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Abstract: The extraction of velocity information from radar data by means of the Doppler effect is
the driving factor for the investigations presented in this paper. A method for the quantification of the
Doppler tolerance in continuous emission (CE) noise radar is introduced, addressing a current lack
in literature within the frame of CE noise radars. It is shown that noise radar is highly sensitive to
the Doppler effect, an issue that often results in a low Doppler tolerance especially for long coherent
integration intervals. In general, the Doppler sensitivity is considered as a drawback but, in this
paper, along with the absence of range-Doppler coupling in noise radar, it is turned into an advantage
allowing for a very precise Doppler estimation. This new signal processing approach for Doppler
extraction is detailed and its feasibility is proven on the basis of experimental data. The presented
method requires much less data, i.e., target illumination time, than conventional Doppler analyses
and, therefore, is beneficial in terms of radar resource management.

Keywords: noise radar; Doppler tolerance; radar signal processing; velocity measurement; Doppler
measurement

1. Introduction

The usage of random modulated radar signals was formally described in the year
1959 in [1], often treated as the origin of noise radar technology (NRT). The authors of [2]
even trace back the concept of noise radar to an experiment performed in the year 1897. A
general introduction and details on noise radar signal processing can be found in [3].

Noise radar technology is well known for its main benefits which are its low probability
of intercept (LPI) characteristics [4], its inherent robustness against mutual interference [5,6],
and its close-to ideal, thumbtack-like, ambiguity function (AF) [7]. In the latter, neither
range nor Doppler ambiguities exist and range-Doppler coupling is absent. This paper
adds a new feature to the list of benefits. It is shown that a very precise determination of the
velocity of a target may be performed on noise radar data even when the duration of the
recording is too short to perform conventional Doppler analyses of the same precision. The
work is structured as follows. The introduction continues with background information
on conventional Doppler analyses and motivates potential applications for the presented
processing scheme. Section 2 defines a formalism to quantify the Doppler tolerance in
noise radar, filling a current gap in the scientific literature. The new signal processing
scheme for Doppler extraction in noise radar data is presented in Section 3 and applied to
experimental data in Sections 4 and 5. Finally, a discussion of the achievements is given in
Section 6.

The investigation presented in this paper is a follow-on research based on the findings
of [8], a PhD thesis completed during doctoral studies at the University Tor Vergata of
Rome, Italy, in cooperation with the German research institute Fraunhofer FHR.

1.1. Background

Radar signals are sensitive to the motion of the target and to the motion of the radar
platform itself. The Doppler effect causes a frequency shift of the involved radio waves in
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dependency of the relative radial velocity vr between the radar and the target. In many
radar applications, the Doppler frequency fD(t) is assumed to be constant during the
observation time and is approximated, neglecting relativistic effects, by

fD =
−2vr f0

c
, (1)

with f0 denoting the carrier frequency of the radar signal.
The historical principle [9] to compensate for the Doppler shift of a radar echo uses

a Doppler filter bank, that is, a bank of matched filters which are often tuned to equally
spaced Doppler frequencies. In this early implementation, the matched filtered signals
then were delivered to a decision network, which in [9] is a “greatestof” signal selection.
The Doppler filter bank principle was improved over the years leading to sophisticated
designs such as [10]. Digital signal processing has opened many occasions for strategies of
Doppler analyses, used for the extraction of a target’s velocity information, and also for
Doppler compensations.

To efficiently implement a digital Doppler filter bank, a Fast Fourier Transform (FFT)
is applied to a series of range measurements. A detailed description can be found in ([11]
[ch.17]). The number of consecutive range measurements shall be denoted by P which,
together with the pulse repetition interval TPRI of a conventional radar, forms the coherent
processing interval of the FFT being TCPI = P · TPRI . The digital sampling rate of the result-
ing FFT is equal to the pulse repetition frequency PRF = 1

TPRI
. This signal domain, which

represents temporal variations of range measurements, is often referred to as the slow-time
scale [12]. A general design criterion of Doppler filters is given in ([13][ch.18]), stating
that the bandwidth of each Doppler filter needs to span at least the frequency distance of
the filters, a condition which is inherently met when the FFT is applied. The frequency
resolution of the Doppler-FFT corresponds to the inverse of the coherent processing interval
equal to

∆ fD =
1

P · TPRI
. (2)

Moreover, the measurement of the Doppler frequency is ambiguous by multiples of
the PRF [14], unaffected by the value of P.

In order to apply the method of Doppler filter banks to continuous radar signals, either
for deterministic continuous wave (CW) radars like the well-known frequency modulated
continuous wave (FMCW) or for CE noise radar, a functional equivalent to the PRI needs
to be identified. For continuous radar signals, having a duty cycle of 100%, obviously, no
pulses exist but the Doppler filter bank principle is directly applicable by segmenting the
radar signal properly into slices of duration Tr. The choice of Tr depends on the waveform
modulation. In an FMCW signal, for example, the segmentation ought to follow the
periodic modulation: it practically covers a single frequency ramp in order to maintain the
full signal bandwidth during each range measurement. But for the non-repetitive signals
in continuous emission noise radar, the segment duration Tr can be chosen freely: The
continuous emission of noise radar is understood as an interruption-free non-repetitive
modulation based on a random process of limited, constant bandwidth. The randomness
of this modulation is non-repetitive and the full signal bandwidth B is covered in any
segment Tr that satisfies the requirement B · Tr � 1.

Consequently, in continuous emission radars, the interval TCPI of an FFT-based
Doppler analysis may be formed by P segments, each of duration Tr.

1.2. Motivation

The relationships described in Section 1.1 indicate some important radar design criteria
in the context of the extraction of velocity information from radar data:

1. Precise Doppler measurements require long coherent integration intervals, see (2)
2. The higher the center frequency of the radar emission, the higher is the Doppler shift

for a given radial velocity vr, see (1)
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3. The higher the center frequency, the shorter is the required coherent integration
interval for a given precision ∆vr of the velocity measurement

For these considerations, many Doppler radars operate at center frequencies of
10 GHz and above. As an example, the commercial Doppler radars of the company
Blighter, used for ground surveillance and drone detection, operate in the Ku-band around
16 GHz [15]. These high frequencies are usually applicable for short-range and medium-
range applications. Common long-range radars, instead, operate in lower frequency bands
such as marine navigation radars that transmit mostly S-band signals.

The following example illustrates the problems of accurate Doppler measurements
with such a navigation radar set. The aimed velocity estimation shall be set to an accuracy
of 1 knots, that is, ∆vr = 0.514 m/s, for a hypothetical S-band radar operating at a center
frequency of f0 = 3 GHz. From (1) results that the Doppler precision should not exceed a
value of ∆ fD = 2∆vr f0

c = 10.28 Hz. This increment, according to (2), defines the minimum
coherent processing interval to TCPI =

1
∆ fD
≈ 100 ms. But a strong discrepancy occurs

when the minimum required value of TCPI is compared to the typical design of long-range
navigation radars such as the JMR-5472-S [16]. With a typical beam width of θ = 2 degrees
and a rotation of the antenna at ω = 24 revolutions per minute, a maximum time-on-
target of about 14 ms is achieved by such a radar set. This interval is much shorter than
the minimum coherent processing interval required for the respective Doppler analysis.
But the method presented later in this paper might solve this issue. The duration of the
experimental data of Section 4, deliberately limited to 12 ms, was chosen in agreement with
the just made considerations.

Moreover, the Doppler extraction method presented in this paper is also considered
as beneficial for modern agile multi-role radars that perform different tasks, enabled by a
sophisticated resource management. One important resource is the illumination time, that
is, the interval at which the antenna (which usually is a phased array antenna) of the multi-
role radar is locked to a specific direction. The Doppler extraction procedure presented in
this paper reduces the required time-on-target by a waveform-specific signal processing
algorithm making use of the characteristic Doppler tolerance of a continuous emission
noise radar. This is particularly important for phased array radar tracking applications [17]
which involve rapidly switched beam positions and demand for an efficient management
of the revisit time and the time-on-target. The resource management becomes even harder
when it comes to multi-function RF systems (MFRFS) that combine radar, electronic warfare
and communication tasks by a single sensor [18]. A general concept, of how these MFRFS
might further benefit from the use of noise radar technology was presented in [19].

2. Quantification of the Doppler Tolerance in CE Noise Radar

The general problem of Doppler tolerance in radar is discussed in the literature with
different terminology. In 1966, the author of [20] aimed for a waveform design with
Doppler invariance by focusing on range-Doppler coupling. As the latter is absent in
random waveforms, the approach presented in that paper is not applicable to noise radar
technology. The problem of Doppler tolerance is also discussed in [21–23], but the focus
of these papers lies on transmitter code-design which contradicts the idea of randomness
in noise radar emissions. The authors of [24,25] propose a combination of transmission
wave design (Golay) combined with expensive phase compensations on receive. An idea,
rejected for the same reason. Also in [26], the achievement of Doppler invariance is used as
the design criterion for specialized codes, still, that paper does not formally investigate the
Doppler tolerance.

The most formal approach to Doppler tolerance of radar waveforms can be found
in [27] biased by an LFM signal background. But many aspects in [27] can be easily ignored
when focusing on noise radar: The particular shape of the ambiguity function of noise
signals and the absence of range-Doppler coupling in noise radar allows for a description of
the AF by two cuts [7], one cut along the delay axis and a second cut along the Doppler axis.
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In [28], the Doppler tolerance of OFDM radar waveforms is formulated as a function
of the number of carriers in the OFDM signal. The results are not directly applicable to CE
noise radar but the paper formulates a general definition of a Doppler characterization
by defining a loss-measure based on the ambiguity function. This approach inspired the,
still different, procedure for characterizing the Doppler tolerance in CE noise radar of the
current paper.

The ambiguity function [29], more precisely the auto-ambiguity function, of a radar
waveform u(t) shall be denoted as

|χ(τ, fD)| =

∣∣∣∣∣∣
∞∫
−∞

u(t)u∗(t− τ)ej2π fDtdt

∣∣∣∣∣∣, (3)

which defines a two-dimensional function in the delay-Doppler coordinate system. The am-
biguity function for fD = 0 forms the auto-correlation function (ACF) of the signal u(t) with

Ruu(τ) =

∞∫
−∞

u(t)u∗(t− τ)dt. (4)

Any concentration of energy located aside the origin of the delay-Doppler coordinate
system in (3) might cause ambiguous range-Doppler measurements in radar applications.
This might potentially result in the extraction of wrong target parameters or even in false
targets. But CE noise radar has an ambiguity function which is close to ideal as is shown in
Figure 1 representing an illustration of the thumbtack-shaped ambiguity function of an
idealized noise waveform.

Figure 1. Illustration of the thumbtack-like ambiguity function of a close-to-ideal noise waveform
with wide bandwidth and long duration. Neither range nor Doppler ambiguities exist and range-
Doppler coupling does not occur.

In real-world applications, restricted to the usage of band-limited and finite noise
signals, the resulting ambiguity function still remains similar to the idealized AF shown in
Figure 1 but it does not form a two-dimensional Dirac function (also known as Kronecker
Delta). Instead, the single peak in the origin of the delay-Doppler coordinate system has a
certain spread in both dimensions and is of finite height. The peak height, characterised
by the peak-to-average-sidelobe ratio, is determined by the time-bandwidth product of
the waveform [30]. The spread of the peak in the delay dimension defines the well-known
range resolution and is caused by the finite signal bandwidth ([31], [ch.9]). However, the
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spread in the Doppler dimension, along with its cause, is evaluated here in order to extract
a measure for the Doppler tolerance of noise radar technology.

The matched filter output of a radar echo shows a particular signal-to-noise ra-
tio (SNR), evaluated by common detection algorithms as presented in ([32], [ch. 2]). It is

SNR =
Py

PN
, (5)

where Py denotes the signal power of the, in the frame of this paper matched filtered, radar
echo and PN denotes the power of the receiver noise, bounded below by the thermal noise.

The current paper proposes a quantification of the Doppler tolerance of CE noise radar
by investigating the influence of the Doppler effect on the matched filtered signal power Py.
In this approach, the squared ambiguity function |χ(τ, fD)|2, directly proportional to Py,
is used as the main indicator of the loss that a particular Doppler shift of an echo signal
has on the resulting correlator output. As the current work focuses on CE noise radars, the
following derivations make use of the characteristic thumbtack-like shape of its ambiguity
function. These considerations lead to a loss function L(τ, fD), given by

1
L(τ, fD)

=
|χ(τ, fD)|2

|χ(0, 0)|2,
(6)

with the maximum value of the ambiguity function always located at (τ = 0, fD = 0).
The illustration of the ambiguity function in Figure 1 emphasizes the absence of

range-Doppler coupling in noise radar [7] why, in this case, (3) may be computed by

|χ(τ, fD)| = |χ(τ, 0)| · |χ(0, fD)|. (7)

This independence of delay and Doppler in the ambiguity function of CE noise radar
leads to the idea to fully characterize this Doppler tolerance by evaluating the zero-Delay
cut (ZDC) of the AF, that is, |χ(0, fD)|.

Consequently, for CE noise radar, the indicator of the Doppler tolerance, defined in (6),
simplifies to

1
L( fD)

=
|χ(0, fD)|2

|χ(0, 0)|2
. (8)

A threshold value of Lth = 2 is set that represents the “3 dB point” of the ambiguity
function in the Doppler dimension. Consequently, a cutoff-frequency f3dB shall be defined as

f3dB = min(| fD|) : L( fD) ≥ Lth . (9)

In the following, the cutoff-frequency is investigated by evaluating the respective
zero-delay cut of the ambiguity function depending on the matched filter duration.

In noise radar technology, the emitted signal g0(t) is often assumed to be the realization
of a Gaussian or at least of an ergodic random process. The echo of a target located in a
particular distance D and moving with a radial velocity vr forms a received signal

s0(t) = A · g0

(
t− 2D

c

)
e−j2π fDt, (10)

which is a delayed and Doppler-shifted copy of the transmitted signal g0(t) attenuated by
a factor A that mainly depends on the range and the size of the target. The term fD was
defined in (1). A range measurement can be performed by computing the cross-correlation
of the received signal and the transmitted signal, in other words by a matched filter process.
But any practical computation of the matched filter has a finite duration which requires a
segmentation of the continuous noise signals s0(t) and g0(t) to finite signals s(t) and g(t).
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In general, the segmentation procedure of a noise radar waveform can be modelled by
an appropriate window function w(t) from which a signal,

u(t) = n(t) · w(t), (11)

is computed with n(t) representing a realization of a white Gaussian process filtered to
a 3 dB bandwidth equal to B. A specific window function is presented later in this section.

From the definition of the ambiguity function, given in (3), it follows that for τ = 0
the phase of the waveform u(t) has no influence on the zero-delay cut χ(0, fD). The
relationship of the waveform u(t) on the ZDC of the coherent AF can be expressed in
compact form [14] by

χ(0, fD) = F
{
|u(t)|2

}
, (12)

with F{·} denoting the Fourier transform ([33], [ch.2]), which for a signal x(t) is

F{x(t)} = X( f ) =
∞∫
−∞

x(t)e−j2π f tdt. (13)

From (11) and (12) follows that the zero-delay cut of the resulting ambiguity function
of u(t) is computed by a convolution (the symbol is: ∗ ) to

χ(0, fD) = F
{
|n(t)|2

}
∗ F

{
|w(t)|2

}
, as w(t) ≥ 0 ∀ t . (14)

For BT � 1, the convolution in (14) may be approximated by

χ(0, fD) ≈ Rnn(0) · F
{
|w(t)|2

}
. (15)

A detailed derivation of this approximation can be found in [34]. Equation (15)
indicates that the Doppler tolerance in noise radar is mainly influenced by the shape of the
window function w(t) and quantified as follows.

For a simple segmentation of the waveform n(t) into slices of duration T0, a rectangu-
lar window,

wr

(
t

T0

)
=

{
1, for |t| ≤ T0

2
0, otherwise

, (16)

is implicitly applied by the segmentation procedure leading to a signal

ur(t) = n(t) · wr

(
t

T0

)
, (17)

for which the Doppler tolerance is computed in this section. Figure 2 illustrates the signal
model of ur(t), created from a noise source N0 that, idealized, is assumed to have a Gaussian
distribution.

Figure 2. The signal ur(t) is modeled by limiting the duration, that is, by segmenting, a signal n(t)
that itself represents a band-limited signal extracted from an (idealized) Gaussian noise source N0.
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For a rectangular window function, as defined in (16), it is
∞∫
−∞

wr(t)dt = T0 and, thus,

the resulting gain of the respective matched filter process is equal to

GMF,r =
1

Lr( fD)
BT0, (18)

with B denoting the bandwidth of the signal n(t).
The equation stated in (15) stresses out that the Doppler behaviour of the ambiguity

function of the particular noise waveform defined in (11) is dominated by the shape of the
window function w(t). The normalization in (8) and the fact that Rnn(0) = const. in (15)
lead to the following formulation of the Doppler-sensitive loss function of the signal ur(t).
It is ∣∣∣∣ 1

Lr( fD)

∣∣∣∣ =
∣∣∣∣∣F
{∣∣∣∣wr

(
t

T0

)∣∣∣∣2
}∣∣∣∣∣

=

∣∣∣∣ sin (π fDT0)

π fDT0

∣∣∣∣,
(19)

where T0 represents the duration of the rectangular window, defined in (16). This Doppler-
behaviour is illustrated in Figure 3.

Figure 3. The matched filter of duration T0 applied to noise radar signals creates a sinc-shaped
Doppler characteristic in the zero-delay cut of the ambiguity function |χ(τ = 0, fD)|2. The Doppler
loss Lr( fD) is higher than 3 dB for fD > 0.443

T0
as indicated by the dashed line.

Equation (19) describes a symmetrical function and, thus, only the positive Doppler
axis is drawn in Figure 3. The dotted red line indicates the position of the cutoff Doppler
frequency, achieved by applying the rule of (9) to (19) and resulting in

| f3dB,r| ≈
0.443

T0
. (20)

The subscript r indicates the relationship of this Doppler tolerance rule to the particular
shape of the rectangular window function of the noise signal ur(t) as defined in (16)
and (17).

Impact on Noise Radar Implementations

The interpretation of (20) leads to the general statement that the longer the matched
filter duration T0 the narrower is the main peak of the function 1/Lr( fD), as | f3dB| → 0
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for T0 → ∞. Therefore, all noise radar applications that use long signal segments for the
range-correlation have to cope with a resulting limited Doppler tolerance illustrated by the
following example.

An X-band radar is considered whose parameters are roughly compliant with the
demonstrator used in Section 4 and comparable to small marine navigation radars such
as [35]. The radar emission is assumed to be restricted, for example by regulations or
hardware limitations, to a bandwidth of 50 MHz around a center frequency of 10 GHz.
Thus, for an LPI application, any reduction of the emitted power whilst maintaining a
certain aimed signal-to-noise ratio for a given task can only be accomplished by utilizing
a long processing interval. For example, a radar pulse of 1 µs duration and 1 kW peak
power might be replaced by a noise signal of the same bandwidth but with 1 W peak power
and 1 ms duration. Without going into the details of any actual radar task, a coherent
processing interval of Tr = 1 ms shall be considered favourable for the noise radar in this
paragraph leading to a maximum coherent processing gain of G = BTr ≈ 47 dB. According
to (20), this value of Tr would result in a Doppler cutoff frequency of f3dB = 443 Hz.

Table 1 illustrates the Doppler tolerance of this particular radar implementation
with respect to common radar targets moving at typical velocities. The slowest target, a
sailing boat given in the first line of Table 1, is the only target that is compliant with the
Doppler tolerance requirement of fD < f3dB. For all the other targets, either a cost-intense
Doppler compensation needs to be performed or the coherent processing interval, that
is, the segment duration, needs to be shortened to a value Tr ≤ T̂0, presented in the last
column of the table, with the consequence of a reduced achievable processing gain. The
duration T̂0 ≤ 0.443

f3dB
, derived from (20), is interpreted as the Doppler-tolerant segment duration.

Table 1. Common radar targets to be detected by an example X-Band noise radar having a
Doppler tolerance of f3dB = 443 Hz defined by a required coherent processing interval of Tr = 1 ms.
The Doppler-tolerant segment duration states the interval the matched filter of the radar must not
exceed in order to instead assure a Doppler tolerance with respect to the particular targets.

Target Velocity Doppler Frequency fD < f3dB Doppler-Tolerant
fD Segment Duration

sailing boat 7 knots (3.6 m/s) 240 Hz yes (×) 1.8 ms
slow car 30 km/h (8.3 m/s) 553 Hz no ( ) 800 µs
fast car 130 km/h (36 m/s) 2.4 kHz no ( ) 184 µs
aircraft mach 1 (343 m/s) 22.8 kHz no ( ) 19 µs

However, for many applications, especially with LPI background, the coherent pro-
cessing interval needs to have a certain duration according to the requirements on the
processing gain. If the maximum expected Doppler frequency exceeds the f3dB, then a
computationally intense Doppler compensation becomes essential in noise radar even in
cases at which the extraction of the target velocity is not required.

This fact might be considered as a drawback of noise radars but for those applications
that indeed ask for Doppler information of the targets, the Doppler sensitivity of noise radar
provides an advantageous opportunity that is presented in the next sections including a
set-up of two road vehicles for an experimental proof of this idea.

3. Signal Processing Method for a Precise Velocity Extraction

This section presents a processing scheme utilizing the Doppler sensitivity, the ab-
sence of range-Doppler coupling in noise radar and the fact that for BT0 � 1 the signal
bandwidth B of a (pseudo-)random signal is not affected by the segment duration T0. This
method reads the functional relationship of (19) in a different light. The deep nulls of the
sinc-shaped Doppler-dependency allow for a precise evaluation of the Doppler frequency
as the zero points of this function occur at positions for which

fDT0 = n , n ∈ N+ (21)
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holds true. In Section 2, T0 was considered as a fixed value and (19) was computed for
different values of fD in order to characterize the Doppler tolerance of a given matched
filter implementation in noise radar.

The idea, here, is to find an unknown Doppler frequency by evaluating the output of
multiple matched filter processes, each having a different duration T, that are applied to an
identical set of data. However, a variation of the matched filter length also influences the
processing gain (18) where 1

L( fD)
has to be evaluated. In noise radars, the bandwidth B is

constant in all those segments of reasonable duration, as discussed above. Thus, it is only
the variation in the matched filter duration which has to be compensated for. This implies
the appropriately normalized function

R(τD)
sg (T) =

1
T

T/2∫
−T/2

s(t)g∗(t− τD)dt . (22)

Equation (22) describes the matched filter procedure of a signal s(t) with the replica
signal g(t) for a single delay value τD but different matched filter durations T. The delay
value τD = 2D

c corresponds to the distance D of a previously detected target whose velocity
information shall be extracted. The term c denotes the speed of light.

But a major difference between the functions of (22) and (19) exists for small input
values. When fD → 0, the relation of (19) converges to unity, whereas for T → 0 the relation
of (22) converges to zero. For this reason, the method of Doppler frequency extraction
evaluates the distance between subsequent zero points from which the Doppler frequency
of the target can be extracted as follows. For any two subsequent zero points with indices
n and (n + 1) it is

∆T = (n + 1)
1
fD
− n

1
fD

=
1
fD

(23)

and therefore,

fD =
1

∆T
. (24)

Figure 4 illustrates the Doppler extraction algorithm at which a section of duration
Tmax of the continuous noise signals is extracted to a buffer and evaluated by a series of
K matched filters of different durations T(k). It is assumed that the maximum available
matched filter durations is limited to

0 < T(k) ≤ Tmax, (25)

with Tmax representing the maximum available segment duration of the signals. The rate
of the parameter T and the power of the echo signal mainly influence the depth of the zero
positions in the function R(τD)

sg (T) from which, as a last step in the schematic, the Doppler
frequency of the target at a given distance D is extracted. In practical applications, the
zero-points are indicated by local minima of (22) instead of exact zero values.

The method only requires that the target needs to be the sole Doppler-shifted echo
in its range cell. Static echoes like stationary clutter are expected to limit the depth of the
local minima of (22) which is less damaging to the evaluation method as would be two
significantly different Doppler modulations in the same range-cell, a situation being quite
unlikely to endure for a longer period.

Section 4 presents an experiment creating suitable data to test the described signal
processing method. The scheme is particularly suitable for (pseudo-)random signals where
the signal bandwidth is not affected by the choice of the segment duration. It is important
to emphasize again that the different matched filters, applied in this method, use the same
set of data.
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Figure 4. The Doppler extraction algorithm utilizes a set of matched filters (each having a different
duration 0 < T(k) ≤ Tmax) to the same set of noise radar data in order to extract the Doppler
frequency fD of a target in a given distance D.

4. Experiment

The experimental data were obtained by a noise radar demonstrator initially designed
to investigate the influence of the proper motion of a moving radar platform on noise radar
signals. This experimental set-up and the feasibility of the usage of noise radar on moving
platforms was first presented in [36].

The experiment uses a radar demonstrator that operates in the X-band with a very
low transmitter power of about 25 mW. The waveform used during the experiment was
a band-limited Gaussian noise signal with a bandwidth of B = 50 MHz and a duration
of 400 ms. This duration, interpreted as a pulse repetition interval, corresponds to an
unambiguous range of 60 million meters and, thus, can be considered as non-repetitive
from the radar point of view. Two standard horn antennas are mounted to the moving
platform using a modified bicycle carrier and a large absorbent block as shown in Figure 5.
The main unit of the radar demonstrator was located inside the trunk of the car and was
controlled by a radar operator. A different person is required to drive this set-up. For safety
reasons, the experiments took place on a temporarily closed runway.
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Figure 5. The radar was mounted to the rear of a standard car for moving-platform experiments on a
temporarily closed runway.

The used moving radar platform produced particularly suitable data to illustrate
the new signal processing method of Doppler extraction, because these data contain a
minimum amount of static echoes. The scene of the experiment is illustrated in Figure 6:
the radar platform overtakes a cooperatively driven truck that moved with a constant
speed, 25 km/h less than the velocity of the radar platform. In this set-up, the directions
of motion of both vehicles were identical and, thus, the measured relative radial velocity
equals the difference in true speeds.

The measurement results, presented in Section 5, refer to the non-standard unit of
km/h which allows for a direct mapping of the radar measurement and the tachometer
values of the two vehicles.

Figure 6. The radar platform (white) overtakes a truck (red). The velocities differ by 25 km/h,
according to the tachometer values.

5. Results

Two different recordings of the scene were evaluated at different ranges between
the radar platform and the moving target. For both sets of data, a maximum duration of
Tmax = 12 ms of recorded data was deliberately chosen in agreement with the considera-
tions made in Section 1.2.

Figure 7 presents the evaluation of R(τD)
sg (T), as defined in (22), for a target distance

of D = 51 m. The zero points of the curve are reasonably deep and their mutual distance
corresponds to a mean Doppler shift of fD = 441 Hz, resulting in a relative velocity of

vr,1 = 7.056 m/s,

that, being equivalent to 25.4 km/h, matches the value of the speed difference of both
vehicles. Table 2 presents the four Doppler frequencies obtained by pairwise computing
the distances of subsequent zero positions. The standard deviation of the measured data is
equal to 10 Hz resulting in an accuracy of ∆vr = 0.16 m/s (0.58 km/h).
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Figure 7. The Doppler extraction method applied to radar data obtained for a target in a distance
of D = 51 m.

Table 2. The mutual distances between the four zero points of Figure 7 allow for a determination of
the echo’s Doppler frequency.

Zero Position Corresponding Doppler Frequency

2 454.75 Hz
3 439.75 Hz
4 440.33 Hz
5 430.48 Hz

The second recording was made at a mutual distance of D = 141 m between the radar
platform and the target vehicle. The analysis creates a function similar to that of Figure 8.
This more distant measurement indicates that at increasing target distances, noise adds
to the curve due to the decreasing signal power on receive but still the zero positions are
very pronounced.

Figure 8. A second measurement recorded a few moments later with a target distance of D = 141 m
shows that a marginal variation of the velocity results in significantly different positions of the zero
points relative to the previous measurement.

A comparison of both measurements leads to the observation of a marginal velocity
change from vr,1 = 25.4 km/h to vr,2 = 22.84 km/h, reasoned by the fact that at D = 141 m
the radar platform gradually approached the end of the track and initiated a braking
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process. This marginal change in velocity creates a significant shift of the zero points in
Figure 8 compared to those of Figure 7, which is easily noticeable by eye.

Thus, the experimental data show the high sensitivity of (22) even on marginal velocity
changes underlining the precision of the velocity measurement achievable by the method
of this paper.

6. Discussion

This work has presented a signal processing method which allows for a precise
Doppler measurement by multiple matched filters applied to the same set of data. The
computational effort required by the many matched filters pays off by a significantly
reduced illumination time of the target as compared to conventional Doppler determination
by Fourier analyses. The requirements for the presented Doppler processing approach are
three-fold:

1. The waveform needs to have a (pseudo-)random modulation that covers the full
signal bandwidth at all times.

2. The waveform has to be free of range-Doppler coupling, usually indicated by a
thumbtack-like shape of the ambiguity function.

3. The target of interest has to be the sole target in the corresponding range cell.

The first two requirements are inherently met by noise radar signals. The third
requirement strongly depends on the radar application and is expected to be the decision-
maker if the proposed processing scheme is useful in a particular application or not.

The experiment shows an example in which the presented Doppler procedure applies
well to real-world data. In the following, the experimental results are discussed with a
Doppler measurement based on a conventional Fourier analysis. Section 5 stated that the
duration of the data recording was deliberately limited to 12 ms. This maximum available
coherent processing interval, according to (2), would limit the Doppler resolution to

∆ fD = 83 Hz ,

using a Doppler filter bank (implemented by an FFT) to extract the Doppler information.
This value is equivalent to velocity increments of

∆vr = 4.8 km/h

for the X-band radar used during the experiments. In noise radar technology, the cross-
ambiguity function CAF [3] is a suitable signal processing approach for which the PRI can
be set to the sampling rate of the signal and a Doppler analysis of a single range cell may
be performed without Doppler-ambiguities by

F{mD(t)} =
T/2∫
−T/2

mD(t)e−2π f tdt, (26)

where
mD(t) = s(t)g∗(t− τD) (27)

is computed for a single target distance D, respectively for the corresponding delay value τD.
Figure 9 shows the results of a Doppler analysis performed by the cross-ambiguity function
and a coherent processing interval of 12 ms. The FFT, in the current example, has a
corresponding length of 600,000 samples and shows a resolution of ∆vr = 4.8 km/h as
expected for this particular CPI.
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Figure 9. Result of an Fast Fourier Transform (FFT)-based Doppler analysis using a digital Fourier
transform of 6× 105 points length.

7. Outlook

The following paragraphs briefly introduce potential future applications of the find-
ings of this work and sketch planned future investigations in the context of the presented
signal processing algorithm.

7.1. Marine Navigation Radars

The results indicate that the presented Doppler analysis method might enable precise
velocity measurements even in radar sets operating at lower frequency bands. Thus, the
proposed processing scheme might result in an increased performance, for instance in
the case of marine navigation radars. Today, modern long-range S-band marine radars
have advanced from magnetrons towards solid-state technology like the FAR-3000 NXT of
the company Furuno [37] and, thus, already provide the basic technology for a potential
update towards continuous radar emissions in the future.

7.2. Radar Ressource Management

Modern radar systems and multi-function RF sensors (MFRFS) complete several
different, concurrent tasks performed in an interlocked (preferably even simultaneous)
manner and, thus, demand for an efficient use of the sensor’s resources. A conventional
Doppler analysis, performed at high precision, would consume important RF resources for
a long period. The presented signal processing approach, instead, requires only a single
and comparably short recording of the target of interest. These data are analyzed offline by,
unquestionably, a computationally intense method. But during the analysis, the sensor is
free to perform other tasks.

7.3. Design of Doppler-Tolerant Noise Radars

Focusing on continuous emission noise radar, theoretical considerations on the Doppler
tolerance were made in this work and a method for its quantification was formulated. Gen-
erally, a proper segmentation of the continuous noise radar data is identified being the key
method to control the Doppler tolerance. For a given application with given expectations
on the target velocities, the presented achievements on the Doppler tolerance may be used
to design a particular matched filter implementation in order to reduce the damaging ef-
fects of the low Doppler tolerance of noise radars by respecting the Doppler-tolerant duration
of the matched filter. Additionally, this work provides a measure to identify radar scenarios
in which Doppler computations are important not only if the velocity of moving targets
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shall be extracted but also for the compensation of the proper motion of a significantly
moving radar platform.

7.4. Conclusions and Future Work

A deep investigation on the Doppler tolerance of CE noise radar has led to a series
of interesting conclusions which have the potential to accelerate the productionization
of noise radars. Futhermore, by enabling precise velocity measurement with limited RF
resources, this work has introduced a new advantage of noise radar against conventional
deterministic radar waveforms.

Further investigations will be made to increase the performance of the presented
processing scheme. One aim is to reduce the number of required matched filters. For this
task, state-of-the-art signal processing approaches like genetic algorithms will be taken
into consideration. A second aim is to enhance the precision of the determination of the
zero points and, thus, to further increase the Doppler precision. The presented experiment
was tailored to the needs of demonstrating the general principle of the Doppler extraction
method under good conditions, that is, the RCS of the target was immense and the distance
was quite short. For smaller targets and for larger distances an accurate determination of
the position of the zero points is an ongoing work that will be accompanied with a new
experiment when it is ready to be published.
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