The differences are not significant for
lengths up to 20, and the method’s complexity analysis in Section 7 will show why these
approaches are attractive.

The time required to calculate the eigenvectors from the DFT projection matrices and
orthonormalizing them with Matveev method and Gram–Schmidt process is summarized
in Table 1. In this table, the time is calculated for 10,000 executions of each of the methods
and is shown in units of seconds. This is consistent with our rudimentary analysis of the
computational complexity of each of the methods: O

(
n3) for Gram–Schmidt and O

(
n5)

for Matveev method (assuming the required matrix determinant is computed in O
(
n3)

complexity). This discrepancy arises from the need for calculating the determinant of the β
matrix in the Matveev method, whereas the vector dot product can be calculated in O(n)
time for the Gram–Schmidt process.

Table 1. Computation time in seconds for 10,000 runs.

Length of DFT: 10 20 30 40

Matveev 0.919 3.354 6.460 10.452

Gram–Schmidt 0.684 1.303 2.269 3.694
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Figure 3. Plot showing the mean square error while computing the IDFT(DFT(x)) using the proposed
method. The eigenvectors were calculated using the Matveev method and the Gram–Schmidt method.
Since the plot shows the error after the forward and inverse computation, the error in just one of
the directions will be slightly less than what is shown here. Note that this error is caused due to the
limitations on the machine that was used to calculate the eigenvectors. In practice, the eigenvectors
can be pre-computed with high enough precision to eliminate the error shown in this plot.

7. Number of Operations
7.1. Using Generalized Eigenvectors

At first glance while observing (8), computing X̃ seems to need N multiplications and
N − 1 additions assuming that x ∈ RN . However, as briefly discussed in Section 3, it is
known that all the eigenvectors of the DFT are either even or odd symmetric sequences [8].
Eigenvectors corresponding to eigenvalues 1 or −1 will be even symmetric, and eigenvec-
tors corresponding to eigenvalues j or −j will be odd symmetric. Using this property, if
an eigenvector vk is even symmetric, 〈vk, x〉 in (16) can be computed using bN/2c+ 1 real
multiplications and N − 1 real additions. If vk is an odd symmetric eigenvector, the inner
product requires bN/2c real multiplications and N − 2 real additions because the first
element of vk will be 0 in this case. For example, consider an even eigenvector of a 5-point
DFT vev =

[
a0 a1 a2 a2 a1

]T. For an input vector x =
[

x0 x1 x2 x3 x4
]T,

〈vev, x〉 = a0x0 + a1x1 + a2x2 + a2x3 + a1x4

= a0x0 + a1(x1 + x4) + a2(x2 + x3) (24)

The first line requires five multiplications, and the second line requires three multipli-
cations. The number of additions in both cases is 5. Now consider an odd eigenvector of a
5-point DFT vod =

[
0 b1 b2 −b2 −b1

]T.

〈vod, x〉 = 0 + b1x1 + b2x2 − b2x3 − b1x4

= b1(x1 − x4) + b2(x2 − x3) (25)

Here using the symmetry, there are two multiplications and three additions. Similar
relationships can be found for even length sequences.

We know that the number of even or odd eigenvectors depends on the eigenvalue
multiplicity (which in turn depends on N). The number of even eigenvectors is m1 + m−1
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and the number of odd eigenvectors is mj + m−j. Thus, for computing X̃ in (16) the total
number of multiplications ΞX̃(N) and number of additions ΦX̃(N) required are

ΞX̃(N) =

(⌊
N
2

⌋
+ 1
)
(m1 + m−1) +

⌊
N
2

⌋(
mj + m−j

)
ΦX̃(N) = (N − 1)(m1 + m−1) + (N − 2)

(
mj + m−j

)
For large values of N the eigenvalue multiplicities can be approximated to be equal

to each other (which in turn approximately equals N/4). Thus, m1 ≈ m−1 ≈ mj ≈ m−j ≈
N/4. Therefore for large N,

ΞX̃(N) ≈ N2

2

ΦX̃(N) ≈ N
2
(2N − 3) ≈ N2

While multiplying the eigenvector matrix with X̃ in (4) and (8) the eigenvector sym-
metry can be utilized again. Let W = VX̃. Let the number of multiplications required for
computing VX̃ be ΞW(N) and the number of additions be ΦW(N). So, ΞW(N) = ΞX̃(N)
due to the symmetry of the eigenvectors in V. As noted before, the operation VX̃ just
changes the magnitude of each eigenvector. Therefore, the columns of W retain the even or
odd symmetries of the eigenvectors. From (8) we know that the columns of W are added in
a specific pattern to determine the DFT. Thus, the result of this sum will also be even or odd
symmetric. Therefore, while adding the columns of W, only the top half of the elements
need to be computed (and the “middle” value). Thus, the number of additions required is

ΦW(N) =

(⌊
N
2

⌋
+ 1
)
(m1 + m−1) +

⌊
N
2

⌋(
mj + m−j

)
When N is large

ΦW(N) ≈ N2

2
The total number of multiplications and additions required is

Ξ(N) = ΞX̃(N) + ΞW(N)

= 2
[(⌊

N
2

⌋
+ 1
)
(m1 + m−1) +

⌊
N
2

⌋(
mj + m−j

)]
(26)

Φ(N) = ΦX̃(N) + ΦW(N)

=

(
N +

⌊
N
2

⌋)
(m1 + m−1)

+

(
N +

⌊
N
2

⌋
− 2
)(

mj + m−j
)

(27)

For large values of N, these are approximated as

Ξ(N) ≈ N2 (28)

Φ(N) ≈ 3
2

N2 (29)
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7.2. Using the Sparsity of the Eigenvectors

Further gains can be obtained if the sparse eigenvectors obtained from the Matveev
method (Section 4) are used to find the orthonormal DFT eigenvectors. The Matveev DFT
eigenvectors contain a few patterns which can be exploited as explained below.

7.2.1. Zeros in Many Eigenvectors

Elements in the starting and ending indices of many of these eigenvectors are zeros.
More of these elements are zeros for larger values of N. For example, if the first even eigen-
vector calculated using the Matveev method is vev =

[
a0 a1 a2 a3 a3 a2 a1

]T,
the second eigenvector will have a0 = 0, the third will have a0 = a1 = 0 and so on. A
similar pattern also exists for the odd eigenvectors.

7.2.2. Repeating Elements

The first eigenvectors corresponding to the eigenvalues ±1 are made of only two
scalar elements each, i.e., they are of the form v =

[
a0 a1 a1 a1 a1

]T.

7.2.3. Zeros in Eigenvectors of Even Length

The middle element of the eigenvectors corresponding to the eigenvalues ±j are zero,
if the eigenvectors are of even length. Thus, if N is the length of the eigenvector, then the
(N/2 + 1)th element will be 0 if N is even. For example, v =

[
0 a1 a2 0 −a2 −a1

]
is a possible configuration of such an eigenvector. Note that in this example, the first
element is 0 because the vector is odd symmetric.

Using this new information the number of multiplications ΞX̃(N) and additions
ΦX̃(N) required for calculating X̃ is

ΞX̃(N) = (m1 − 1)
(⌊

N
2

⌋
− m1 − 2

2

)
+ 2

+ (m−1 − 1)
(⌊

N
2

⌋
− m−1 − 2

2

)
+ 2

+ mj

(⌊
N − 1

2

⌋
−

mj − 1
2

)
+ m−j

(⌊
N − 1

2

⌋
−

m−j − 1
2

)
(30)

ΦX̃(N) = m1N −m1(m1 − 1)− 1

+ m−1N −m−1(m−1 − 1)− 1

+ 2mj

⌊
N − 1

2

⌋
−m2

j

+ 2m−j

⌊
N − 1

2

⌋
−m2

−j (31)

For the matrix multiplication W = VX̃, the number of scalar multiplications required
is ΞW(N) = ΞX̃(N). The number of scalar additions required for adding the columns
vectors of W is

ΦW(N) = m2
−1 + (m1 + m−1 − 1)

(⌊
N
2

⌋
+ 1−m−1

)
+ m2

j +
(
mj + m−j − 1

)(⌊N − 1
2

⌋
−mj

)
(32)
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From (30), (31) and (32) the total number of multiplications and additions required
using Matveev method is

Ξ(N) = ΞX̃(N) + ΞW(N)

= 2ΞX̃(N) (33)

Φ(N) = ΦX̃(N) + ΦW(N) (34)

If N is very large, the number of multiplications and additions required using Matveev’s
DFT eigenvectors is approximated:

Ξ(N) ≈ 3
4

N2 (35)

Φ(N) ≈ 9
8

N2 (36)

If the input is even or odd symmetric, the number of multiplications and additions can
be further reduced. In contrast to (33) and (34), brute force computation of the DFT for a real
input requires 2(N − 1)2 real multiplications and an equal number of additions. Thus, the
method proposed here performs better when compared to the brute force DFT computation.
Using the Matveev eigenvectors, our method also outshines the DFT calculated using the
N/2-point DFT. Moreover, unlike most FFT algorithms, our method does not require that
N be highly composite. One can combine our approach with deconstructive algorithms like
the Cooley–Tukey algorithm or the prime factor algorithm to yield efficient algorithms for
computing the DFT of large sequences. This approach is certainly effective when the length
N is not an integer power of 2. Figure 4 shows the number of multiplications required for
computing the DFT using various methods.

Figure 4. Number of real multiplications required while computing the DFT using various methods
for N ∈ [15, 65]. The “recursive Matveev’s DFT” plot is obtained by recursively dividing the DFT of
length N into smaller DFTs and using the Matveev’s eigenvectors for the computation of the smaller
DFTs. Note that the N/2-point DFT is valid only if N is even and the Cooley–Tukey FFT shown in
this plot is valid only if N is an integer power of 2.

7.3. Complex Inputs

If the input x ∈ CN , (10), (11), (14) or (15) can be used to keep the computation
natively-real. In this case, the number of real multiplications double, and the number
of real additions is slightly more than double. This is easiest to see in (10) and (11). It
is clear that the multiplications and additions are doubled because there are two terms.
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Furthermore, an extra 2N additions are required to add the real and imaginary parts from
these two terms. Similar results can also be derived from (14) and (15). Assuming the use
of Matveev’s eigenvectors, (33) and (34) change to

ΞC(N) = 2Ξ(N) = 4ΞX̃(N)

ΦC(N) = 2Φ(N) + 2N

= ΦX̃(N) + ΦW(N) + 2N

where ΞC(N) and ΦC(N) represents the total number of real multiplications and additions
required if x is complex.

7.4. Example

Suppose we must determine the 2D DFT for a high-definition image with resolution
1080 × 1920. When using the row-column approach for finding the 2D DFT, first the
transform is taken along the columns, followed by a transform along the rows. Version
R2020b of MATLAB© was not sufficiently precise enough to determine the Matveev
eigenvectors to a high enough accuracy for any N ? 20. As mentioned before, this
cap of around 20 is from the limitation of the machine that was used to compute the
eigenvectors. In practice, this cap will be higher or can be eliminated by pre-computing
the eigenvectors with high accuracy. It is also possible that a more numerically sound
version of the Matveev algorithm can be found. This numerical accuracy issue actually
occurs in every DFT computational algorithm to varying degrees and impacts. Typically,
however, the DFT is calculated by decomposing the larger computation into smaller DFTs
in a divide-and-conquer strategy.

Since both 1080 and 1920 have many factors, it is possible to decompose the DFT
into smaller DFTs of length less than or equal to 20. For instance, consider first taking
the 1D DFT along the columns. We know that 1080 = 23 × 33 × 5. Therefore, first we
can use the prime-factor algorithm [3] to divide the 1080-point DFT into separate DFTs of
length 23, 33 and 5. The 23 and 33 DFTs can be recursively divided into smaller lengths via
decimation-in-time. The final 9-point and 5-point DFT butterflies are computed using the
proposed method which result in 24,800 real multiplications. Computing the 2-point DFTs
are trivial and require 1,620 real multiplications by twiddle factors. Thus, using this method
to find a 1080-point DFT requires a total of 26,420 multiplications. For the 2D DFT, this has
to be repeated 1920 times, for a total of around 50.7 million multiplications. Now, take the
DFT along the rows. All the rows together need around 49.1 million multiplications. Thus,
in total, the 2D DFT uses approximately 99.8 million multiplications.

8. Comparison with the 5-Point DFT Butterfly Algorithm

Unlike the 4-point DFT, computing the 5-point DFT requires multiplication with
complex twiddle factors as shown in Figure 5. Our method performs better due to the lack
of complex multiplications. Using our method for a 5-point DFT requires 20 multiplications
and 24 additions from (33) and (34). On the other hand, the brute force, direct, method
requires 41 multiplications and 36 additions. We chose the 5-point DFT butterfly because
this is the smallest DFT that contains all the unique DFT eigenvalues, i.e., {1,−1, j,−j}. In
contrast, the eigenvalues of the 4-point DFT are {1,−1,−j}.
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Figure 5. Signal flow graph of a 5-point DFT. Here ω = e−j 2π
5 .

9. Conclusions

In this paper, we have shown how the discrete Fourier transform can be efficiently
calculated using its eigenvectors in a natively real-valued algorithm. Our proposed method
uses (sparse) real eigenvectors of the DFT. The resulting algorithms are efficient when
compared to the Cooley–Tukey FFT algorithm, and all steps are natively real-valued,
so no complex multiplications are ever required! Our proposed method is suitable for
higher dimensional DFTs, can be extended to other unitary transforms, and requires no
significant structural change for differing lengths N. An Inverse DFT (IDFT) is presented
that possesses the same qualities, and is nearly identical to the efficient DFT algorithm.
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