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Abstract: Nowadays, time, scope and cost constraints along with knowledge requirements and
personnel training constitute blocking restrictions for effective Offensive Cyberspace Operations
(OCO). This paper presents RedHerd, an open-source, collaborative and serverless orchestration
framework that overcomes these limitations. RedHerd leverages the ‘as a Service’ paradigm in order
to seamlessly deploy a ready-to-use infrastructure that can be also adopted for effective simulation
and training purposes, by reliably reproducing a real-world cyberspace battlefield in which red
and blue teams can challenge each other. We discuss both the design and implementation of the
proposed solution, by focusing on its main functionality, as well as by highlighting how it perfectly
fits the Open Systems Architecture design pattern, thanks to the adoption of both open standards and
wide-spread open-source software components. The paper also presents a complete OCO simulation
based on the usage of RedHerd to perform a fictitious attack and fully compromise an imaginary
enterprise following the Cyber Kill Chain (CKC) phases.

Keywords: cyberspace operations; red teaming; adversarial simulation; penetration testing; orches-
tration; hacking

1. Introduction

Cyberspace at its core consists of, but is not limited to, a computerised environment
that is artificially constructed and constantly under development. It can be defined as a
global domain made up of interconnected communication systems, information technol-
ogy and other electronic systems and networks, together with their data. Such systems
include components that are both separated and independent and which process, store or
transmit data [1]. It is like a shifting terrain where all actors have to face its fluidity. New
vulnerabilities and opportunities constantly arise as the terrain changes. Entities are in
motion; no offensive or defensive capability remains effective indefinitely and no advan-
tage is permanent. A well-defended cyber terrain is attainable, yet it is continuously at
risk. Adversary offensive activities persist because opportunity costs are low, and accesses,
platforms and payloads can remain useful for extended periods of time [2]. This domain
can be described in terms of three layers: physical, logical and cyber-persona. The conduct
of Cyberspace Operations (COs), i.e., actions in or through cyberspace intended to preserve
friendly freedom of action in cyberspace and/or to create effects to achieve commanders’
objectives [1], always includes the logical layer, but may also include activities or elements
from the other two layers. The desired effects of COs may exist at all layers or ultimately
outside of cyberspace. COs may affect human sense and decision-making and may be used
or misused to influence behaviour. Likewise, COs may also affect physical entities outside
the three layers. Activities outside of cyberspace which have an effect on cyberspace are not
considered COs, e.g., dropping a bomb on Communication Information Systems (CIS) [1].

Systems at the physical layer, e.g., hardware components, are bound to a geographical
location. The tangible components in this layer include computers, servers, routers, hubs,
switches, wiring and other equipment crucial to data storage, data processing and data
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transmission. It also includes the integrated information and communications technology
components of other equipment or systems like digital sensors, weapon systems, Com-
mand and Control (C2) systems and critical infrastructures [1]. Entities at the logical layer
are elements manifested in code or data, such as firmware, operating systems, protocols,
applications, and other software and data components. The logical layer cannot function
without the physical layer and information flows through either wired networks or the
electromagnetic spectrum. The logical layer, along with the physical layer, allows the
cyber-persona to communicate and act [1]. The cyber-persona layer does not consist of real
persons or organisations but a representation of their virtual identity. A virtual identity
could be an email address, a user identifier, a social media account or an alias. Conse-
quently, one person or one organisation can have multiple cyber-personas. Conversely,
multiple people or organisations could also create just a single, shared cyber-persona [1].
In this context, the constant innovation of disruptive technologies offers all actors fresh op-
portunities for exploitation. In this dynamic environment, involved actors (e.g., nations or
organizations) must increase their resilience, defend in depth, demand security by design
and persistently contest cyberspace threats to generate continuous tactical, operational,
and strategic advantages [2].

On the other hand, adversaries exploit and weaponize vulnerabilities to steal wealth
and intellectual property, manipulate information, and create malicious software capable
of disrupting or destroying systems. This clear intention to project power in and through
cyberspace in order to achieve operational or strategic objectives reflects the idea of Offen-
sive Cyberspace Operations (OCO). Offensive capabilities inside cyberspace range from
technologically simple means that can be developed rapidly, to sophisticated tools that
require a long development period. They can be leveraged to reach tactical effects or
achieve strategic impacts, but the required technology level mainly depends on the aimed
effects, on the hardening and on the complexity of the target environment. Moreover,
preparation time in OCOs might also depend on victim maturity, intelligence gathering
efforts, anonymization requirements and any mitigation measures required for controlling
collateral damage. Consequently, the period between the decision to create an effect and its
actual use may be significantly longer than when using traditional weapons. In relation to
this, powerful infrastructure, high-performance instruments and most importantly skilled
personnel are the keys for effective OCOs [2]. It is not so easy to recruit skilled cyber opera-
tors and involvement of scarce talent may need adjustment of requirements, with possible
consequences on the operation plan. Skills are highly perishable, and this has an impact on
the management of human resources, requiring constant attention not only to the attraction
of new talents, but mainly to the education and re-training of existing personnel. As a
result, the engagement in training activities is vital, and a crucial support for reducing the
skills gap is the cyber range [3,4]. A cyber range is a platform for the development, delivery
and use of interactive simulation environments. A simulation environment is a representa-
tion of an organisation’s Information and Communication Technology (ICT), Operational
Technology (OT), mobile and physical systems, applications and infrastructures, including
the simulation of attacks, users and their activities and of any other Internet, public or
third-party services which the fictitious environment may depend upon [5]. Cyber ranges
are part of an actor’s cyber capabilities and can be used for developing the potentiality of
security professionals, for the research and development of cyber tools and other assets,
and for the continuous delivery of cyber exercises to test those cyber capabilities [5]. It
is also expected that cyber ranges will change hiring practices allowing organisations to
better identify, validate and hire suitable candidates [5].

Training becomes even more crucial considering that the most dangerous cyber attacks
are not randomly performed, but are complex and structured operations. There are a lot of
doctrinal and technical references which identify and describe the offensive flow followed
by an actor conducting hostile operations, one of the universally recognized is the Cyber
Kill Chain (CKC) [6,7]. The CKC represents a systematic approach that includes a wide
variety of elements, ranging from malicious payload development to lateral movement
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inside a compromised environment [8]. In a complex scenario, the actions on the identified
objectives could violate confidentiality, integrity, or availability of a system. Taking into
account these offensive purposes, the chain phases can be identified as follows:

1. Reconnaissance: identification, selection, profiling of potential targets and vulnerabil-
ity discovery via passive and active information gathering. This phase could range
from technical activities to Open Source Intelligence (OSINT), passing through social
engineering techniques [9] in order to extract unique and high value intelligence by
harvesting public records to create a comprehensive profile of certain targets [10];

2. Weaponization: design and implementation of a malware, i.e., a Remote Access
Trojan (RAT), a Meterpreter shell [11] or a different backdoor, which exploits a system
vulnerability or tricks the user to act as the attacker expects. This malicious software is
hidden inside unsuspected files, e.g., a PDF or a Microsoft Office document, in order
to evade network and host detection;

3. Delivery: dispatching the weaponized malware to the target environment via spear
phishing [12], removable media or using legitimate public facing services which have
been compromised, e.g., websites or FTP servers;

4. Exploitation: triggering the malicious code execution on the target by waiting for user
interaction, exploiting a specific application or the operating system directly, e.g., via
a zero-day or other known vulnerabilities;

5. Installation: installation of a backdoor which grants a persistent access to the ex-
ploited target’s system or network. This phase could involve Windows registry keys
manipulation, DLL search order hijacking, DLL side loading, startup folders abuse,
scheduled tasks creation or even rootkits installation;

6. Command and Control: connection of the malware previously installed, to the attacker
C2 server. At this stage, the malicious implant periodically asks for instructions or
sends valuable data. Generally, this communication happen asynchronously and on a
predetermined interval, i.e., beaconing;

7. Actions on Objectives: achievement of the final goals, e.g., full system compromise,
data integrity violation, service availability denial or contents exfiltration. This stage
could include collecting, encrypting and extracting information from the victim
environment. In addition, the attacker may also use the initial access as a pivot point
to compromise additional systems and move laterally inside the target environment.

It is worth noting that not every attack strictly goes through all the stages of the CKC,
e.g., the installation step can be skipped if the effect is immediate. As a matter of fact,
time, cost and scope constraints [13] along with knowledge requirements and personnel
training represent blocking issues that must be addressed to perform effective OCOs. In
relation to this, the present research proposes a novel orchestration solution for offensive
activities: the RedHerd Framework [14,15]. RedHerd is a quickly employable and easy-to-use
open-source software that combines the capability to conduct real offensive operations
with the possibility to realize training and simulation activities in a reproduced cyberspace
battlefield in which red and blue teams can challenge each other.

This paper is organized as follows: Section 2 provides a complete description of
the framework architecture, workflows, interoperability and expansion opportunities,
Section 3 describes the experimental methodology and provides a structured test case,
Section 4 leverages the experimental analysis to discuss the proposed solution in relation
to other state-of-the-art offensive security software, while final considerations and future
developments are drawn in Section 5.

Before proceeding further, the authors want to let the reader know that, despite some
definitions and references have been extracted from institutional publications and papers,
the vision about OCOs does not correspond in any way to the transposition of the doctrine
of any particular organization, army or coalition force. The concepts of operation that are
introduced are fictitious scenarios with a mere didactic purpose aimed at facilitating the
understanding of the contents described. Any deductible Rules Of Engagement (ROE),
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jus ad bellum, or jus in bello premise do neither intentionally align with any particular
international agreement, nor reflect the authors’ affiliation and orientation.

2. Proposed Framework
2.1. Framework Architecture

RedHerd is a collaborative and serverless framework for orchestrating a geographi-
cally distributed group of devices in order to conduct red teaming activities and, more in
general, complex OCOs. The proposed solution integrates many community acclaimed
open-source products, implemented as independent Docker containers, which are fully
inter-operable and have been designed to compartmentalise features and to allow horizon-
tal scaling if needed. A high-level representation of the RedHerd framework architecture is
provided in Figure 1, where it is possible to clearly identify all of its components.

Figure 1. RedHerd Framework.

The assets are multi-platform devices (Windows, Linux, MacOS and Android) that can
be orchestrated to perform cyber operations. The Herd-Server represents the Node.js [16]
core of the framework and is responsible for interacting with the assets. It receives and
multiplexes all the inputs from the operators thanks to an extended set of Application
Programming Interfaces (API) and dispatches the output received from the assets via a
Socket.IO [17] channel. Assets and operators can easily share files using an FTPS-based
File-Server, which allows secure file transfer and storage. The entire framework is bounded
by a Virtual Private Network (VPN) in order to guarantee Operations Security (OPSEC)
by design, i.e., a systematic process by which potential adversaries can be denied infor-
mation about the capabilities and intentions of organizations by identifying, controlling,
and protecting generally unclassified information that specifically relates to the planning
and execution of sensitive organizational activities [18]. In order to be orchestrated, all
assets must connect to the OVPN-Server gateway using pre-distributed OpenVPN [19] con-
figuration files. The Distribution-Server is the only role publicly accessible outside the VPN
edge and represents an Nginx [20] web server that distributes, after authentication, all the
configuration files needed by an asset attempting to join the framework. This architecture
allows a high level of automation by granting minimized user interaction during the asset
setup procedure. The operational network can be managed via the Herd-View which is a
Progressive Web Application (PWA) [21] written in Angular that provides a user-friendly
interface to monitor and task all the assets in real time.
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The entire solution is cross platform and can be deployed both on premise and in a
Cloud-based environment. The prototype implementation described in this paper focuses
on a Debian host machine tested both locally and remotely, i.e., by using a commercial
Virtual Private Server (VPS). In relation to this, a Bash script has been developed to
automate the framework deployment process. Taking into account the design choice to use
docker-enabled containerization as the underlying technology, an equivalent script could be
easily implemented allowing the framework to be hosted on a different operating system.

2.2. Asset Joining

One of the aspects which required a considerable design and development effort was
the asset setup and join procedure. The implementation of this feature has been ruled by
two design drivers: high flexibility and low user interaction. The former characteristic
is needed in order to grant a remarkable level of compatibility with different operating
systems, while the latter is fundamental to minimize failures and reduce the skills required
to add a new asset to RedHerd. The result is a manually triggered yet fully automated
procedure that involves only the execution of a one-line script which is different for each
compatible platform: Bash for Android and Linux (Figure 2), PowerShell for Windows
(Figure 3) and Zsh for MacOS.

Figure 2. Asset joining one-liner for Linux.

Figure 3. Asset joining one-liner for Windows.

It can be automatically generated by an operator who wants to add an asset and it
requires some identification parameters to work properly: a username, a password and a
public address to join the network. When the asset attempts to join RedHerd, a specific
fingerprint is automatically calculated as the MD5 hash of the username and is used as
its unique identifier. This one-liner interacts with the Distribution-Server and acts as a
dropper downloading the full setup script and the related OVPN configuration file. The
second stage fully configures the device in order to fulfil the framework requirements,
i.e., dependencies management, certificate trusting, firewall and SSH daemon configuration.
Then, the VPN connection is initiated and the APIs are used to interact with the Herd-
Server and insert the new asset into the framework database. At this point, the asset is
effectively part of the framework and so it is completely accessible by the operators.

2.3. Asset Tasking

The asset tasking workflow is a fundamental aspect to be underlined. The interaction
between the operator and the Herd-Server, i.e., the upstream channel, is realized by a set of
APIs. These APIs are provided by the Herd-Server and are based on the Representational
State Transfer (REST) [22] paradigm. In addition, an authentication mechanism is imple-
mented through JSON Web Token (JWT) [23] claims. This system is mainly used by the
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Herd-View to assign the tasks, but it has to be intended as a general interface suitable for
interacting with the assets through the Herd-Server.

REST is a software architectural style which defines a set of constraints suitable for
creating Web services and represents a standardized communication mechanism between
computer systems across the Internet. RESTful Web services allow the requesting systems
to access and manipulate textual representations of Web resources by using a uniform and
structured set of stateless operations. The Herd-Server responds to the REST API requests
by using the JSend [24] specification in order to offer a consistent JSON (JavaScript Object
Notation [25]) response format which is universally recognized and provides an easy way
to consume and interact with the framework contents. CRUD operations, i.e., create, read or
retrieve, update, and delete, are performed through their corresponding HTTP verbs:

• POST method to create a new item;
• GET method to retrieve one ore more items;
• PUT method to update an existing item;
• DELETE method to remove an item.

The Herd-Server goes further, adding the opportunity to trigger the execution of
a module using a dedicated REST endpoint and an ad hoc crafted POST request. This
feature expands the number of functions offered by a traditional RESTful service, hence
introducing the CRUD(E) operations set which integrates the previously described acronym
with the execute verb. An entity which sends a POST request to run a module, receives a
JSend response containing the sessionid reflected into the output flow. These results are
encapsulated using a specific messaging protocol, in order to be clearly understandable
and quickly consumed (see Figure 4).

Figure 4. RedHerd tasking flow.

The direct interaction between the Herd-Server and an asset is instead based on the
SSH (Secure SHell) protocol. The reason behind this choice is because it natively provides
strong authentication and encryption layers and because it is a consolidated protocol
offering stability as well as compatibility with the majority of the available operating
systems. Last but not least, the usage of SSH leads to the agent-less implementation
characterizing RedHerd. Specifically, when the Herd-Server receives a task request for an
asset, it initiates an SSH connection with it contextualizing and executing the commands
set needed to reach the expected result. This kind of interaction overcomes the needs of
a local agent waiting for a task to accomplish and, in addition, allows for a lightweight
computational effort asset-side.
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2.4. Asset Output

Once the asset has been tasked, the Herd-Server starts to collect each output produced
by the executed commands and broadcasts them using custom messages. As shown in
Figure 5, these messages are structured on a two-layer model: the first layer (Table 1)
contains transport and identification data and wraps the second one which in turn provides
the informative content (Table 2).

Figure 5. RedHerd message prototype.

This protocol is based on the Socket.IO technology that enables real-time, bidirectional
and event-based communication. It is implemented as a JavaScript library that works on
every platform, browser or device, focusing equally on reliability and speed. In addition, it
primarily uses the WebSocket protocol with HTTP long-polling as a fallback option [17].

Table 1. Level 1 Socket.IO Message.

Field Description

SOURCE The generating entity of the message

DESTINATION The destination entity of the message

TYPE A message content indicator (e.g., gen_res for general information, cmd_res for
command outcomes, syn_res for File-Server sync result)

SESSION The sessionid assigned to the specific output flow

PAYLOAD The second layer envelope

Table 2. Level 2 Socket.IO Message.

Field Description

ID The unique identifier assigned to the current message

TYPE A message stream indicator (e.g., stdout, stderr, extcode)

TIMESTAMP The date and time of the message creation

CONTENT The informative value of the message
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This system is the carrier upon which a custom protocol encapsulates two categories
of messages: the KeepAlive messages, which provide a real-time status of the assets, and the
informative messages containing the tasks results. This message prototype standardizes
the data format generated by each asset available in RedHerd. In the same way, the REST-
style APIs provide a common way to interact with them. These elements are not only
fundamental components of the framework but also valuable interoperability tools. The
output carrier messages are sent asynchronously using an Out-of-Band (OoB) channel
which represents, from the operator point of view, the downstream communication vector.
As shown, each message is tagged with a specific sessionid representing a unique identifier
used by the requesting entity to link it with the corresponding task. When received, the data
inside the message are unwrapped, parsed and presented to the operator interface in a
friendly format.

2.5. Task Implementation

Previously in this paper, the term task has been intentionally used to indicate the
execution of commands by one or more assets and could be intended as a dynamic repre-
sentation of an operator intent. As a matter of fact, each task needs a static implementation
in order to be executed and this implementation, called module, can be viewed as the code
translation of an operator intent. Furthermore, it is possible to issue some tasks to the
Herd-Server itself without involving an asset. This feature is implemented through services,
which instead are the logical representation of a Herd-Server capability. The list of available
services is described in Table 3.

Table 3. Services.

Service Description

TCP_PROXY Proxies the TCP traffic from an operator machine to an asset, and vice
versa, through the Herd-Server

UDP_PROXY Proxies the UDP traffic from an operator machine to an asset, and vice
versa, through the Herd-Server

HTTP_PROXY Proxies the HTTP traffic from an operator machine to an asset, and vice
versa, through the Herd-Server

RTSP_REDIRECTOR Redirects the RTSP video stream from an asset to an operator machine
through the Herd-Server

TERMINAL Allows an operator to access an asset console, in a fully interactive mode,
using a Web browser

Therefore, if the implementation of an action performed by an asset is a module,
its execution is the corresponding task. A set of modules carrying out similar tasks
is grouped into a common topic, which is the abstract representation of one or more
characteristics bringing together a number of tasks and, transitively, one or more modules.
In order to adhere to a structured offensive methodology, RedHerd provides for each
supported operating system, a built-in collection of topics that follows all the steps of the
CKC [6], e.g., debian_reconnaissance, windows_delivery. Anyway, the framework APIs allow
the definition of new topics in relation to the operational needs. As a result, the terms
flexible and expandable perfectly fit the designed behavior since in RedHerd it is possible
to create new modules in order to add more features and accomplish more tasks.

Every module is made up of two elements: an info file which contains its metadata (see
Figure 6) and a JavaScript file which contains the execution logic (see Figure 7). In order
to allow a rapid development, the framework provides a set of JavaScript base modules
containing specific superclasses. These classes are implemented for each compatible
operating system, e.g., Windows and Linux, and can be used to inherit all the required
properties and methods needed to interact with the assets.
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Figure 6. Example of module metadata.

Figure 7. Example of module implementation.

Specifically, each module class, deriving from one of the base classes, must have a
constructor and must expose at least three methods: run (or one of its alternatives interact
and pivot), configure and validate. The run method is called to start an automatic module
execution, interact is used if the module requires an operator interaction, while pivot is
applicable if the module needs user interaction but combined with a redirection to an
external destination, e.g., a third-party website. The configure method is responsible for
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performing all the preliminary activities, while the validate method verifies the parameters
passed to the module in order to check for incorrect input data. By complying with the
provided interface, it is extremely easy to extend and/or enhance the capabilities offered
by the framework.

3. Materials and Methods

This section presents an OCO simulation consisting of a fictitious attack which aims
to fully compromise a target enterprise environment following the CKC phases [6]. Table 4
lists the hardware involved during the current experiment. The Infrastructure Server is the
system on which the RedHerd framework has been deployed. It hosts the core components
and orchestrates the assets required for the mission accomplishment.

Table 4. Inventory of materials.

Infrastructure Server C2 Server Drone

Platform VPS VPS Raspberry Pi 4b

Operating System Ubuntu 20.04 Ubuntu 20.04 Raspberry Pi OS

Processor 4 vCore 1 vCore 4 core (ARM)

Memory 8 GB 2 GB 4 GB

Storage 160 GB (SSD) 40 GB (SSD) 32 GB (SD card)

One of them is a C2 Server that essentially operates as the landing point for the mal-
ware implanted during the exploitation. It allows to manage the compromised machines,
sending tasks and receiving results. The second asset is a specifically designed drone,
which represents a mobile device used to reach remote locations and perform on-demand
actions. The usage of a drone for this experimental phase has been mainly driven by
anonymization purposes but it also demonstrates how easily RedHerd can be interfaced
with non-conventional hardware. The drone is a quad-copter based on a Raspberry Pi 4
model B [26], equipped with a Navio2 Emlid flight controller. The Navio2 is an autopliot
shield developed as a Linux version of Ardupilot board [27]. The quad-copter can be con-
trolled via a 900 MHz telemetry/telecommand module and is able to perform autonomous
flight missions thanks to an onboard GPS receiver. It can join the RedHerd framework via
a 4G-dongle Internet connection and is provided with a Wi-Fi Alfa antenna to perform
wireless attacks, as shown in Figure 8.

Figure 8. Top-view of the drone asset.
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It is worth noting how the drone is completely based on Commercial Off-The-Shelf
(COTS) products and has been assembled with a budget of almost 300 euros. Figure 9
provides a Herd-View capture showing the list of available assets, i.e., the drone and the
C2 server. As the reader can observe, they have, respectively, acquired the IP addresses
10.11.0.6 and 10.11.0.10, which have been distributed after the devices joined the framework
VPN. By employing the Herd-View, the operator has complete control over the available
assets and can easily use them to fulfil the assigned tasks.

The end goals of this simulation are the full access to the IT environment of the Fake
Corp imaginary enterprise and the acquisition of its sensitive data. In order to reduce the
chances of cyber-attribution, i.e., the process of tracking, identifying and laying blame on
the perpetrator of a cyberattack or other hacking activity, the operator can fly the drone as
close as necessary to a third-party Wi-Fi Access Point (AP), gain access to it by obtaining
and cracking the pre-shared key and then use a non-attributable Internet access to perform
the subsequent mission steps. The Wi-Fi network WPA2 protection is easily exploitable [28]
launching the RedHerd Airgeddon [29] module, which:

1. Deauthenticates all clients connected to the target AP, i.e., performs a so called deau-
thentication attack;

2. Captures the 4-way authentication handshake for the AP;
3. Cracks the WPA2 pre-shared key using a dictionary.

Figure 9. List of assets joined to the RedHerd Framework.

Once the operator has obtained this OPSEC compliant Internet access, he can start the
preliminary phase of the engagement, i.e., the reconnaissance. Adversaries may execute
active scans to gather detailed information about the attack surface exposed by the target
or more simply perform passive information gathering without involve direct interaction
with it. In this case the operator launches the theHarvester [30] module to scrape search
engines and social networks, and retrieve as much information as possible about the
target enterprise, e.g., some e-mail addresses related to its domain fakecorp.local. It must be
emphasized that RedHerd allows a low-skilled operator to perform the task without deeply
knowing the syntax and the logic of this reconnaissance tool. In fact, as show in Figure 10,
the Herd-View generates the module Graphical User Interface (GUI) dynamically and in
accordance with the metadata described in Figure 6, producing an HTML text input box
for the domain string parameter. Input data are automatically validated by the Herd-Server
through the validate method in Figure 7, in order to avoid unexpected results and block
malicious intents, i.e., command injection. Once the module has completed its job, it
provides the operator with the email address helpdesk@fakecorp.local, which is an enabling
result for the subsequent operations.
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Figure 10. theHarvester module execution.

At this stage the Social Engineer Toolkit [31,32] covers either the weaponization and the
delivery CKC phases by forging and sending a spear-phishing email with an attachment
containing a malicious payload, which in turn will call home and land on the C2 Server.
It is important to underline that, up to this point, all the activities have been performed
through the initially compromised Internet access, reducing the probability of being caught.
Employing the Herd-View, it is trivial to use the C2 Server asset and launch the Metasploit
module in order to create a multi-handler [11] listener and wait for the exploit connection.

As soon as the target employee checks their mailbox and opens the malicious attach-
ment, the attacker gets an interactive shell on the help-desk machine. In this way, he can
perform the installation phase by uploading an executable file and, manipulating the
Windows registry, he can implant a custom autorun key obtaining a persistent access (see
Figure 11). The RedHerd interactive Metasploit module allows complete command and
control over the compromised systems.

Figure 11. Malware persistence installation on the target.

Specifically, the operator can perform a wide range of actions on objectives but, for the
purpose of this simulation, he violates the corporate data confidentiality subtracting the
file named customers_data.xlsx (Figure 12). This exfiltration is quickly realized downloading
the file on the C2 Server and making it available mission wide using the RedHerd File
Manager (Figure 13).
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Figure 12. Sensitive file download from the target.

With this final action the attackers have achieved their objectives and then they
can choose to completely destroy the RedHerd instance or keep it active in order to
maintain, and eventually expand, the foothold inside the target enterprise for possible
future operations.

Figure 13. Herd-View File Manager.

4. Results and Discussion

The solution proposed in this paper is one of a kind, so it is quite difficult to find
other state-of-the-art products that cover the same scope of the RedHerd framework. As
experimentally demonstrated in Section 3, RedHerd promotes collaboration between OCO
actors and embraces strong orchestration capabilities. In addition, the framework is able
to cover all the CKC phases, from the reconnaissance up to the full target compromise,
i.e., violating the confidentiality, integrity and availability of its data and services (see
Figure 14).

For the sake of completeness, the offensive security panorama offers a wide range
of tools, all of them support a set of functionalities that represents a complement and
not an alternative to the proposed solution. One of the most common attack tool is the
already mentioned Metasploit Framework. It is a Ruby-based, modular penetration testing
platform that enables an attacker to write, test, and execute exploit code. It contains a
suite of tools employable to test security vulnerabilities, enumerate networks, execute
attacks, and evade detection. At its core, the Metasploit Framework is a collection of
commonly used tools that provides a complete environment for penetration testing and
exploit development [33]. It also offers the Meterpreter shell, which is essentially an attack
platform that gets injected into the memory of a running process in order to avoid detection
by Host-based Intrusion Detection System (HIDS), as well as bypass the limitations of the
operating system’s native command shell [11].
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Figure 14. Attack simulation flow.

Metasploit, when combined with the Meterpreter shell, also provides some basic
post-exploitation features, i.e., the capability to use an existing access to pivot from one
machine to another expanding the compromised surface and adding valuable footholds
for the mission prosecution [34]. Anyway, actions related to the post-exploitation phase are
usually performed using specific software defined as C2 frameworks, e.g., Covenant [35],
Cobalt Strike [36], PowerShell Empire [37] and many others [38]. The aim of RedHerd
is not to replace these products, but to multiply their magnitude collecting them in a
powerful and centralized solution where complex objectives can be achieved in reasonable
time, with affordable costs and even with minimised knowledge requirements. Another
important aspect to take into account is that the acquisition of code for the exploitation
of common vulnerabilities is quite easy. On one hand, there are tons of public websites
hosting Proofs of Concepts (PoC) and exploits, e.g., ExploitDB [39] and GitHub [40], on the
other hand, in case of structured engagements, attackers inevitably need in-house script
development. In relation to this, the present paper has underlined several times how trivial
is the implementation of custom RedHerd modules. Developers can wrap and integrate
almost any kind of script or tool into the proposed framework and then operators just have
to push a button. These considerations lead to the reason behind the title of the paper:
Offensive Cyberspace Operations as a Service (OCOaaS). The OCOaaS model involves
a complete software solution, locally set up, remotely deployed or Cloud-based, which
allows organizations to conduct OCOs employing an uncountable number of devices
and low-skilled operators. It offers a layer of abstraction placed in front of the operative
infrastructure and tools. In this way, the operational actors have the opportunity to focus
on the task execution, while ignoring all of the collateral activities. In addition, OCOaaS
requires a flexible and quickly deployable solution to conduct OCOs at a minimal cost.
This paradigm expands the discussion and opens a different yet close perspective. These
days, the idea behind OCOaaS would find fertile ground in a wide variety of use cases.
In this regard, a mention to the emerging concept of Internet of Battle Things (IoBT)
does offer an opportunity to put the spotlight on the potential application of the model
and transitively on a possible RedHerd employment. The idea of IoBT encapsulates
commercial IoT, cyber-battle things and human individuals. The interconnected instances
of these entities represent the nodes of a network and may be considered as a set of
IoBT assets. This ecosystem could occur on private or public networks, on the Cloud,
or within any type of military or civilian enclave. In this scenario, Human operators, along
with their cyber-personas, could participate assisted by, collaborating with or assigning
tasks to IoBT devices. The complexity introduced in this context along with the various
abstractions needed to consume notifications, alerts, and task results provided in real-time
and in diversified formats, opens the undisputed necessity of a properly structured system
for IoBT configuration, control, orchestration, mission and security management [41].
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The RedHerd framework, as the practical implementation of the OCOaaS model, fulfil
all the described requirements by promoting the collaboration between the involved
actors, and empowering the approach with strong orchestration capabilities. It must be
emphasized that the majority of these challenging aspects correspond to the purpose and
motivation of the current research and represent valuable reference points which have
contributed to inspire this work. Despite the high flexibility and expandability of RedHerd,
this framework has also some drawbacks that are important to identify and underline.
First of all, offensive tools are extremely heterogeneous, i.e., some are API-based, many
have their own database and others need a standalone client, making quite demanding a
complete integration within RedHerd. As an example, Metasploit embeds a PostgreSQL
database to store all data collected during an engagement, e.g., IP addresses, discovered
open ports, gathered credentials, while Covenant is based on SQLite. Even if RedHerd
allows full control over the mentioned products, it is still not able to automatically correlate
the data they collect. Moreover, public tools are updated on a daily basis so it can become
quite difficult to keep all their corresponding modules constantly aligned, in particular if
there are breaking changes. In order to overcome this limitation, the suggested approach is
to perform frequent maintenance of the mostly used modules, e.g., port scanning, phishing,
C2, and then review and prepare more targeted modules in proximity of an engagement.

5. Conclusions and Future Work

This paper introduces the OCOaaS model as a complete software solution, locally
set up, remotely deployed or Cloud-based, which allows organizations to conduct Offen-
sive Cyber Operations by offering a layer of abstraction placed on top of the operational
infrastructure and tools. The RedHerd framework, a collaborative and serverless orchestra-
tion platform, represents a close implementation of the proposed model. This framework
designates interoperability, expandability and ease of use as its main features. The usage
of REST-style APIs and Socket.IO offers a straightforward interfacing mechanism that
allows third party applications to easily communicate with the product while granting a
high level of interoperability. The same idea might be applied to the task implementation
which relies upon a well defined JavaScript structure offering an easy way to expand
the product features by writing custom code and accomplishing an uncountable number
of offensive tasks. Moreover, the friendly and dynamically generated GUI allows even
low-skilled operators to actively contribute in conducting complex cyberspace operations
while ignoring all the collateral activities and guaranteeing at the same time a low cost of
deployment and maintenance. The experimental phase has demonstrated the capability
of RedHerd to integrate and maximize the functionalities of several publicly available
offensive tools to perform all the CKC stages in a complex OCO.

The achieved results are promising and open the way to future framework improve-
ment. Tools heterogeneity could be further overtaken by introducing some kind of module
output parsing and automatic RedHerd model population with juicy data, e.g., gained
credentials. These data could be potentially reused during subsequent phases of the offen-
sive engagement. In addition, the computational power of all the managed assets could be
combined in order to perform more demanding tasks, e.g., Distributed Denial of Service
(DDoS) and password cracking, or even stealthier actions, e.g., distributed port scanning.
Last but not least, framework performance will be analyzed in relation to the number of
joined assets and, in particular, in case of stress conditions, i.e., multiple modules perform-
ing resource intensive tasks, in order to better determine hardware requirements and find
undiscovered bottlenecks.
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Abbreviations
The following abbreviations are used in this manuscript:

AP Access Point
API Application Programming Interfaces
ARM Advanced RISC Machine
C2 Command and Control
CKC Cyber Kill Chain
CIS Communication Information Systems
CO Cyberspace Operations
COTS Commercial Off-The-Shelf
CPU Central Processing Unit
DDoS Distributed Denial of Service
GUI Graphical User Interface
HIDS Host-based Intrusion Detection System
HTML HyperText Markup Language
ICT Information and Communication Technology
IoBT Internet of Battle Things
IoT Internet of Things
IP Internet Protocol
IT Information Technology
JSON JavaScript Object Notation
JWT JSON Web Token
OCOaaS Offensive Cyberspace Operations as a Service
OCO Offensive Cyberspace Operations
OoB Out-of-Band
OPSEC Operations Security
OS Operating System
OSINT Open Source Intelligence
OT Operational Technology
PoC Proof of Concept
PWA Progressive Web Application
RAM Random Access Memory
RAT Remote Access Trojan
REST Representational State Transfer
RISC Reduced Instruction Set Computer
ROE Rules Of Engagement
RTSP Real Time Streaming Protocol
SD Secure Digital
SSD Solid State Drive
SSH Secure SHell
TTP Tactics, Techniques and Procedures
VPN Virtual Private Network
VPS Virtual Private Server
WPA2 Wireless Protected Access 2
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