
Citation: Palchikovskiy, V.;

Kuznetsov, A.; Khramtsov, I.; Kustov,

O. Comparison of Semi-Empirical

Impedance Models for

Locally-Reacting Acoustic Liners in a

Wide Range of Sound Pressure Levels.

Acoustics 2023, 5, 676–692. https://

doi.org/10.3390/acoustics5030041

Academic Editor: Heow Pueh Lee

Received: 12 June 2023

Revised: 11 July 2023

Accepted: 12 July 2023

Published: 14 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

acoustics

Article

Comparison of Semi-Empirical Impedance Models for
Locally-Reacting Acoustic Liners in a Wide Range of Sound
Pressure Levels
Vadim Palchikovskiy *, Aleksandr Kuznetsov , Igor Khramtsov and Oleg Kustov

Acoustic Research Center, Perm National Research Polytechnic University, 614068 Perm, Russia
* Correspondence: lmgsh@pstu.ru

Abstract: A comparison is considered of the experimentally obtained impedance of locally reacting
acoustic liner samples with the impedance calculated using semi-empirical Goodrich, Sobolev and
Eversman models. The semi-empirical impedance models are outlined. In the experiment, the
impedance is synchronously measured on a normal incidence impedance tube by the transfer function
method and Dean’s method. A modification of the conventional normal incidence impedance tube is
proposed to obtain these measurements. To automate the measurements, a program code is developed
that controls sound generation and the recording of signals. The code includes an optimization
procedure for selecting the voltage on an acoustic driver, providing the required sound pressure
level on the face of the sample at different frequencies. The geometry of acoustic liner samples and
specifics of synchronous impedance measurements by the aforementioned methods are considered.
Experiments are performed at sound pressure levels from 100 to 150 dB in the frequency range of
500–3500 Hz. A comparative analysis of semi-empirical models with the experimental results at
different sound pressure levels is carried out.

Keywords: locally reacting acoustic liners; semi-empirical impedance models; normal incidence
impedance tube; Dean’s method; transfer function method

1. Introduction

When mainly tonal noise propagates in ducts, the ducts are treated with acoustic
liners of a locally reacting type. These liners are isolated cells of various geometric shapes
covered with thin, perforated sheets. The main characteristic of such liners is acoustic
impedance because they transform the energy of the excited modes into high-order modes,
which decay rapidly. The impedance that provides the greatest noise reduction is called the
optimal impedance.

Acoustic impedance depends both on the geometric parameters of the liner (cavity
depth, perforated plate thickness, open area ratio, etc.) and on external conditions (sound
frequency, sound pressure level (SPL), in-duct grazing flow velocity). The correspondence
between the liner geometry and the required impedance value can be established using:

• Experimental methods, carrying out measurements of liner samples with different
geometric characteristics [1–5];

• Numerical solutions based on mathematical models describing the propagation of
sound in a duct with resonators attached to it [6–10] (in fact, by conducting a virtual
experiment for each sample with individual geometric parameters);

• Calculations based on the semi-empirical theory [11–21].

The first two approaches are the most time-consuming; therefore, to select the liner
geometry that provides the optimal impedance (at least in the initial estimate), it is rational
to use semi-empirical models. Here, a relevant issue is the application of such a model,
which provides more accurate impedance of the considered liner under given external
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conditions. A number of disadvantages of the semi-empirical approach complicate this
task. These disadvantages include the following:

• To derive the impedance formula, it is necessary to use simplified mathematical for-
mulations that do not completely consider some complex physical effects that are
important for an accurate description of impedance under certain conditions (for exam-
ple, the process of vortex formation ignored in perforation at a high SPL; it is assumed
that the velocity in the perforation is transformed only into the acoustic mode);

• The empirical constants used in the models have relatively large spreads (for example,
the end correction varies according to different authors from 0.785 to 0.85 [22,23] and
even more strongly in the presence of a grazing flow [14]).

By now, a number of semi-empirical models have been developed that have described
the dependence of the impedance on the SPL, on the spectral composition of sound pressure
pulsations and, of course, on the geometry [11–21]. Any impedance model of the multilayer,
locally reacting liner is based on the model of a single-layer liner. Therefore, all semi-
empirical impedance models, in essence, refer to a single-layer liner. Moreover, all of them
are essentially derived for a single resonator and are generalized to an array of resonators.
At the same time, the design of a full-scale acoustic liner differs somewhat from that of a
single resonator. In particular, a perforated sheet with equal spacing between the holes is
usually used. If the resonators are covered with a perforated sheet, then each resonator in
the liner has a different number of holes, and some of the holes are located directly above
the edges of the resonators. In the latter case, this arrangement leads to the appearance of
unnatural narrow peaks in the impedance spectrum (the more such “blocked” holes that
there are in a liner sample, the stronger that the peaks are). As a result, the replacement of
a single resonator in the experiment by a sample with an array of resonators introduces
distortion into the impedance obtained in the semi-empirical theory. In connection with the
aforementioned aspects, this study suggests obtaining experimental impedance on samples
with the same number of holes per resonator for comparison with semi-empirical models.
Only single-layer liner samples with clearly different resonance frequencies are considered.

Locally reacting acoustic liners can be used to treat ducts with both low SPL noise
(e.g., fan equipment located in a building) and high SPL noise (e.g., turbofan engines and
power plants). Additionally, if there is a high SPL at the entrance to an acoustic liner section,
the level becomes lower due to the absorption of sound energy as sound waves pass
through this section, so the impedance is variable along the length of the liner. Therefore, it
is important to consider semi-empirical impedance models across a wide range of SPLs.
At the same time, this study does not consider the influence of the grazing flow effect
on impedance, and experimental data are obtained from measurements from a normal
incidence impedance tube.

Thus, the objectives of the study are:

• Obtaining experimental data that allow us to compare the impedance of both a single
resonator and the entire sample from an acoustic liner;

• Comparison of the impedance calculated by known, well-developed, semi-empirical
models with experimental results;

• Interpretation of the reasons for the possible discrepancies between the calculated and
experimental values of the impedance;

• Identification of more accurate semi-empirical models with semi-empirical dependen-
cies and constants known from the literature for different SPL ranges.

2. Considered Semi-Empirical Impedance Models

Melling [11] published one of the earliest full-scale works deriving an impedance
model for a locally reacting acoustic liner. Later, Guess [12] proposed a semi-empirical
model considering the effect of a grazing flow. Subsequent semi-empirical impedance
models proposed by other authors refined the description of the main physical effects occur-
ring in resonators under various conditions, as well as the empirical data (end correction,
oscillation velocity in the resonator neck, discharge coefficient, etc.) [13–24].
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In this study, Goodrich’s [16], Sobolev’s [17] and Eversman’s [21] semi-empirical
impedance models are compared with the impedance determined by experimental meth-
ods. Also of interest is the Rienstra model [20], which requires fewer empirical data but,
according to the author, needs to be improved.

2.1. Goodrich Model

The Goodrich semi-empirical model [16] underlies the models [11,12]. This model uses
empirical dependencies built on processing a large number of experimental data [22,25,26].
Separately, it is worth mentioning the work [26] in which semi-empirical dependences were
obtained for micro-perforated liners, in which the hole diameter was less than that of the
perforated plate thickness.

The expressions for the resistance and reactance are:

Zre = Re
{

iω(t + εrd)
cF · f (ksr)

}
+

1.336541
c

(
1− F2

2C2
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)
υ +

M

F
(

2 + 1.256 δ∗
d

) (1)

Zim = Im
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}
+ Smυ− cot(kh) (2)

where i is an imaginary unit; d is the perforated plate hole diameter in cm; c is the ambient
speed of sound in cm/s; t is the perforated plate thickness in cm; F is the open area ratio (the
ratio of the total area of the holes in the resonator to the cross-sectional area of the resonator
cavity); εrd = εxd = d(1−0.7

√
F)

1+305M3 at t/d ≤ 1; εrd = 0.2d(1− 0.7
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√
−iω/ν is the wave number of viscous Stokes

waves in cm−1; ν is a kinematic viscosity in cm2/s; ω is angular frequency in rad/s; r is the
hole radius in cm; J0 and J1 are zero and first-order Bessel functions, respectively; CD is
the discharge coefficient (the ratio of the mass flow rates at the entrance to and exit from
the hole); CD = 0.80695

√
F0.1/e−0.5072 t/d at t/d ≤ 1 and CD = 0.584854

√
F0.1/e−1.151 d/t

at t/d > 1; υ is the root-mean-square acoustic particle velocity in cm/s; M is the mean Mach
number of the in-duct grazing flow; δ∗ is the boundary layer displacement thickness in
cm; Sm is the nonlinear mass reactance slope in s/cm; Sm = −0.0000207k/F2 at t/d ≤ 1
and Sm = −0.00001242k/F2 at t/d > 1; k is a free space wave number, cm−1; and h is cavity
depth in cm.

2.2. Sobolev Model

The Sobolev semi-empirical model [17] uses an approach similar to [11,12] and is
based on the TsAGI experimental data. The expression for normalized impedance has the
following form:
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where i is an imaginary unit; k is the free space wave number in m−1; t is the perforated
plate thickness in m; f (ν) = 1− 2

ζa
J1(ζa)
J0(ζa) ; ζ =

√
−iω/ν is the wave number of viscous

Stokes waves in m−1; ν is kinematic viscosity in cm2/s; ω is angular frequency in rad/s;
a is the hole radius in m; J0 and J1 are zero and first-order Bessel functions, respectively;

ν′ = ν
(

1 + γ−1√
Pr

)2
; γ is the ratio of specific heat measurements; Pr is a Prandtl number;

δnl is end correction in m; Φ(F) = 1− 1.47
√

F + 0.47
√

F3 is Fok’s function [27]; F is the
open area ratio; Z1 = 1− 2

kd J1(kd); d is the perforated plate hole diameter in m; υ is the
root-mean-square acoustic particle velocity in m/s; and h is the cavity depth in m. The
empirical coefficient CV describes the influence of the grazing flow on acoustic resistance,
and in [17], it is proposed to be equal to 0.12. The discharge coefficient CD depends on the
ratio d/t, and its recommended values are reported in [17].
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It is worth noting the differences in the calculation of the end correction from the other
considered models. In other impedance models, the end correction is constant at different
SPLs, while in the Sobolev model, the end correction depends on the SPL expressed in terms
of the root-mean-square acoustic particle velocity in the holes in the following form [12]:

δnl = δl
1 + 5000M2

0
1 + 10000M2

0
,

where δl = 0.85d is the end correction at a low SPL in m/s; and M0 = υ/c0 is the Mach
number for the root-mean-square acoustic particle velocity in resonator neck υ.

2.3. Eversman Model

The framework for transfer impedance used here is essentially the model of Murray [18,19]
(which is still based on [11,12]), and this framework in turn uses concepts from the NASA
model [28] and the Goodrich model [16,26]. The model was specially developed for linings
with mechanically drilled carbon fiber laminate conventional perforate face sheets and laser
drilled epoxy film micro-perforate septa that are inserted into the core and drilled in place. The
model is based heavily on empirical data obtained both experimentally and numerically.

This study uses only dependencies for linings with mechanically drilled holes, where
the expression for the normalized impedance has the following form:
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s/m; c is the ambient speed of sound in cm/s; CD = 0.88 is the discharge coefficient; ρ0 is
ambient density in kg/m3; k5 = k6 = 0.9 are mass reactance scale factors; M is the mean

Mach number of the in-duct grazing flow; Rg = k2
M(5− t
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cF ; f is the frequency in Hz;

k2 = 1.15
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145
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(0.4− 0.1M) and k3 = 1.10

(
−0.095 + 2.87M− 3.5M2) are scale factors

related to grazing flow; k is the free space wave number, m−1; and h is cavity depth in m.
All semi-empirical impedance models include the root-mean-square acoustic particle

velocity in the resonator neck. This velocity is related to the SPL according to the formula:

υ =
2 · 10

SPL
20 −5

ρ0c0|Z|F
,

where ρ0 is ambient density; c0 is the ambient speed of sound; |Z| is the absolute value of
impedance; and F is the open area ratio. This expression is substituted into the right side of
Expressions (1)–(4) instead of υ when calculating the impedance. As a result, we obtain a
nonlinear equation, which when solved at a given frequency, we find the impedance.

3. Details of the Experiment

The verification of semi-empirical impedance models in the absence of a grazing
flow is based on a comparison with the impedance measured on a normal incidence
impedance tube [14,15,29,30]. In our case, two essentially different methods for measuring
the impedance are used:

• The transfer function method [2], in which microphones are inserted into the wall of
the impedance tube (Mic 3 and Mic 4 in Figure 1a);

• Dean’s method [3], in which probe microphones are inserted into the front plate and
bottom of the liner sample (Mic 1 and Mic 2 in Figure 1a).
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microphones were calibrated before liner sample measurements using a Bruel & Kjaer 
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Under conditions of normal wave incidence, the impact on all cells of a liner sample 
is considered to be the same. However, our experience with Dean’s method demonstrates 
that, in some cases, the sound field in the central cell of the sample may differ from the 
field in the remaining cells. This differences results in a difference in impedance deter-
mined by Dean’s method from the sound pressure measurements in the center cell and in 
the side cells. In this regard, we install the probe microphones only in the side cells (Figure 
2). 

Figure 1. Impedance measurements by the transfer function method and Dean’s method: (a) diagram:
Mic 1, Mic 2—microphones for Dean’s method; Mic 3, Mic 4—microphones for transfer function
method; 1. acoustic driver; 2. plug; 3. supporting ring; 4. sample holder; 5. liner sample; 6. probe
microphones; (b) photo.

The measurements are performed synchronously.
Liner samples are measured in a normal incidence impedance tube with a duct diame-

ter of 50 mm (Figure 1), making it possible to place seven complete cells in the liner sample
and thereby obtain more representative data in the experiment than from impedance tubes
with narrower ducts. However, in the conventional configuration of the normal incidence
impedance tube [31], the liner sample is mounted inside a sample holder (a thick-walled
tube, which is an extension of the impedance tube) and rigidly fixed with a piston. This
configuration does not enable the impedance measurement by Dean’s method, as the probe
microphones cannot be properly installed into the sample. In this regard, for synchronous
impedance measurements by the transfer function method and Dean’s method, a modified
sample holder (pos. 4 in Figure 1a) is used, which is attached to the impedance tube. A
liner sample is mounted into the holder such that part of the sample is located outside
the holder, making it possible to insert thin, stiff probe tubes into the front plate and
the bottom of the sample (pos. 6 in Figure 1a). The impedance measurements by the
transfer function method are obtained with two Bruel & Kjaer 4944 microphones; measure-
ments by Dean’s method are obtained with two Bruel & Kjaer 4182 probe microphones
(Figure 1b). The 4182 microphones use 50-mm stiff probe tubes. All microphones were
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calibrated before liner sample measurements using a Bruel & Kjaer Pistonphone 4228 with
appropriate adapters.

Under conditions of normal wave incidence, the impact on all cells of a liner sample is
considered to be the same. However, our experience with Dean’s method demonstrates
that, in some cases, the sound field in the central cell of the sample may differ from the field
in the remaining cells. This differences results in a difference in impedance determined by
Dean’s method from the sound pressure measurements in the center cell and in the side
cells. In this regard, we install the probe microphones only in the side cells (Figure 2).
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Figure 2. 3D model of the liner sample.

It is also important to note the design specifics of the liner samples. Each resonator
has the same number of holes arranged in the same way, while there are no holes in other
places of the sample. The outermost cells are not perforated so that the plots of impedance
do not show additional peaks associated with the resonance of these small cells. To keep
the volume of non-perforated cells inscribed in a 50 mm-diameter circle as small as possible,
the edges of the cells are chosen to be 9 mm. The remaining geometric parameters of the
tested samples are presented in Table 1. They are within the ranges of parameters from the
empirical databases used in the impedance models described above. The geometry of each
sample is selected so that its resonance frequency differs markedly that from other samples.

Table 1. Geometric parameters of the acoustic liner samples.

Characteristic Sample 1 Sample 2 Sample 3 Sample 4

Cavity depth, mm 14 24 12 35
Perforated plate thickness, mm 2 2 2 2

Hole diameter, mm 1.5 2 1.4 1.2
Number of holes in a resonator 5 5 14 8

Resonator open area ratio 0.420 0.746 0.102 0.430

Samples with this specific geometry are produced by 3D printing. The perforated
plate and honeycomb are printed as a single unit, while the bottom of the sample is printed
separately and glued to the sample. Holes 1 mm in diameter for stiff probe tubes are printed
with the sample, and then they are drilled to a diameter of 1.2 mm (conventional mechanical
drilling is used). Then, the stiff probe tubes with an outer diameter of 1.24 mm are inserted
into the holes with an interference fit. This decision increases the positioning accuracy of
the probes and facilitates their installation into the sample. The liner sample with installed
probes is mounted into the sample holder with an interference fit and additional sealing.



Acoustics 2023, 5 682

The experiments are carried out at 100, 110, 120, 130, 135, 140, 145 and 150 dB on the
faces of the samples. At relatively low SPLs, the impedance changes little; therefore, in the
range of 100–130 dB, a step of 10 dB is chosen. At high SPLs, small changes in SPL already
notably affect the impedance, so the measurements are obtained in 5-dB steps. For each
given SPL, measurements are performed in the frequency range of 500–3500 Hz with a
step of 100 Hz. The environmental conditions in the experiment are as follows: ambient
pressure of 1000 hPa; ambient temperature of 26 ◦C; and ambient humidity of 13%.

The “white noise” excitation and “sine” excitation are used in the experiments. In
the case of “white noise” excitation, the entire set of required frequencies is immediately
realized, and the total SPL over frequencies is controlled on the face of the liner sample, so
SPL selection can be carried out fairly quickly by setting the voltage on an acoustic driver
in manual mode. In the case of “sine” excitation, the situation becomes more complicated
because measurements for each frequency must be obtained at an individual voltage on
the acoustic driver. This requirement occurs for the following reasons:

• The wavelength changes as the frequency changes, so SPL changes along an impedance
tube and consequently on the face of a sample;

• The absorption of sound energy changes with frequency (especially in a region of
resonance frequencies); therefore, the SPL on the face of a sample changes too;

• The characteristics of the acoustic driver change in frequency (for example, to maintain
a required SPL at low frequencies of sound generation, less voltage should be applied
to the acoustic driver than at high frequencies).

Obviously, in this situation, automation of the measurements is required because the
selection of the acoustic driver voltage in manual mode is extremely laborious. For this
purpose, code was written in MATLAB. First, the problem of controlling measurements
from MATLAB was solved: since the sound generation and registration of signals are driven
through Bruel & Kjaer PULSE Labshop software, the MATLAB code gains access to the
methods and properties of the PULSE Labshop objects. In particular, the MATLAB code:

• Transfers the required voltage value and the sound generation frequency to PULSE Labshop;
• Starts the generation of the sound signal and synchronous fft-analysis of the signals

registered on the microphones;
• Reads from the PULSE Labshop the auto- and cross-spectra obtained in the fft-analysis.

The voltage selection is implemented through the MATLAB optimization function
fminbnd, searching for the minimum of the objective function, which is the modulus of the
difference between the target and the actual SPL measured with a probe microphone on
the face of the liner sample. It is important to note that an SPL difference of, for example,
0.3 dB from the target value will not notably affect the change in impedance. However,
the fminbnd function searches for a unimodal minimum using a golden section search
and parabolic interpolation, where a procedure stops if the width of the interval becomes
less than the given tolerance εx or if the given number of iterations Nit is attained. Both
of these parameters cannot be perfectly tuned, as they may differ for each liner sample
depending on the frequency and SPL considered. As a result, it is necessary to set the
number of iterations with a safety margin, despite in some cases the SPL deviation range of
0.3 dB being able to be attained already in the second or third iteration, but the iterations
continue to run until the specified value of εx or Nit is attained. Considering that a new
measurement is required to determine a new value of the objective function, and one
measurement requires at least 10 s before the SPL ceases to notably change, the procedure
for selecting the voltage at one particular frequency can take several minutes. Thus, to
reduce the duration of the experiment, a condition was added to the fminbnd function to
stop the optimization when the discrepancy F between the target and actual SPL values
attained is εF = 0.3 dB.

The flowchart of the algorithm developed for measurements is shown in Figure 3.
Here, SPLt is the target value of SPL on microphone 1, dB; f is the sound generation
frequency in Hz; Umin and Umax are voltage search limits in V; εF = 0.3 is the termination
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tolerance on the residual in dB; εU = 10−4 is the termination tolerance on the width of
the search interval in V; Nit is the maximum number of iterations allowed; U is the actual
voltage of the acoustic driver in V; SPL is the actual value of the SPL on the microphone 1
in dB; Fun is the objective function; F is the residual in dB; and i is the iteration number.
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Figure 3. Flowchart of the measurements on a normal incidence impedance tube with “sine” excitation.

Auto- and cross-spectra on microphones corresponding to the minimum residual are
stored in a file for further calculation of the sample impedance by the transfer function
method and Dean’s method.

4. Results of the Study

Due to the large volume of results, below are graphs of the normalized impedance
only for SPLs on the face of a sample equal to 100, 130 and 150 dB. These SPLs are quite
enough to represent the main trends in the behavior of the impedance: 100 dB—linear
regime; 130 dB—the non-linearity of the impedance is not yet so strong; and 150 dB—deeply
nonlinear regime.

Figures 4 and 5 compare normalized impedance obtained by Dean’s method at 100
and 150 dB with “white noise” and “sine” excitation, respectively (the results of the transfer
function method are not shown since all the conclusions drawn below are similar for them).
First, we note that the reactance values are in good agreement with each other, both at low
and at high SPLs. It can also be seen that, at 100 dB, the resistance levels at “white noise”
and “sine” also agree well with each other. Thus, for acoustic liners used in ducts with
SPLs corresponding to a linear regime, the impedance can be determined experimentally at
“white noise”, which considerably reduces the labor of measurements due to the realization
of the entire set of required frequencies in one sound generation.
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At SPLs corresponding to a deeply nonlinear regime, the resistance at “white noise”
and “sine” is unusual even in a qualitative sense. This effect is well known and is explained
by the sound energy at “white noise” being distributed over all considered frequencies, so
the SPL at each specific frequency is somewhat less than that at the total level. However, a
semi-empirical theory is built on the assumption that all sound energy is concentrated at
a single frequency, and “sine” excitation in the experiments is much better suited to this
assumption than “white noise”. In this regard, to compare semi-empirical models across a
wide range of SPLs, further plots are given for the experimental impedance values obtained
with “sine” excitation.

In the plot of resistance values determined by Dean’s method for Sample 1 (Figure 4a),
there is a strong drop after 3000 Hz. The result is probably caused by a slight distortion of
one of the stiff probe tubes installed in Sample 1. This distortion can lead to an increase
in the resistance of the tube channel at high frequencies. At the same time, a high SPL is
capable of “overcoming” this resistance, and at 150 dB, such a drop is no longer registered
(Figure 5a). When measuring the other samples, this distortion in the installation of the
probe tubes is corrected.

The experimental reactance in Figure 4 shows that the resonance frequencies of the
considered samples are in different regions of the frequency range: for Samples 1 and 2, in
the region of 1600–1700 Hz; for Sample 3, in the region of 2800 Hz; and for Sample 4, in
the region of 1000 Hz. This fact expands the variety of impedance behaviors and conse-
quently allows us to perform a more complete assessment of the accuracy of describing the
impedance by semi-empirical models for liners with different geometries.

The calculations by Models (1)–(4) were carried out using the empirical constants and
dependencies presented in [16,17,21]. The discussion of the calculation results and their
comparisons with experiments are carried out in the next section.

5. Discussion

Analyzing the formulas in Section 2, it can be noted that, although the considered
semi-empirical theories are based on the works of Melling [11] and Guess [12], they differ in
the values of the empirical constants and semi-empirical dependencies describing various
physical effects. This difference occurs partly because the dependences and constants are
obtained from measurements of samples with different designs under different conditions.
Furthermore, there are differences in the methods for obtaining empirical data (numerical
simulation, in-situ measurements, air blowing, etc.) and in the experimental rigs. In
this regard, when calculating the impedance of a liner with a slightly different geometry
than that considered in semi-empirical models, some discrepancy with the experimental
impedance is observed. Obtaining semi-empirical dependences and constants for the new
liner geometry requires long-term studies; therefore, a rational approach may be used for
certain semi-empirical models that provide good agreement with the experiment in certain
frequency ranges at given SPLs. The results of the calculations are further compared in
this vein.

It is also important to note that the study reveals that all semi-empirical models
demonstrate much better agreement with the experimental results determined by Dean’s
method than by the transfer function method. This outcome can be explained by semi-
empirical models being derived for a single resonator, and Dean’s method determines the
impedance of only one cell, while the transfer function method determines the impedance
of the entire face of the sample, as demonstrated in [32]. In this case, the open area ratio of
a single resonator can differ from the liner sample containing an array of the resonators.
However, the calculation carried out in the current study based on Models (1)–(4) for an
open area ratio corresponding to the entire face of the sample yielded worse agreement with
the experimental impedance determined by the transfer function method. For this reason,
we discuss below only the agreement of semi-empirical models with the experimental
impedance determined by Dean’s method.
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Figure 6 shows that, at a low SPL, the resistance in the frequency range of 500–3500 Hz
in the absence of grazing flow is best described by the Sobolev model and worst of all by
the Eversman model. For Sample 2, which is not micro-perforated (t/d ≤ 1), the resistance
calculated by the Goodrich model is also very close to the experiment (Figure 6b). The
reactance at low SPLs for all samples is also best described by the Sobolev model. For
Samples 1 and 4, the worst agreement for the reactance was obtained by the Eversman
model and, for Sample 2, by the Goodrich model.
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Near zero reactance, the best agreement with the experiment for all cases was noted
for the Sobolev model. This finding can be explained by the Sobolev model using a more
developed semi-empirical dependence for the end correction.

Note also that we did not consider here such a strong effect for impedance as the
in-duct grazing flow (impedance calculations were performed with a mean Mach number
of the in-duct grazing flow equal to 0). This problem has been the subject of much work
considering the construction of the experimental rigs called the “grazing flow impedance
tube” or “grazing flow impedance duct”, measurement methods (especially regarding the
flow velocity profile) and impedance reduction methods [4,5]. Research on the “grazing
flow impedance tube” for comparison of semi-empirical impedance models of locally-
reacting acoustic liners, which we intend to carry out in the future studies, is a more
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time-consuming task, although measurements on a normal incidence impedance tube can
also be very laborious if, for example, the method using a standing wave ratio [1] is applied.

6. Conclusions

As a result of the conducted study, it can be concluded that:

• If the validation of a semi-empirical impedance model of locally reacting liner is
carried out by measurements on a normal incidence impedance tube, then it is better
to use “sine” excitation and Dean’s method because they better correspond to the
conditions used when deriving an impedance model;

• At a low SPL on the face of a liner sample, the impedance is better described by the
Sobolev model;

• At a high SPL on the face of a liner sample, the impedance is well described by the
Goodrich or Eversman model (depending on the geometry of a sample);

• In the presence of a variable SPL on the face of a liner sample (e.g., grazing incidence),
it is obviously necessary to use several different impedance models, each in certain
sections of the liner, ensuring a smooth change in the impedance when transferring
from one model to another.

Thus, among the considered semi-empirical models, there is no model that equally
well describes impedance under all conditions due to the complexity of the problems to be
solved when developing the model.
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