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Abstract: With tremendous associated economic and social costs of crashes, researchers have been
trying not only to identify the factors affecting crashes, but also to estimate those coefficients in the
most accurate ways. Estimating model coefficients without accounting for a correct distribution
would result in biased and erroneous results. This risk especially holds true when modeling skewed
equivalent property damage only (EPDO) crashes with a preponderance of zeroes. The distribution
of EPDO is known for not being modeled with known distributions such as Poisson or negative
binomial distributions. This issue is highlighted in particular for a mountainous state like Wyoming
that has very low traffic levels and a severely high crash rate. In addition, we included barriers in the
model that did not experience any crashes but did suffer from being under-designed by geometric
architects, thereby adding to the number of zero count observations. Various models with different
distributional characteristics were considered and compared in this study. Comparisons were not just
made across models in terms of their goodness of fit, but the estimated coefficients were also compared
to see the impact of considering the wrong distributional assumptions on model parameter estimates.
As the objectives of this study are to implement the identified results for optimization purposes
and locate hazardous locations that could host future crashes, the results highlight accurate model
estimations and the consequences of a failure to account for the right distributions. After conducting
different goodness-of-fit measures, a hurdle model was proposed in this study to accommodate
observations with zero crashes, and to account for a sparse distribution of EPDO crashes in the state
of Wyoming. For the hurdle model, binary logistic regression was used to account for observations
with zero crashes, while the negative binomial method was considered for non-zero observations.
The findings of this study have direct implications on the allocation of limited funds for policymakers
in Wyoming, as optimization could be conducted on the geometric characteristics of traffic barriers in
future studies.
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1. Introduction

Sometimes drivers of vehicles leave the travel lane and encroach onto natural or artificial subjects
on the roadside, causing a crash. These types of crashes account for a significant proportion of
high-severity crashes [1]. The installation of traffic barriers would be warranted if the severity of hitting
these barriers would be less severe compared with hitting other roadside fixed objects. However even
if this would be the case, the severity of colliding with these barriers would still persist. Previous
studies mostly focused on analyzing the severity of traffic barrier crashes by analyzing traditional
traffic barrier crash data, without aggregating those crashes across different barriers. In addition,
previous studies mostly have ignored the frequency of those crashes in addition to the impacts of
different crash severity types, e.g., fatality versus injury crashes. However, the crash frequency or crash
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severity alone could not account for the severity of crashes, especially if the objective of the assessment
is to optimize the geometric characteristics of roadside barriers. One way to account for both crash
frequency and crash severity is to consider property damage only (PDO) crashes as one single group
and all other crashes against this PDO group based on their levels of severity, which would be weighted
and converted into PDO crash equivalents. This measurement is known as the equivalent property
damage only (EPDO) benchmark.

One of the biggest challenges of analyzing crash frequency along with crash severity is the
distributional aspect of a model which cannot be modeled with distributions such as Poisson or gamma
distributions. Despite a lack of studies employing EPDO, many studies have explored other aspects of
traffic safety by considering only the frequency or severity of crashes. Nevertheless, it should be noted
that the majority of those datasets which modeled crash counts were impacted by some forms of over-
or under-dispersion resulting from the sparse nature of their crash counts [2].

Some observations have an excess number of zeroes along with many small property damage
only (PDO) crashes, which result in an overall mean that is close to zero. These types of distributions
could not be modeled by using a traditional Poisson distribution, which considers the mean to be equal
to the variance. However, this sparsity could be handled by using various methods incorporating
various shape parameters, such as a negative binomial distribution.

Wyoming has one of the highest fatality rates in the United States [3]. This is a result of many
factors such as adverse weather conditions and mountainous areas with challenging roadways. Due to
the presence of a large number of curves and mountainous areas, there is a significant number of
traffic barriers in Wyoming. These barriers help in avoiding the severity of hitting other roadside fixed
objects, but they still account for a number of severe crashes in the state.

The Wyoming Department of Transportation (WYDOT) funded a project to measure various
aspects of more than 1 million linear feet of traffic barriers in the state. The objective of that project was
to measure various aspects of the barriers’ geometric characteristics such as their heights and shoulder
widths to better manage and enhance them. One of the main reasons for collecting the barrier geometric
characteristics was that many of the barriers in the state are not within the recommended dimensions
of barrier designs, and they should be enhanced. Having well-designed barriers is important because
barrier crash severity would be further exacerbated if they are not well designed, resulting in possible
override or underride barrier crashes.

Unfortunately, some of the barriers in the state are shorter or taller than the recommended
heights, and some of those barriers have not been able to prevent any crashes. These barriers that
did not experience any crashes have not been incorporated in the statistical analysis for traditional
severity analysis because they have no response or explanatory predictors. However, since crashes are
random events, there is a great likelihood that if those barriers experience any crash due to increased
traffic, those crashes would be more severe compared with those involving well-designed barriers
due to possible underride or override crashes. Thus, this study was conducted by considering the
following points.

As there might be significant differences across different highway or interstate systems, this study
only focused on interstate systems. While aggregating crash data across various barrier IDs, in order to
keep the information of all predictors consistent, e.g., driver actions and environmental characteristics,
the predictors were incorporated into the analysis by taking the average of those characteristics across
different barriers. In addition, to account for both crash severity and frequency, both of these factors
were incorporated in the model by using EPDO as a response. One of the challenges for the traffic
barriers in Wyoming is testing the barriers that have not experienced any crashes. Due to the fact
that crashes are random in nature, barriers that are not within recommended heights and did not
experience any crashes were also incorporated in the dataset for analysis as well.
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1.1. Problem Statement

Previous studies focus on various statistical methods based on intuition behind the distribution-based
types of datasets, and are based on various goodness of fits. Although those studies implemented
the correct statistical methods, the comprehensive investigations regarding implementing models were
missing. For instance, the consequences of applying incorrect distributions on model parameter estimates
are not entirely investigated. How would model parameters vary in the case of implementing the wrong
distribution? Is there a lack of model strength that would result in failure of the correct estimation of
model parameters? That is especially important when the objective is to implement the identified results
for optimization purposes. In addition, the consequences of implementing an incorrect distribution have
not been visualized extensively.

In this study, we conduct a comprehensive comparison on the performance of competing models to
answer some of the questions above. Rootograms were used to highlight over- or under-fitting aspects
for models with different values of EPDO for finalist models. Those models were compared not just in
terms of goodness of fit but also in terms of model parameter estimates, along with other measures.

1.2. Literature Review

When analyzing crash frequency alone or combining that aspect with the severity of crashes,
e.g., EPDO, various approaches have been employed to address the sparse nature of the data response.
The following paragraph highlights some of the methodological approaches that have been followed
to tackle the sparse nature and the presence of excess zeros in the dataset response.

The negative binomial model was used for modeling EPDO crashes in South Korea [4]. One of the
reasons for justifying the use of EPDO was to diminish the errors introduced by underreporting less severe
crashes. Another study was conducted to examine the highway-rail grade crossing crash frequency model,
which is characterized by under-dispersion [5]. Different models such as the Conway–Maxwell–Poisson,
hurdle Poisson, and zero-inflated models were considered and compared based on various criteria such as
Alkaile Information Criterion (AIC). Readers can refer to the literature review for more information about
Conway–Maxwell–Poisson [6], hurdle Poisson [7], and zero-inflated models [8].

The EPDO crash rate was modeled using various hurdle regression frameworks to accommodate
the excess number of zeros in the dataset [9]. For the second layer of this model, crash counts greater
than 0 and different distributions such as lognormal, gamma, and normal distributions were considered
and compared. The results indicated that the lognormal hurdle model outperformed the other models.

The distribution of traffic crash rates were evaluated with various distributions such as lognormal
hurdle and Tobit. Kolmogrov–Smirnov tests, kernel density, and quantile–quantile (Q-Q) plots were
used to identify an appropriate distribution [10]. The results show that lognormal hurdle can best fit a
mixed and right-skewed crash rate.

The quantile regression model is another method applied in the literature review to model EPDO
and identify crash blackspots [11]; quantile regression used as crash data was highly skewed by the
preponderance of zeros.

Despite efforts to model EPDO, little work has been made to model EPDO by the application
of hurdle models with various distributional count models and to compare those results with
other two-component models, e.g., zero inflated, and single-component model, e.g., Poisson model.
Additionally, no studies have used EPDO for traffic barrier crashes by incorporating barriers that did
not satisfy the recommended heights and barriers that have not experienced any historical crashes.
The goodness of fit of various models was evaluated by measures such as Alkaile Information Criterion
(AIC), and rootogram plots.

2. Method

In this study, barriers with crashes and risky barriers which did not experience any crashes were
included in this study as crashes are random in nature. Not experiencing a crash does not mean that a
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barrier is not risky. This is especially true in a state like Wyoming with very low traffic. Although many
of these barriers pose a high risk due to poor design, they have not experienced any crashes and there
is a great chance that with an increase in traffic they would experience crashes. When these barriers
experience crashes, the situation would be more severe if they are not within the recommended heights.

Different predictors were considered in the analysis to account for exposure resulting from
differences across various barriers. For instance, variables such as barrier length and traffic were
incorporated in the analysis.

Some of the issues with the crash data, especially EPDO, are over-dispersion or under-dispersion.
Over-dispersion occurs when sample variance is higher the mean, while the reverse is true for under
dispersion. These challenges could be a source of errors by specifying a model with the wrong distribution,
which results in potential errors and biased coefficient estimates. When the data is over-dispersed, some
changes in the model parameters could be applied to account for that over dispersion, e.g., application of
a negative binomial model [12].

In general, the count model can be modeled by the generalized linear model (GLM). For Poisson,
the variance would be set as identical to the mean and the dispersion parameter is fixed at ϕ = 1.
In other words, for the Poisson model, the variance is restricted to the mean as shown below:

Var[Y] = µ (1)

Poisson model has a linear form as:

log(λi) = β0 + β1xi1 + β2xi2 + . . .+ βmxim (2)

where βs are the estimated regression coefficients, and xs are different explanatory variables.
Quasi-Poisson model is another method of GLM that can handle over-dispersion. For this model,

compared with a standard Poisson, ϕ would be unrestricted on the left. In other words, ϕ, instead of
being fixed, would be calculated from the data.

Negative binomial is a type of Poisson model, Poisson-gamma mixture model, that can be used to
relax the constraint of equality between the mean and variance. The negative binomial can be written
as follows:

log(λi) = β0 + β1xi1 + β2xi2 + . . .+ βmxim + εi (3)

where the Poisson parameterλi follows a gamma probability distribution, Exp(εi) is a gamma-distributed
error term, and other parameters were defined earlier.

As discussed, a negative binomial can be used as gamma mixture of Poisson distribution. This model
has ϕ = 1 where variance differs with the Equation (4):

V(µ) = µ+
µ2

θ
(4)

where θ is a shape parameter, and µ is the mean.
In addition to over-dispersion, many count data exhibit an excess number of zero observations,

which might not be addressed by GLM models [13]. The zero-inflated model, for example, is a method
that can account for over-dispersion and the presence of excess zeros. This model allows zeros to come
from both at-risk (sample zeros), and not-at-risk populations (structural zeros), while the hurdle model
only allows zeros to come from at-risk populations [14]. For those models, sample zeros would be
calculated by a binary logistic model, while structural zeros would be estimated by the count part of
the model, e.g., negative binomial or Poisson model.

By design, if the interest is to design a model that incorporates only sample zeros and at-risk
samples, then the hurdle model is preferred. Although it has been discussed that zero-inflated is
preferred in many count datasets due to its improved statistical fit, it has been argued that the inherent
dual state process underlining the development of this model is inconsistent with crash data [15].
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Another issue with the zero-inflated model for modeling crash data is that this model assumes
the extra zeros come from two states: a true-zero state, where the roadway locations are inherently
safe meaning that no crash would occur on those roadway locations at any time, and non-zero state
where only no crashes occurred in the observation periods [16]. It should be noted that it is unrealistic
to consider any road segment as safe at all times, which makes the zero-inflated model unsuitable
for crash counts with an excess number of zeros. On the other hand, the hurdle model addresses the
assumption of the zero-inflated model by assuming that roadway segments with zeros are only safe
over the study period and not at all times [9].

The hurdle model, as a substitute for the zero-inflated model, is a model that could be used
to account for excess numbers of zeros and over-dispersion. There are two layers for these models
including a truncated count and values greater than zero, which could be accounted for by Poisson,
geometric or negative binomial distributions. On the other hand, a hurdle component models zero
count by using binary logistic regression to evaluate a change from zero crash to crash areas.

For the hurdle model, a probability of mass function (PMF) could be written as [7]:

Pr(Y = y) =
{

1−πi, y = 1, 2, 3, . . .
πi, y = 0

(5)

where π is the probability that the response Y = 0 and 1−π is the probability that Y > 0.
For the Poisson process as a starting point of count data, the above formula for zero-truncated

Poisson has the PMF as follows:

Pr(Y = y) =


λi

y

(eλ − 1)y!
y = 1, 2, 3, . . .

0 y = 0
(6)

where yi is an expected number of 0, 1, 2, . . . , y and λi is the predicted EPDO for every barrier.
Thus, from Equations (1) and (2), the unconditional probability mass function for Y is:

Pr(Y = y) =


πi y = 0

1−πi
λi

y

(eλ − 1)y!
y = 1, 2, 3, . . .

(7)

If πi is modeled by log-log and λi is modeled by log link, with some algebra for the hurdle model
and Poisson count, we would have:

πi = e−exi βi (8)

and
λi = exiβ2 (9)

and after some algebra the log likelihood could be written as:

lnL = ln
{
L1(β1)

}
+ ln

{
L2(β2)

}
(10)

It can be seen from the Equation (10) that the log likelihood of zero and not zero could be written
as the sum of the two. In other words, this model estimates the probability of two models: one for zero
values and one for non-zero values.

In the results section, the hurdle and zero-inflated models are two-layer models. The first layer
for the hurdle model is a logistic model governing observations with zero and greater than zero
values. The second part is a zero-truncated count model governing the outcomes with positive counts.
This model is flexible not only to account for excess zeros but for under- or over-dispersion distribution
based on the defined distribution for the second layer. Figure 1 is presented to highlight the sparse
nature of barrier EPDO crashes. As can be seen from this figure, EPDO is highly skewed to the left
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with most observations being less than 50, EPDO is mainly 1, and there are few large observations.
The description of this response in Table 1 provides more information.
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Figure 1. Distribution of traffic barrier equivalent property damage only (EPDO) crashes.

Table 1. Descriptive statistics of barriers with and without crashes.

Variable Mean Std. Dev Min Max

Barriers with crashes

EPDO 9.3 32.898 1 302

Shoulder width, categorical, cutting point of 5 feet 0.5 0.4999 0 1

Barrier height (in) 30.0 2.969 <12 56

Barrier length (ft) 683.7 1181.515 20 10276

Barrier type

Box beam Frequency: 883

Cable barrier Frequency: 5

Concrete barrier Frequency: 51

W beam barrier Frequency: 129

Restraint condition, restrained as 0 versus 1 as others 0.110 0.258 0 1

Speed compliance, speed limit was compiled as 0 versus 1 as others. 0.0969 0.229 0 1

Barriers with no crash

EPDO 0 — — —

Shoulder width (ft) 7.1 2.977 2 18

Barrier height (in) 27.9 5.501 <12 44

AADT (Average annual daily traffic) 3049 1240.090 750 6019

Barrier length 358 318.185 32 2711

Barrier type

Box beam Frequency: 91

Cable barrier Frequency: 172

Concrete barrier Frequency: 7

W beam barrier Frequency: 43

In this study, all the discussed methodologies were implemented to highlight the impact of
considering inappropriate distributions. Although it has been discussed that using the wrong distribution
for data analysis would result in biased and erroneous results, this study delves into the possible
erroneous outcomes by estimating all the coefficients for different distributions and evaluating them
based on various goodness-of-fit measures.
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3. Data

The crash data were obtained from the Critical Analysis Reporting Environment (CARE) package,
which provides comprehensive information regarding various aspects of variables such as vehicles and
drivers being involved in a crash. This dataset does not include information related to the roadside
geometric characteristic or geometric features of traffic barriers. Thus, this information was obtained
and aggregated to the traffic barrier dataset from another source: the information related to 1.3 million
feet of traffic barriers was collected from a field survey performed by a WYDOT contractor. The collected
information includes various information such as shoulder width, barrier length, height, and offset.

Only single vehicle crashes were considered in this study. This is because the severity of multiple
vehicle crashes might be due to unseen confounding factors that the included variables could not
account for. In addition, due to significant differences across a variety of roadway classifications such
as interstate and highway systems, only interstate crashes were considered in this study. The data set
includes barriers crashes between 2007 and 2017. These crashes were matched with barriers based on
their mile posts and highway route IDs.

This resulted in identification of 1069 barriers along 139 miles of roadway, which experienced at
least one crash of any severity level during the time period. A significant portion of barriers in the
Wyoming interstate system did not experience any crashes. In addition, some of these barriers have
heights below or above the recommended heights based on barrier design guidelines. Having higher
barriers could result in underride crashes while the reverse could result in override crashes. These types
of crashes are historically more severe that other barrier crashes.

The critical values for override and underride crashes are considered in this study as below
27 inches and above 35 inches, respectively [17]. It should be mentioned that the higher height limits
do not apply to concrete barriers since underride in not plausible for that barrier type. Almost all
concrete barriers experienced some form of crash as these barriers are mainly installed as median
barriers, which exposed them to a high number of crashes.

Barriers with no crashes were incorporated based on the randomness of crashes. There is a high
risk of severe crashes for these barriers due to under- or over-ride crashes. Therefore, these barriers were
identified and incorporated in the final model on the interstate system. This resulted in identification
of a total of 235 barriers along 20 miles of roadway that did not experience any crashes but were below
or above the recommended heights.

In summary, the whole dataset used in this study incorporated 1388 traffic barriers including
barriers with and without crashes. While the whole dataset included barriers’ geometric characteristics
and traffic volumes, barriers with crashes have additional information such as driver action
characteristics. Since some barriers experienced more than one crash and each crash has various
driver, roadway, and weather characteristics, the averages of those values were included in the dataset.
In Wyoming, the economic costs for various crashes could be calculated as:

EPDO rate = 277× Fatal crashes + 13× suspected serious injury
+4× suspected minor injury + 4× possible injury + 4×Unknown + PDO

(11)

Based on the above Equation (11), a fatal crash, for instance, is equivalent to 277 PDO crashes.
Table 1 presents the descriptive statistics of the included variables found to be important in the
statistical section for both barriers with and without crashes. As discussed earlier, as a barrier might
experience more than a single crash with various driver and roadway characteristics, the averages
of those variables were incorporated in the final dataset. For instance, as can be seen from Table 1,
the mean for restraint constraint is 0.11. That means that the majority of drivers hitting a barrier had
some form of restraint at the time of crashes (restraint constraint with safety in use was set as 0).

Different predictors such as the Average Annual Daily Traffic (AADT) and barrier length were
incorporated into the analysis to account for exposure effects. Barrier types were incorporated into
the study to account for differences across various barrier types. For these predictors, only frequency



Signals 2020, 1 164

is presented in Table 1. Furthermore, as seen in Table 1, barriers with no crashes suffer from a
higher variation, in terms of variance, compared to barriers with crashes. They also present a lower
barrier height compared to barriers with crashes, indicating that those barriers were mostly below the
recommended height of 27 inches.

Regarding the shoulder width variable, while categorical aspects of shoulder width were
considered for the first layer of a hurdle model, a continuous feature of this predictor was found to be
important for the second layer of this model. There are a total of 257 miles of traffic barriers in the
interstate system in Wyoming. Among this number there was a distance of about 10 miles of barriers
that did not receive any crashes during the 10 year period. That number is added to 138 miles of
barriers that did receive some form of crash. There are also about 109 miles of newly built barriers
following the acceptable height where the heights were not measured. Due to lack of availability of
height, and due to the fact that those barriers have already been optimized due to new installation,
these barriers were removed from the analysis.

4. Performance Evaluations of Models

To evaluate the performance of models’ goodness of fits, the literature review regularly checks
the residuals, or deviation of observation yi from the corresponding predicted means. This approach
has been used to ensure that after transforming the dataset, e.g., response, the model residuals follow
a normal distribution. This can be achieved by checking quantile–quantile (Q-Q) plots. This is a
scatterplot created by plotting two sets of quantiles against one another to check if both sets come from
the same distribution.

Various measures such as the Akaike Information Criterion (AIC) were used in this study for
a comparison across various included models. The AIC was used to compare various incorporated
models. This measure follows AIC = −2(log− likelihood) + 2k.

Where k is the number of model parameters including the intercept, and likelihood is a measure of
model fit. The benefit of this measure over others, such as log likelihood, is that this measure includes
a penalty for including more predictors, preventing an over-fitted model from being highlighted to
have a better fit.

Rootograms have been designed for diagnosing and addressing issues such as over dispersion
and an excess number of zeros in the data [2], being extended from Tukey’s work in the literature
review [18]. This is an improved approach to the assessment of a count model such as Q-Q plot.
There are a few important observations that should be taken into account while using this figure:

• Based on the identified model, expected counts are shown by a red line.
• Real/observed counts are shown as bars.
• X-axis represents counts.
• Y-axis represents square root of expected/observed counts.
• The first line observed in this figure is related to the height of the observation with zero value

(EPDO = 0).

In this study, the use of rootograms plots were implemented after identification of a best model
distribution to make sure the finalist models follow the right distribution.

5. Results

The following section will detail the results shown below. The model comparisons present a
comparison between models with different distributions. The second section will discuss the results of
the finalist models, hurdle models with two different distributions based on rootograms, and the last
section will describe the results of the best-fit model.
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5.1. Model Comparisons

Table 2 is presented to make a comparison between different fitted models based on count data
regressions. The response was EPDO and similar predictors were incorporated in the models. However,
it should be noted that while all included models incorporated similar predictors, zero-augmented
models, model zero observation and crash barriers separately while GLM accounted for both layers in
one model. While log likelihood is not a fair comparison across various models due to the different
number of parameters for each model, AIC measures could penalize incorporating various predictors
for each model. Thus this measure could be used for the purpose of comparison across different models.

Table 2. Summary of various fitted count models, p-value in parentheses.

Distributions
GLM Zero Augmented

Poisson Quasi-Poisson Negative Binomial Hurdle Zero Inflated

Intercept 4× 10−1

(<0.005)
3.736× 10−1

(0.722)
−2.138

(<0.005)
−1.3× 10
(0.9704)

1.683
(0.006)

Shoulder width −1.455
(<0.005)

−1.455
(0.243)

1.158
(0.111)

−2.40
(0.0833)

−1.479
(0.047)

Barrier height 3.6× 10−2

(<0.005)
3.603× 10−2

(0.301)
1.136× 10−1

(<0.005)
−6.61×10−2

(0.0982)
−1.6× 10−2

(0.427)

Barrier length 2.6× 10−4

(<0.005)
2.235× 10−4

(<0.005)
2.224× 10−4

(<0.005)
3.93× 10−4

(<0.005)
2.926× 10−4

(<0.005)

Cable barrier −2.491
(<0.005)

−2.491
(0.092)

−1.432
(<0.005)

7.51× 10−2

(0.943)
−4.82× 10−1

(0.363)

Concrete barrier 1.9× 10−1

(<0.005)
1.991× 10−1

(0.617)
−3.539× 10−1

(0.074)
4.05× 10−1

(0.3006)
1.302× 10−1

(0.545)

W beam barrier 1.6× 10−1

(<0.005)
1.571× 10−1

(0.541)
−3.283× 10−1

(0.006)
−2.23× 10−1

(0.3514)
−2.50× 10−1

(0.043)

Restraint condition 1.425
(<0.005)

1.425
(<0.005)

2.892
(<0.005)

5.64
(<0.005)

2.842
(<0.005)

Speed compliance 3.7× 10−1

(<0.005)
3.754× 10−1

(0.331)
1.218

(<0.005)
9.51× 10−1

(0.063)
8.690× 10−1

(<0.005)

Shoulder width × barrier height 5.6× 10−2

(<0.005)
5.620× 10−2

(0.159)
−2.913× 10−2

(0.232)
9.18× 10−2

(0.045)
5.895× 10−2

(0.017)

Intercept – – – −1.351
(<0.005)

20.516
(0.336)

Shoulder width – – – 1.04
(<0.005)

−6.300
(0.006)

Barrier height – – – 5.239
(<0.005)

−3.289
(<0.005)

Traffic (AADT) – – – 2.37
(<0.005)

−0.0002
(0.005)

Barrier length – – – 1.44
(<0.005)

−0.001
(0.011)

Cable barrier – – – −6.849
(<0.005)

84.698
(<0.005)

Concrete barrier – – – −2.496
(0.636)

18.452
(0.507)

W beam barrier – – – −1.101
(<0.005)

48.66
(<0.005)

Shoulder width × barrier height – – – −1.351
(<0.005)

0.223
(0.012)

Degree of freedom 10 10 11 20 19

Log likelihood −14,805 – −3466 −3138 −3425

AIC 29,630 – 6955 6315 6890

– Indicates estimates were not available for those measures.



Signals 2020, 1 166

It is of interest not only to find the best-fit model but to make a comparison across parameters’
estimations with various distributions. From Table 2, three GLM models and two zero-augmented
models were considered. It should be noted that both zero-augmented models used logit link function
for their first layers. It can be seen from Poisson and quasi-Poisson that the estimates are almost
identical. However, while almost all the included variables are important at 0.05 p-value significance
for the Poisson model, many estimations are significant not for quasi-Poisson models. This is due to
the fact that the scale parameter is fixed as 1 for Poisson while this value is computed for quasi-Poisson.
Not accounting for over-dispersion, even if that model results in very similar output coefficient
estimates, it would result in unreasonable inference/interpretation.

Moving to GLM with the family of negative binomial, it can be seen that while there are
some similarities between negative binomial and Poisson, and also quasi-Poisson models. It can
be observed that while there are similar signs for various driver action variables between negative
binomial results and the other GLM models, there are significant differences for barriers and roadway
characteristic predictors, shoulder width, barrier height, and the correspondent interaction terms.
While quasi-Poisson is not associated with a fitted likelihood, the negative binomial improved the
fit dramatically compared to the Poisson distribution (AICNB = 6955 versus AICpoisson = 29,630).
In summary, even considering a different family of GLM results in complete variations across some
predictors in terms of signs and magnitudes.

For zero-augmented models, two components need to be clarified for the models. One component
for values greater than zero and another component for zero observations, which are often defined by
the binary logistic regression model. For the non-zero distribution, logit link function was considered
for both the zero-inflated and hurdle models. The Poisson distribution is considered for the non-zero
hurdle model as well, which will be evaluated in the next section.

For the most part, the estimates for both zero-augmented models are very close with similar signs
for all significant predictors in the non-zero layer. The inverted signs of the zero-inflated model are
expected. As for the hurdle model, the zero hurdle component describes the likelihood of observing a
crash while the zero-inflated component predicts the probability of observing a zero count. In summary,
both zero-augmented models have two layers: the first layers controls whether a vehicle hits a barrier
or not and the second component controls how many times and with what crash severity level a vehicle
would hit a barrier.

In summary, a significant improvement was observed by implementing the GLM with negative
binomial distribution compared with the GLM Poisson model. These results were expected as Poisson
distribution does not account for over-dispersion. Although a slight improvement was observed from
the negative binomial to the zero-inflated model, the improvement was greater when compared to the
hurdle model.

5.2. Comparison Between Hurdle Models, Truncated Count Component, with Different Distributions

Based on the discussion in the paragraph above, hurdle models were identified as the best-fit
model across the included competing models. However, this model is a two-component model with a
truncated count component. The truncated count component, which is used for positive count, can take
different distributions. This section considers only Poisson and negative binomial distributions as
these two distributions are more likely to be able to fit non-zero portions of this model. It is clear that
Poisson is not suitable for our dataset, but for comparison purposes and to visualize how they fit the
observations, these two models are compared to see how they fit the observations. The rootogram
was chosen for comparison across these models to make sure the right distribution is chosen for a
final model.

The rootograms allow us to visualize if the model is over- or under-fitting for different values of
EPDO as response. For rootograms, only the values less than EPDO = 50 were considered to improve
readability. These values accounted for more than 98% of all the included observations.
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As discussed in the method section, the first line observed in these figures is related to the height
of observations with zero value (EPDO = 0). As can be seen from rootograms, Figure 2a,b, the hurdle
components of the models that model zero counts fit zero values quite well. It is expected for these
models to fit zero count perfectly by design. However, when EPDO is equal to 2 or 3, while a dramatic
under-fitting can be observed for Poisson distribution, the negative binomial layer could fit those
values quite well.

  
(a) Negative binomial (b) Poisson 

 
Figure 2. Rootograms for the negative binomial and Poisson hurdle models.

In other words, for the Poisson model, the substantial amount of over-dispersion in the data could
not be accounted for by this model. It should be noted that the EPDO values equal to 2 or 3 account for
50% of all the EPDO > 0. From EPDO = 6 onward to EPDO = 14, the Poisson model basically does not
predict any count because it is over fitting, while the negative binomial distribution, for the most part,
fits the data fine. In summary, as can be seen from Figure 2, the negative binomial model fits the model
quite well while the Poisson model suffers from over-dispersion/under-dispersion issues.

5.3. Hurdle Model Results

As the hurdle model with negative binomial was identified as the best identified model, this section
briefly discusses the results obtained from Table 2. The results of the hurdle model include two
components. The first layer includes the impact of various predictors on the frequency of EPDO.
First, it was found that the impact of barrier height and shoulder width on EPDO should not be
considered separately, but rather should be considered as interactive terms that impact crash severity.
Non-compliance with the speed limit and being unrestrained were two of the factors that were found
to increase the risk of EPDO crashes, with the impact of the restraint condition being much higher than
the impact of the other variable, 2.482 versus 0.89.

Moving to the next layer of the hurdle model, as a crash did not occur in this section, only predictors
related to the road and barrier geometric characteristics were considered. Barrier length and traffic are
two factors that were considered to account for exposure. The coefficient estimates with positive signs
indicated the contributory impacts of those predictors in predicting a crash compared with no crash.
For instance, as can be expected, higher barrier length and higher traffic (AADT) increase the odds of
having a crash. Additionally, the interaction between shoulder width and barrier height were found to
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impact the odds of having a crash. However, the differences across magnitudes and signs between
these two layers should be noted.

6. Summary and Conclusions

The installation of traffic barriers would be warranted if they could reduce the severity of
fixed object crashes. However, barrier crash severity will still exist when hitting a barrier. Actually,
traffic barrier crashes are a major social and economic concern due to their high severe crash rate for
policy makers, especially in a mountainous area like Wyoming with significant under/over standard
barriers heights needing immediate attention.

Studies in the literature review only focused on the severity of barrier crashes. However, crashes
are random and not experiencing a crash does not indicate that a specific barrier is not hazardous.
The condition would be more critical if those barriers were below standard design, and also if they did
not experience a crash. In addition to barriers with crashes, this study incorporated barriers with no
crashes that were not designed based on the recommended height, posing a danger of underride or
override crashes.

To account for both severity and the frequency of crashes, EPDO was used as a measure that
could account for both aspects of crashes. The distribution of responses shows a substantial amount of
over-dispersion that cannot be accounted for by a Poisson model. In addition, the number of zeros
were so large that just correcting for over-dispersion through the negative binomial model cannot
address the issue. Thus, in order to identify the right distribution, various models were considered
and the best-fit model was identified based on various measures.

AIC measure was used for a decision across various model distributions. A comparison was
used not only between various goodness-of-fit measures across the included models, but also between
the sign and magnitude of various coefficient estimates. The results indicated that considering the
wrong distribution would not only result in a biased estimation of the coefficients for some predictors,
but the signs of some critical predictors such as barrier height would be reversed. This would result in
a tremendous waste of public funds if it would have not been addressed properly.

The comparison results based on various measures work in the favor of the hurdle model.
Rootograms was used to make the decision of the truncated hurdle model by considering negative
binomial and Poisson distributions. Although the negative binomial distribution seems to be suitable for
the sparse nature of the dataset, the rootograms visualize how various models would fit the observations.
These measures highlighted that the negative binomial distribution for the first component of the
hurdle model could fit the data quite well. It is recommended for future studies to give attention to a
model distribution assessment while considering crash frequency or EPDO. An optimization technique
would be considered for barrier optimization in the Wyoming interstate system.
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