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Abstract: The behavioural, physiological, and energetic repercussions for wildlife that result from
changes in their soundscapes are increasingly being realized. To understand the effects of changing
acoustic landscapes, we first must establish the importance of the acoustic sense for species to transfer
information between the environment, con- and heterospecifics, and a receiver, and the functional
role of calling in behaviours such as foraging, navigation, mate attraction, and weaning. This review
begins with a discussion of the use of calling and the acquisition of the vocal repertoire, before
providing examples from multiple taxa on the functional applications of signals and communication.
The acoustic sensory mode adds to, if not being inherent in, many critical life history stages over
a range of species. The potential effects on an animal resulting from a change in its perceived
soundscape and disturbance on its acoustics use is outlined. This can then be used to consider the
implications of an altered acoustic niche or active space in the success and survival of an individual
or species. Furthermore, we discuss briefly metrics that could be used to understand the implications
of these changes, or could be used to guide mitigation action to lessen the impact.

Keywords: acoustic ecology; soundscape; vocal repertoire; call acquisition; active space; learning;
culture; niche space definitions

1. The Use of Sound and the Acoustic Modality

The acoustic sense is used by many taxa in a wide range of social and behavioural
contexts to send and receive information. The soundscape is the acoustic environment
that an individual perceives and responds to. Acoustic cues from this sonic landscape aid
navigation, prey detection and capture, and conspecific identification and localization. They
also help to identify threats or the intrusion of another species, and are used in territory
defense. The acoustic sense can be used to maintain social hierarchies and group cohesion,
and aid in mate selection. Sound production shows similarity across taxa; it can engage
the larynx to manipulate air flow, or use muscle-driven vibrations or drumming [1,2].
Signal modification is invoked via the vocal tract, tongue, beak, trunk, or alternative sound
production spaces (e.g., [3,4]). The morphology of the animal can dictate the energy level
of the sound, whereby larger individuals are typically thought to invoke longer, deeper,
or louder signals. Indeed, an inverse relationship between the animal’s size and the peak
frequency of the calls in their repertoire has been established for many taxa (see [5–7]).
These morphological adaptations can, therefore, also influence mating signals, and give an
indication of fitness or the prominence of a trait to potential mates (e.g., the morphological
adaptation hypothesis (MAH) in birds [8,9] and insects [10]). Vocalizations and calling
behaviours can also respond to changes in the acoustic environment. Altered ambient noise
levels from natural or anthropogenic noise, or altered propagating conditions, can initiate
adaptations to how, when, or where an individual calls. The process of sound reception is
adapted to each species, and reflects both the medium in which they receive sound and the
frequencies they are most sensitive to.

An animal’s vocal repertoire is adapted to maximize conspecific communication, or the
exchange of information through acoustic means with others of its own species, sub-species,
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or group. An individual may utilize a spectrum of calls to retain this contact within a group
or between individuals. Calls can be modified by the social, behavioural, or environmental
context of the caller, as well as indicating an individual’s group membership, internal state,
or the setting under which the call is being made. Courtship calls or song can, for example,
play a role in species recognition and help define the acoustic niche definition of a group,
predominantly arising from the male vocalizations (see for e.g., [11]). The call structure
and diversity of the repertoire could also be an indicator of the size and social structuring
of the population. The linguistic niche hypothesis [12] suggests that language complexity
in humans reflects the socio-demographic variables of the population or sub-group. It
proposes that the complexity of the inflections and lexical constructs used are a reflection
of population size [12]. This hypothesis could also possibly have similar applicability to
non-human animal communications.

Acoustic signal use can also be informed by the environment that the sounds are emit-
ted into. Pure tone signals, with narrow frequency bandwidths, show greater reverberation.
This allows longer, louder transmission—for example, by birds in dense forests [4,13,14].
This differs from frequency-modulated notes or tones that rapidly sweep through a range of
frequencies—for instance, in bats’ probing ‘chirps’, which return as a single pulse echo after
a time delay [1]. This is in accordance with the Acoustic Adaptation Hypothesis (AAH),
whereby the acoustic properties of the environment in which the calls are produced influ-
ence the use of call types and the structure of these calls. Signals are selected to maximize
efficacy in calling and minimize degradation of the call content as it is transmitted (see for
e.g., the meta-analysis by [15] and review in [16]). This hypothesis suggests that species in
environments where call propagation might be more dampened or obstructed, or habitats
described as ‘closed’, use calls that differ in their frequency extents and peak frequency than
those in more ‘open’ areas. Typically, calls in closed habitats are adapted for longer-range
propagation [17,18]. Similar to this hypothesis, the sensory drive hypothesis also suggests
how perceived differences in the acoustic environment, or the individual’s soundscape,
can change their signaling traits and behaviours [19,20]. This hypothesis furthers the AAH
by suggesting that calling behaviours are adapted to overcome a distortion or a source
of acoustic masking. However, the strength of the relationship between the habitat or
soundscape structure and call structure may be obscured by the influence of morphological,
physiological, or social variables acting on the caller, also shaping the signals used (e.g., [21]
and references therein).

Acoustic environments are dynamic; individuals may use compensatory responses in
signal production to overcome noise additions to the ambient sound field. This adaptation
in calling in response to the perceived soundscape is in accordance with the Lombard
Effect [22], which is typically described as an involuntary increase in vocal amplitude.
Lombard-like responses have also been seen to alter the frequency, duration, and repetition
rate of calls (see for e.g., [23]), but animal responses to changing acoustic environments
are not limited to these adaptations. The Lombard Effect is physiological [24]; changes in
humans’ speech due to the Lombard Effect have been noted to differ from ‘loud speech’,
when a person simply speaks louder, but the mechanisms in non-human animal taxa are
mostly unknown [25]. To understand the impact of noise on wildlife, a description of
vocal repertoire acquisition, functional use, and complexity is presented here. There is a
provisional discussion of the implications of noise. However, this review is not intended
to be a detailed review of animals’ reactions to noise, nor is it an in-depth look at recent
bio- or eco-acoustic studies that add to the understanding of behavioural changes in
calling as acoustic environments are modified. It is a more general presentation of our
current knowledge of animals’ acoustic use, and the reliance on this modality by some
taxa. Suggestions of areas for further analysis—for example, in the level of disturbance or
cost to animals as a result of altered soundscapes—will be made. This is with the aim to
better understand how changes in noise levels and the transmission of sound might initiate
behavioural reactions and change call repertoires. The hope is to highlight the integral
nature of acoustics use to many species, drawing on specific examples. These examples
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are not focused on a particular taxa or group and are not fully exhaustive, but are purely
used to illustrate where the concept or behaviour has been observed. Much of this type of
research has been conducted on mammal or bird species, but, where possible, exemplar
cases are given from other taxa. First, aspects of repertoire acquisition including social
learning are considered. This is followed by an examination of the functional facets of
acoustic signaling, including its social, behavioural, and cultural aspects, and finishing
with a discussion of the potential impacts of altered soundscapes.

2. Acoustic Information Exchange

Although, for many species, call structure and application may seem simple, there
can be great complexity in the call parameters and use. Vocal behaviours have innate
components, but have aspects that are shaped by the experience of the individual. Reper-
toires are constrained by phylogeny and morphology (MAH), but call use is reinforced
through learning and social interaction. Evidence of this social strengthening of call use and
repertoire development arises from individuals that have been removed from their mothers
or natal group, whereby call types appear present initially and then are lost (e.g., from
gray whales (Eschrichtius robustus) [26]). Periods of ‘babbling’ have been noted in several
species across taxa. This occurs during an individual’s first few months of life, when vocal
learning occurs, and the adult vocalizations are being acquired (e.g., [27–30]). Signal units
within calls, and their sequence, form, and syntax, may also be a product of learning [31,32].
Characteristics such as frequency sweeps, the onset of calling, and temporal variations
in call pattern, amplitude, frequency, length, and repetition are rehearsed. This period of
‘babbling’ may also be marked by the use of adaptive mother–calf calls (‘motherese’ in gray
whales [33,34] and bats [35]) as learning occurs.

Species with the capacity for vocal learning acquire their acoustic repertoire by imi-
tation and mimicry [36], with phases of practice and refinement [37–41]. Species capable
of this type of call acquisition include songbirds, parrots, hummingbirds, bats, elephants,
pinnipeds, and cetaceans [36]. Vocal learning is the acquiring of calls and vocal patterns
via a social channel, where a conspecific teacher monitors progress and provides feedback.
Following this socially directed learning, the behaviours should persist in the absence of the
demonstrator or teacher [42]. Learning could be vertical, whereby the information flows
from a parent or more experienced elder to the individual (downwards transmission). It can
also be horizontal, which represents peer-directed social learning, which occurs between in-
dividuals in the same population group or generation [43]. This can pass on group-specific
social traditions in calling as well as the repertoire itself. Learning occurs predominantly
during the weaning phase, especially for species with more limited parental investment,
whereby the young acquire adult calls and stimulate vocal development. However, it can
continue throughout the individual’s lifetime. It can aid the spread of novel behaviours in
a population or group (e.g., humpback whales (Megaptera novaeangliae) [44]). Imitation can
help with the recognition of individuals and reinforces group cohesion. This then aids in
the identification and sharing of resources, mate finding, or within-group recognition. This
is especially beneficial in the adaptation to elevated ambient noise [31] or increasing the
complexity of sounds and signals used by a group [45].

Deciphering the information coded into calls has been a central area for study in
animal communication [46–48]. Vocalizations can relay information on the internal and
external environment of the caller. The stability of the call structures and their use, and
the way in which notes can be formed into patterns, forms the basis of categorizing each
species’ repertoire by function. This can begin to be interpreted from the temporal aspects
of calling—for example, the season—as well as the social context or behavioural, emotional,
or physiological state of the signaler when calling [49].

Signalling and Communicating

In animal communications, a sender produces a signal to be perceived and under-
stood, and elicit a response in a receiver [50]. If the signal is an auto-communication [51],
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such as echolocation in bats and toothed whales, or electrolocation by some fish, it is the
interpretation of the echo of the caller’s own signal that carries the information.

Signals project information, without expectation of an acoustic response, although
the information conveyed could influence the behaviour of the receiver. Signals also share
information about the presence of the signaler or their state of arousal, motivation, or
emotion (e.g., [52–54]), or could be a display of physical characteristics (e.g., [55,56]). They
can convey information about age, group membership, individuality, and fitness (e.g.,
elephants [3]; bats [57,58]), or the context in which the call is being made. It may be
possible, for example, for the receiver to determine whether the caller is in an antagonistic
or threatening situation, alone or isolated, or feeling playful/affiliative or aggressive
(e.g., mammals [59–63]; birds [64,65]). In addition, the ordering and emphasis of the
call components may represent the urgency of the response or priority of actions needed
from the receivers. This might range from a warning from a signaler to listeners (e.g.,
Richardson’s ground squirrel (Spermophilus richardsonii) [66]) to mobbing behaviours (e.g.,
Carolina chickadees (Poecile carolinensis) [67]). Affiliative calls could be used to aggregate
conspecifics or direct social behaviours, such as flight calls in migrating birds (e.g., [68]).
They could also direct conspecifics to prey resources (e.g., [69]). These signals may be
used to propagate information over great distances, and are structured to be minimally
influenced or degraded by the acoustic environment [48].

Communicative calls come with the expectation of an acoustic response from the re-
ceiver, as well as possibly modifying behaviour. Calling has been described as ‘maintaining
the social life’ of birds [70], with this likely to also be true for other taxa. If vocalizations
are part of an interactive exchange or chorus, it is rare for calls to be unanswered [71–73].
The initial signaler elicits a response from a receiver, with the context of the sender and
receiver, and the interaction between the two, being core to the communication. Modi-
fication to calls, such as the amplitude and speed, may be made based on the intended
target and their distance from the sender (e.g., zebra finches (Taeniopygia guttata) [70,74]).
Vocal communication takes the form of a back-and-forth, give-and-take exchange of infor-
mation between conspecifics through acoustic means, even from early infancy. Contact
calls between conspecifics combine patterns of frequency modulations, rhythmic call series,
and amplitude parameters to confirm species, group, or colony membership or encode
individual identity [74–76].

3. Functional Uses of Calling

The behavioural significance and function of a call can be determined by observing
interactions with conspecifics during and following the vocalizations [77], and may take
into account the geographic or social context, correlated with the call’s structural syntax.
Experimental manipulation of the acoustic environment and playback studies have also
been used to estimate the information content of animal calls. Moreover, temporal pat-
terning and periodicity in calling may indicate call application—for example, the seasonal
feeding–breeding dichotomy in calling noted for some baleen whale species (e.g., [78–81]).

3.1. Group Membership and Definition

Acoustic projections confirm species, group, or colony membership [74–76]. The
ability to identify a caller as a herd or flock-mate can limit time and energy that would be
used for defense. Furthermore, the recognition of a caller as a male or female helps the
courting process. Species markers may be inherent to the frequencies in which the calls are
made, or the modulation over a frequency range over the duration of the call. Krause [82]
suggested that each species has their own sonic niche, also described as their acoustic
channel, defined by the range of frequencies that their repertoire covers. This is the acoustic
niche hypothesis (ANH). Call traits such as absolute pitch and pitch ratio are also consistent
within and among species (e.g., birds [83–88]). Birds are able to use call features and syntax
to distinguish calls of conspecifics and intruder species, which dictates their response (e.g.,
shearwaters Procellariidae, [49,89,90] songbirds [46,49,91–94]). Flock- or group-specific traits
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in calls and call patterns have also been described, with the structure and inter-note interval
distinguishing groups within a species (e.g., killer whales (Orcinus orca) [95–98]; sperm
whales (Physeter macrocephalus) [99,100]). Group/herd calls show stability over time, but
the vocal signatures may be modified for each interaction [101,102]. The species recognition
hypothesis suggests that, although the influences of context and environment might alter
calls, closely related species would show greater divergence in their call or song structure
than those species separated geographically [8].

It is during the first few months of life that the young acquire species-specific calls [86]
and signature calls or whistles that confirm the individual’s identity. These calls reflect
group membership, lineage, or social affiliation (e.g., [103,104]). Bloomfield et al. [86]
suggest that the discrimination of individuals is through a ‘constellation of features’ of calls,
with individuality in calling recognized for many mammal species [105–109], including
bats (e.g., [102,110,111]); primates (e.g., [112–118]); rodents (e.g., [119,120]); carnivores
(e.g., [121–128]); proboscideans (e.g., [129]); perissodactyls (e.g., [130–132]); artiodactyls
(e.g., [133–135]); and pinnipeds (e.g., [136]). Sixty years of research have been dedicated to
describing signature whistles in dolphin species [137]. This learnt referential call type has
been documented in common dolphins (Delphinus delphis) [138], Atlantic spotted dolphins
(Stenella frontalis) [139], Pacific white-sided dolphins (Lagenorhynchus obliquidens) [140], and
Indo-Pacific humpback dolphins (Sousa chinensis) [141]. These calls are used by conspecifics
to identify the caller [138]. Individual identification through acoustic means is especially
important in habitats where the caller’s identity may be obscured visually—for example,
when individuals are out of view or remote to each other and their identity may be hidden
by aspects of the environment (e.g., trees and foliage for songbirds, or turbid water for
river dolphins) or distance. They also demonstrate the complexity and nuanced nature of
call use in animals [137]. Signature calls can comprise a high proportion of the calls used
by an individual and, once developed in the early stages of life, are stable throughout the
individual’s lifetime [142].

It was Darwin [143] who first suggested a link between communication and complex-
ity in vocal repertoires with the social structure and dynamics of a species. Studies in birds
(e.g., chickadees (Poecile spp.) [144,145]) and rodents [146] have confirmed this hypothesis.
Hierarchical classification of individuals can be established from determining an individ-
ual’s identity, and establishing if they represent an opponent [86]. Songbirds have been
seen to type match their song or call repertoire as part of a threat display or an aggressive
response to the close approach of a neighbour, as well as a means to set boundaries [147,148].
Similar displays to confer territory and hierarchy have been observed for bats at roosting
sites (e.g., [149]); between alpha male hippopotami (Hippopotamis amphibius), (e.g., [150]); in
ring-tail lemurs (Lemur catta) competing for rank [151], and in frogs to maintain spacing
between competing conspecifics (e.g., [152–155]). Acoustic projections can be made to
threaten or intimidate. Examples here include far-reaching seismic ground transmissions
of mock charges and trunk banging by elephants [156], foot thumping in kangaroos [157],
and body slamming in seals [158]. Vocalizations and song projections have been used by
baleen whales to establish male-based hierarchies and territorial spacing [159–162], but no
aggressive components of these call types have been noted. Calling may also be a means
to protect others during disputes of territory—for example, to guard pinniped harems
(e.g., [163–165]), or as mediation for calling site fights in frogs (e.g., [166,167]).

3.2. Contact Calling

Contact calls retain group cohesion, and are defined as calls between separated con-
specifics that result in an approach or acoustic interaction. Contact calling is also a mecha-
nism used during migration/travelling to maintain herd cohesion (e.g., [168–170]). Social
linkages and the maintenance of contact between individuals with means to identify the
caller and its group affiliation have been noted in sperm whales and their use of overlap-
ping, duet-like sequences of coda calls [100,171] and the whistles of dolphins [142,172].
Contact calls to facilitate group aggregation and reunion have been noted in walruses
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(e.g., [101]); bats (e.g., [173–175]), and elephants (e.g., [176–179]). Group or pack calls
described as ‘rallying calls’ have been noted for primates, wolves, hyenas, coyotes, and
lions [180]. Rumbles thought to represent a ‘let’s go’ rallying call in elephants [177], and
trill calls in white-faced capuchin (Cebus capucinus), have been associated with the initiation
and reinforcement of movement [181]. Calls aiding group cohesion and the transference
of information to guide navigation when visual cues are obscured have been described in
baboons (Papio spp.), who use ‘bark’ calls when moving through thick forests [182], and in
migrating cetaceans and their use of low-frequency ‘moans’ (e.g., in gray whales [170,183]).

Calling to facilitate the reunion of a mother with her offspring represents a special case
in contact calling. Here, individual recognition also prevents misdirected parental care. Typ-
ically, the vocal structures are more aligned, with calls between mother and young showing
more similarity in their parameters than those directed to other group members. These calls
can develop in the first few hours to days of life. For instance, vocalizations between lambs
and kids and their mothers are almost acoustically indistinguishable [184–187]. Long-
distance call recognition has been seen in seal species to aid reunion [124], and the unique
calls used by penguins to reunite with their chicks and mates [168,187–189]. Lingle and
Riede [189] suggest that stress calls in young have similarities in attributes and structure
across taxa. Calls emitted following separation, termed ‘isolation calls’, prompt reunion,
with comforting ‘caregiver calls’ also used by primates (e.g., [190–192]), for example. The
young also model their calls on sounds they hear, including their mothers’ vocalizations.
Moreover, the use of a ‘motherese’, or a set of calls used only between mothers and their
young, has been noted in some species, preceding and perhaps guiding the develop-
ment of the adult repertoire of calls (e.g., bowhead whales (Balaena mysticetus) [168]; gray
whales [34,183]).

3.3. Alarm Signalling

Alarm calls may be used to indicate danger or territorial conflict. The type, level, and
immediacy of the threat can be inherent to the call used (e.g., bird species [116,193–195]).
The alarm vocalizations are designed to elicit and manipulate a listener’s attention and
response to the threat by affecting their neural, sensory, and learning systems [194–198].
The basic alarm call structure is designed to arouse conspecifics and activate a change in
behaviour. The production of these alarm calls is more likely when animals are in proximity
to conspecifics rather than alone, and if the company is kin or preferred companions [199].

Species with multiple predators, and those that employ several predator-specific
defense strategies, may use differentiated alarm calls to elicit the most appropriate response
in the receiver. Alarm calls may vary based on the predator and the direction of the
attack—for example, if the threat was from the ground or the air (e.g., in primates [198–206]).
Signals may be paired or altered to change the specificity of the alarm call (e.g., pairing and
adding suffixes in Campbell’s monkeys ((Cercopithecus campbelli) [200,201]).

3.4. Foraging

A number of bird and mammal species vocalize to locate and capture prey [202–208].
Bats, for example, adjust their echolocation call to target prey. The signals show characteris-
tic changes in the call time–frequency structure as they progress through the search, to the
approach and terminal (buzz) phases, with projections becoming increasingly repetitious
and shorter as the hunt progresses [209]. A similar mechanism is found in odontocetes,
whereby the returning echo also determines features such as the size and density of the
prey [210–213]. Foraging calls may also synchronize prey capture by conspecifics (e.g.,
humpback whale ‘feeding cries’ [1,213,214], or prey sharing, e.g., killer whales [215,216]).

Social transmission of specialization in prey capture and handling has been noted
in several species of primates, rodents, mustelids, birds, and cetaceans, and is reinforced
through vocalizations. Primate calls, for example, are thought to be a physiological response
triggered by finding a desirable food item [217–219], and may also express the caller’s
personal food preference (e.g., ‘rough grunts’ of chimpanzees (Pan troglodytes) [206]). Calls
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can also carry information on the food’s quality or quantity [220–225], and may encourage
the approach of conspecifics to the caller to share (e.g., spider monkeys (Ateles spp.) [226]).

3.5. Acoustic Signaling for Wayfinding and Navigation

Sonically derived impressions of the surrounding environment can be formulated as
a result of the passive reception of signals from conspecifics or cues from environmental
features. Fish, for example, use a form of acoustic orientation, relying on sonic informa-
tion received from biotic or abiotic sources [4]. Water turbulence, wind-driven waves
and surf noise, geothermal noise, the diversity of marine life present, bathymetry, and
the seafloor and shoreline composition create unique, location-based sound fields [82].
Wladichuk et al. [225] suggest, for example, that gray whales utilize these sound additions
for navigational cues during migration, with a similar suggestion also made for hump-
back whales [226]. Conversely, bats actively use echolocation for navigation, localization,
and identification in complete darkness. They dynamically control the direction, timing,
and frequency of their ‘biosonar’ projections with respect to objects in the environment
and the task at hand [149]. Similarly, returns from low-frequency infrasonic calls are
used by baleen whales during migration or travel under ice [227–237], complemented
by frequency-modulated and patterned counter-calling to maintain group unity (e.g., fin
(Balaenoptera physalus) and blue whales (Balaenoptera musculus) [233,236,238]; right whales
(Baleanoptera glacialis) [237]).

3.6. Social Interactions and Mating Displays

The use of vocal displays to transfer information and influence the receiver in the
context of sexual selection and courtship typically consists of males projecting infor-
mation regarding their health, vigor, arousal, or genetic make-up to females to influ-
ence mate choice [196,239–249]. The complexity of an animal’s vocal repertoire may be
driven evolutionarily by mate preferences if the mating scheme is acoustically mediated
(e.g., cetaceans [7,240], songbirds [92], and insects (Drosphila montana) [11]). Courtship
calls may also initiate a state of sexual receptivity in females (e.g., anurans [241,242,245];
birds [242,249]; mammals [243,244,246–248]).

Mate choice may be initiated from pairing calls, used to display the relative suitability
of potential partners. Call frequency, complexity, duration, or rate may be used as acoustic
advertisements, representing the fitness and/or size of the caller. This type of display of
physical fitness has been described as ‘honest communication’, and is produced potentially
at a cost to the signaler. Additionally, hormone levels can influence the quality of courtship
signals (e.g., anurans [245]; elephants [72,156,246–248]).

Some pairing calls have been described as ‘song’, as they are highly patterned and
consist of repetitions of ‘syllables’ and ‘phrases’. Song has been described for birds, anurans,
primates, and cetaceans [4,249,250]. Song quality is fundamental to sexual selection and
mating success, with modifications in timing and counter-singing with other males under-
taken to advertise territory and sexual prowess. Social synchrony in song performance, such
as chorusing in arthropods, anurans, aves, mammals, and sciaenids [4,167,245,250–266]
or duetting between passerine bird partners [252,253], maximizes the effectiveness of the
vocalizations. However, although seemingly unified, ultimately, every individual wants to
out-signal their competitors, which may drive modification or increased call complexity
(e.g., anurans [166,167,254–256]). Calls may be modified or reorganized over time to con-
vey a different or ‘more attractive’ message [92,257,258,261]. Studies from birds [259–261],
bats [262], primates [263], and whales [232,264–268] suggest that song complexity and
production is influenced by female choice. Song may also function to repel rival males,
acting as a social sorting mechanism [158]. Evolution and revolutions in song structure
occur between male singers synchronously and result from cultural influences incorporated
by vocal learning (e.g., humpback whales [31,36,44,264–272]). Indeed, the plasticity in
the song calls demonstrates the rapid cultural transmission of acoustic information by
conspecifics in a specific breeding area.
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4. Language and Culture

The consideration of language starts with the communication of encoded information.
This exchange of calls with a referential context, function, and perhaps meaning may be
a first step in assigning cultural utility to acoustics use in animals. By using acoustics
as a means to determine ‘friend or foe’, animals use markers to form a cultural identity
and describe group membership and/or rank. This is used to determine the behavioural
response to an individual, and whether it will be cooperative or hostile. Calls could be
likened to symbols and seen to form a ‘system of meaning’ [272]. The process of social
learning and reinforcement from conspecifics could form a vocal tradition or acoustic
culture too. The first few months of life when acoustic repertoires are being learned is
crucial to development and may define the individual’s survival or mating success in the
future. The acquisition of these vocal cultures and traditions, however, is dependent on
social bonds and conspecific interactions in many taxa.

The definition of language typically relies on the ability to discern meaning. Our
understanding of the meaning, and not only the function, of vocalizations is limited to
what can be inferred from observations. We see that animals are able to combine discrete
units or notes to produce sequences that influence receiver behaviour. Field studies with
mammals and birds have shown, for example, that the order of the same or similar calls
can mean the difference between a sequence of calling for group cohesion and calls of
warning and danger (e.g., [273]). Subtle nuances or additions of prefixes or suffixes can
change the structure but, more importantly, the meaning of the vocal projections. Being able
to understand how this variation generates meaningful acoustic variation in an animal’s
repertoire brings us one step closer to describing the calls as part of a language. This is in
addition to aspects of animal acoustics use such as babbling, call rehearsal, audience effects,
conversation-like contact calling, and geographically or socially distinct dialects that are
traditionally considered part of language. The cultural process of vocal learning, mother–
offspring cultural transmission through ‘motherese’, and hierarchical and demographical
structure maintained by acoustics is evident in several animal species. An appreciation of
all of these processes adds to our understanding of the complexity of the use of acoustics
by animals and how, for some, it is integral to their success and survival.

5. Implications of Changes in Soundscapes

Numerous bird and mammal species demonstrate calling and the integration of vo-
cal cultures into key behaviours [270–281]. Increasingly, the complexity of animal call
repertoires is being realized. The vocal production of primates and terrestrial mammals is
now known to be greater and more flexible than had been previously appreciated [274].
Moreover, the emotional underpinning of vocal mechanisms is increasingly being recog-
nized [270–274]. The abilities to project affective states as vocal signals and threat-associated
alarm calls are only two examples of the flexible use of acoustics to portray a caller’s state.
As discussed above, calling is not simply a means to keep in contact with conspecifics, but
can permeate aspects of foraging, migration, and reproduction. A better starting point
would be to consider that all vocal signals have a function. The function of both signals
and communication is to produce an effect and drive behavioural change in a receiver, and
so the acoustic modality influences, rather than simply shares, information.

The distance over which a call can be detected, interpreted, and enacted upon forms
part of an animal’s active space. This can be the distance over which an acoustic signal or
cue from a calling individual can elicit a response in a receiver. It equally can be the distance
over which an individual can interpret the echoes of its own signals via echolocation, elec-
trosensory, and electrolocation mechanisms. This gives an acoustic aspect to the concept of
the ecological niche [275], and surpasses the idea of ‘active sensing’ [276]. An acoustically
derived active space is the area over which sonic information can be sent, received, and
processed to form the perceptual concept of an individual’s soundscape. Changes in the
acoustic environment, in the sound sources, and/or in the sound transmission properties
can modify the calls and call structures used and so may re-shape the active space. Fore-
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shortening of the active space could hinder contact calling, as well as an animal’s ability to
navigate, find, and capture prey, and locate and aggregate with conspecifics. Essentially, the
efficacy of any process that is aided or sustained by acoustic information would be reduced.
Additional noise sources in the acoustic environment, natural or man-made, can instigate a
reduction in active space through the acoustic masking of the relevant signals. Signals that
are masked by noise become less discernable from the background acoustic landscape and
so may not be received as intended, and not provide all or some of the information inherent
in the signal [277,278]. The zone of masking around a sound source [277,278] represents
the area in which the individual’s soundscape and signal perception might be impacted by
noise, and is specific to a time, place, and frequency. Active space and acoustic behaviours
can also vary as the propagative properties of an area are altered, changing the way and
distance over which a call or sound of interest is transmitted.

The vocal cultures and social learning of animals could be sensitive to soundscape
changes. The addition of anthropogenic noise to sound fields is now a chronic and ubiq-
uitous issue in both terrestrial and marine habitats. Similarly, additions of geophonic
noise, such as wind and waves, and changing sound transmission properties from altered
temperature, humidity, pH, or habitat composition are pervasive. Climate change and
changes in ocean regimes will alter the structure of the acoustic environment. Although
plasticity in calling may provide a route to adapt or modify vocalizations in the face of these
changes, it likely will not provide complete resilience. Responses under the Lombard Effect
(calling louder, longer, or more frequently, or with adapted frequencies), whilst used to try
and retain effective conspecific communication, can be an energetic draw on the individual
and also change the structure and meaning of the call. The interchange of information
through the acoustic sensory mode is complex on a structural and social level; cognitive
species with the capacity for social learning and individual variation in calling may show
the greatest capacity for adaptation [279,280]. However, they may also feel the effects of
soundscape changes most acutely.

Animals with rapidly evolving cultures may adapt to anthropogenic-derived habitat
changes more readily [281]. Social connection and learning can be a buffer to changes in
habitat suitability, or allow for individuals to respond to anthropogenic, abiotic, or biotic
changes. Variation and novel behaviours can spread rapidly through populations (e.g.,
see [279–283]). In the case of soundscape alterations, the foreshortening of the area over
which animals are able to send and receive information or effect imitation may impede
this reform. The ability of animals to retain conspecific contact, find and capture prey,
and defend themselves and their home-range territory is impacted by changes in active
space driven by the acoustic environment. The imitation and emulation, teaching, and
local enhancement of vocal behaviours may be lost, and modification of calls may be
physiologically and energetically limited. The capacity for social learning and the transfer
of information or behaviours between individuals of a community may also be hindered or
lost. This interference by added noise is especially pertinent to the mother–young example,
where the acquisition of the adult repertoire and acoustic cultures may be hampered by
the intrusion of noise into the soundscape during a critical period. The lack of exchange of
vocal repertoires is a loss in cultural inheritance and group sharing that reinforces culture
and generational information transfer.

Vocal learning corresponds to changes and individualization in the duration and
amplitude, pitch or frequency modulation, energy distribution, or timbre of signals [31,283].
Until recently, it was natural selection and the promotion of phenotypic traits that shaped
communication and divergence in calling behaviours; however, it is changes in the sound
field—more specifically, the elevation of ambient levels, and the introduction of human-
derived noise—that now may be shaping vocalizations and call use. Selective pressures
driven by mate preferences and individual success and convergent adaptations could be
shaped themselves by genetic, morphological, or environmental constraints. Therefore,
call or song production is affected by the mechanism of sound production and the features
of the habitat that define sound transmission and propagation. Examples of variation in
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calling range from short-term, Lombard-Effect-like responses to the acoustic habitat, to
longer-term modifications in call frequency to mediate the changes in the soundscape and
to use ‘acoustic windows’ where noise is absent (e.g., blue whales [282]. Modulation of calls
in time or in structure can help to retain effective communication, although modification
thresholds may exist due to morphological (MAH) or syntax restraints. Although useful,
changes in the temporal aspects in calling are insufficient in birds for note and song
discrimination between groups or individuals (e.g., [284,285]). Indeed, species have been
seen to be much more sensitive to changes in call frequency than duration [286], suggesting
that pitch cues are important to perceptual discriminations in the combination of cues
that are used in individual recognition and group definition. Changes in the location and
direction of the emission of call are also a strategy used to co-modulate a masking effect
(e.g., habitat strata or tree height in birds [279–284]; direction of calls and echolocation
signals in cetaceans [286]). This suggests, however, that the degradation of signals during
transmission or because of noise interference is a problem (e.g., [286–289]).

Reductions in ambient noise are rare, but may occur as a result of a mitigation measure
or a more wide-spread event that limits human activity. Many studies have commented
on the changes in animal presence and use of habitats during the ‘Anthropause’ [290–293]
during the COVID-19 pandemic, and the potential benefits to them from reductions in
anthropogenic noise. A reverse Lombard Effect was seen for some species whereby birds,
for example, reduced the amplitude of their song and were able to increase the frequency
range of the repertoire as competition with noise sources was reduced (see, e.g., [292,293]).
This increased their active space and, notably, the area over which courtship advertisement
calls could be received [292,293]. Similar benefits might be expected for other equally
acoustically sensitive and reliant species, such as cetaceans.

Climatic variability and geophonic noise additions initiate a Lombard Effect response
or changes in acoustics use [294]. Acute additions of natural, non-biological noise such
as rain or wind may increase the vocal activity of animals as a compensation mechanism
(e.g., tawny owls (Strix aluco) [295]). Au et al. [209] demonstrated how the spatial extent of
echolocation would be reduced substantially by rainfall without the use of a compensation
mechanism, impacting their efficacy of use in foraging behaviours. Wind or air turbu-
lence may result in calls with more pronounced frequency modulation being used [235].
Other variables, such as temperature, humidity, turbidity, or pH, could also correlate with
changes in vocalization structuring and use. Indeed, modifications in calling in response
to these variables may be noted before any visible changes in the habitat occur [294–296].
Changes in vocalizing behaviours, as previously mentioned, could impact the active space
of the individual. If, for example, the number of days of intense rain or wind was to
increase chronically, as is expected as climate change intensifies, it could have far-reaching
consequences for animals that use acoustics to find a mate, establish territory, or avoid
predators [294–300]. However, changes in environmental conditions due to climate change
may cause modifications that also increase a vocal repertoire (e.g., [299–301]). Adaptation
and learning may allow the remodulation of an acoustic niche [297–302], which would
represent a change or adaptation to maintain the acoustic active space on a different scale
to the Lombard-Effect-like responses. The most established example is the increase in
ocean acidification due to climate change, whereby the absorption of low-frequency noise
is reduced and therefore noise additions in this range propagate further. Animals that
vocalize in these lower frequencies have adapted the frequency, duration, and intensity of
vocalizations to avoid masking from the more prevalent anthropogenic noise [299–301].
Calling behaviours or structures also diversify as a result of morphology alterations to
remain optimal to different foraging niches and influences from the acoustic environment.
If vegetation density or food availability changes instigate an adaptation in bill size, for
example, this variation in morphology in response to habitat could alter the properties
and structure of birdsong (e.g., ant bird (Thamnophilidae spp.) [8]; white-crown sparrow
(Zonotrichia leucophyrs) [301]). Work by Seddon [8] suggests that, in accordance with MAH,
body size correlates with the frequency of song, whereas morphological changes in bill
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size alter the temporal patterning. However, they also suggest that the species recognition
hypothesis would work in tandem with these ecological operations, to retain divergence in
their song structure for closely related species to maintain acoustic identity [8].

The vocal learning capacity of species gives credence to the ubiquitous importance of
conspecific learning. Species capable of vocal learning (songbirds, parrots, hummingbirds,
bats, elephants, pinnipeds, and cetaceans) have been examined for culturally derived
social behaviours in the acoustic modality in the wild, and even for these species, the
information is still wanting. Thus, the implications of perceived soundscape changes by an
individual are not widely applied to species in a broad cultural sense. Reactions to noise
are considered predominantly in the short term, and from behavioural observations. This
underestimates the complex and rich cultural underpinnings that the acoustic modality
has. The social structure of acoustically sensitive populations reflects the opportunities
for individuals to interact and for new traits to develop (e.g., [269,279–282]). However,
by limiting acoustic behaviours through masking and altered soundscape properties, the
repertoire of behavioural responses and social connectivity may become limited. Under-
standing the degree and extent of the masking effect, and thus changes in active space,
can help to quantify the effect on an individual or group, with the calculation of masking
metrics proposed as one means to develop effective noise mitigation strategies [302,303]. A
species-specific mechanism to quantify the potential disturbance, even before behavioural
responses are seen, advances our understanding of the effect of noise on wildlife, rather
than purely describing changes in the acoustic environment relevant to that species. It
considers the change in the soundscape as they perceive it, and the amount of acoustic data
available to them to understand their surroundings.

Understanding a species ecology through the lens of their acoustic life may provide
significant insight into their social structure and dynamics. Cultural evolution can insti-
gate specialization, with the further narrowing of the niche through increasingly reduced
active spaces, with consequences for both the individual and the species [304–308]. Under-
standing communication and the retention of contact between individuals gives a better
comprehension of the social dynamics of animal societies [306–308].

Examining the functional use of calls moves research towards an understanding of the
behavioural nature of vocalizing. Knowledge of call function and the use of different call
types and their relationships with behaviour are important for interpreting autonomous
acoustic recordings, and the significance of change for species. Modification of vocaliza-
tions has energetic, social, and behavioural implications for the calling individual, resulting
from adjustments in call frequency, amplitude, and production rate (e.g., [308–311]). The
emerging ecoacoustics discipline [294,312] aims to decipher the role of acoustics for indi-
viduals and species, and the role that call modification and acoustic niche adaptation can
play in overcoming changes in acoustic environment [295–300,312]. Changes in the call use
and rate among these calls that can be confidently categorized by function or context will
aid in the identification of changes in behaviour or habitat use resulting from changes in
acoustic environments. This is particularly true for human-derived additions, but also for
altered transmission properties as a result of climate change. The study of acoustics use
can be used alongside other ecological tools to advise managers as to the vulnerability of a
species to altered ambient sound fields, and changing ecosystems more broadly. Altered
vocalizing behaviours could become ecological indicators, using the vocal adaptation as
a gauge for change. Changes in the calling behaviours, perhaps quantified through the
use of acoustic indices, could represent a manifestation of acoustic habitat degradation
or fragmentation. These indices may also be helpful to show changes in species diversity
and ecosystem health, whereas masking metrics and an understanding of the role of active
space, and the part that acoustics has in forming it for each species, demonstrates how the
health and success of an individual or population may be impacted.
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