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Abstract: Accurate predictions of the wave-dominated region of an acoustic field in a room can
be generated using wave-based computational methods. One such method is the finite element
method (FEM). With presently available computing power and advanced numerical techniques, it
is possible to obtain FEM predictions of sound fields in rooms with complicated geometries and
complex boundary conditions in realistic time frames. The FEM has been continuously developed
since its inception and attempts to provide solutions in real time using finite element-based methods
are beginning to appear in the literature; these developments are especially interesting for auralization
and virtual acoustics applications. To support these efforts, and provide a resource for neophytes,
the use of the FEM for room acoustics is reviewed in this article. A history is presented alongside
examples of the method’s derivation, implementation, and solutions. The current challenges and
state-of-the-art are also presented, and it is found that the most recent contributions to the field
make use of one or a mixture of the following: the finite element-based discontinuous Galerkin
method, extended reaction boundary conditions written in the frequency domain but solved in
the time domain, and the solution of large-scale models using parallel processing and graphics
processing units.
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1. Introduction

Typical problems in room acoustics that might be tackled with computational
methods include:

• the determination of interior sound pressure levels caused by exterior sources of
sound, e.g., traffic noise in bedrooms,

• the estimation of sound transmission between adjoining rooms,
• room mode analysis and the estimation of resonant frequencies and modal

decay rates,
• the predicting of acoustical parameters, e.g., reverberation time, strength, or clarity,
• the design of listening rooms and reverberation chambers, and
• the simulation of acoustic spaces for auralization and virtual acoustics.

The first article in which the use of the Finite Element Method (FEM) was considered
for solving acoustical problems appeared in 1965 [1]. Although the FEM has been used to
solve a variety of acoustical problems since the 1960s, it has only recently been seriously
considered by the room acoustics community as a tool for solving practical problems. This
is because the increasing availability of computing power and the development of more
efficient methods are making computation times increasingly shorter. Along with the
robustness of the method when handling complicated room geometries, and the ability
of the method to provide accurate solutions for complex-valued frequency-dependent
boundary conditions, the increased performance makes the FEM more attractive to those
who need to model room acoustics.

Owing to the wealth of information that has been published on the FEM, it can be
overwhelming for students and young researchers to understand the method and its
limits and capabilities. This review paper has two main aims: to provide a source of
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information for beginners interested in computational room acoustics, and to provide an
up-to-date analysis of the state-of-the-art for practitioners in computational room acoustics.
Additionally, this review highlights potential future directions. Hopefully, this review
will help younger researchers develop an understanding of the field, and experienced
researchers develop advanced approaches.

This review is structured as follows. In Section 2 a derivation of the standard FEM is
presented, to provide neophytes with a mathematical background to the method. Since
the FEM is used in many branches of physics, this section presents a general derivation
of the standard FEM. The use of the FEM for room acoustics is reviewed in the remaining
sections. In Sections 3–5, we review the literature that deals with FEM solutions obtained
in three domains. These are, respectively, modal, frequency, and time domains. In each
section, a history of the application of the FEM will be presented alongside examples of
the solutions, for the benefit of readers that might be new to the field or interested in the
history of the use of the FEM for room acoustics. In Section 6 the current challenges and
state-of-the-art are presented. For readers comfortable with the development of the FEM
and familiar with the history of its application to problems in room acoustics, this section
may be of most interest, as it outlines the current efforts in the field. The majority of articles
cited in this section have appeared in the past 10 years. In each section an attempt is made
to present the articles in chronological order—with a few exceptions for coherence. Lastly,
the review is concluded in Section 7, along with a few suggestions for future research.

2. Finite Element Method

The FEM was born from the need to solve the partial differential equations that arise
from the mathematical modeling of physical processes. The governing equation for acoustic
propagation in rooms is the wave equation. In this section, we present the wave equation
and introduce the general framework of the standard FEM for room acoustics.

2.1. Wave Equation

The homogeneous wave equation for a quiescent medium can be written as (see, e.g.,
Pierce [2]):

∇2 p− 1
c2

∂2 p
∂t2 = 0 . (1)

In this equation, p is the acoustic pressure and c is the speed of sound. To complete
the mathematical model, we must define boundary conditions. Of the many available
acoustic boundary conditions, two are commonly used to model sound in rooms. These
are, a source condition and an impedance (or, equivalently, admittance) condition. If one
considers a vibrating surface, for example, a loudspeaker membrane, the following source
condition can be defined:

∂p
∂n

= −ρ
∂vn

∂t
, (2)

where n is the unit normal perpendicular to the surface, ρ is the density of the acoustic
propagation medium, and vn is the velocity normal to the surface. An assumption often
used in FEM modeling is that absorbing boundaries are locally reacting, i.e., the normal
velocity at a surface depends only on the local pressure. At locally reacting surfaces an
impedance condition of the form

∂p
∂n

= − 1
cζ

∂p
∂t

(3)

may be imposed. Here, ζ = Z/(ρc) is a normalized impedance and Z is the specific
acoustic impedance. In the case of a rigid wall, the acoustic particle velocity is zero, which
gives the following condition:

∂p
∂n

= 0 . (4)
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2.2. Variational Formulation

Next, we introduce a weak variational formulation of the wave equation (see, e.g.,
Astley [3]). A weak formulation enables us to reduce the order of the equation being
solved, and to straightforwardly include boundary conditions. To proceed, we multiply
Equation (1) by a test function w and integrate over a domain Ω, to obtain

∫
Ω

[
w∇2 p− w

(
1
c2

∂2 p
∂t2

)]
dΩ = 0 , ∀w . (5)

We use integration by parts to write a weak formulation, i.e.,

∫
Ω

[
∇ · (w∇p)−∇w · ∇p− w

(
1
c2

∂2 p
∂t2

)]
dΩ = 0 . (6)

We then invoke the divergence theorem to write

∫
Ω

[
∇w · ∇p + w

(
1
c2

∂2 p
∂t2

)]
dΩ−

∫
Γ

(
w

∂p
∂n

)
dΓ = 0 , (7)

where Γ is the boundary of the domain. This boundary may be composed of surfaces with
different conditions. Let Γs be a vibrating surface, and Γz be an impedance condition. Using
Equations (2) and (3), the weak formulation of the wave equation can be written as

∫
Ω

[
∇w · ∇p + w

(
1
c2

∂2 p
∂t2

)]
dΩ +

∫
Γz

(
w

1
cζ

∂p
∂t

)
dΓz = −

∫
Γs

(
wρ

∂vn

∂t

)
dΓs . (8)

Note that Equation (4) is naturally enforced on surfaces at which no boundary condi-
tion is specified. The computational domain on which we solve Equation (8) is illustrated
in Figure 1.

Ω

Γ

n

s

r

Figure 1. The computational domain: illustrated using the example of a non-rectangular room with
interior volume Ω and boundary Γ. Also included in the illustration is a possible acoustic source,
s, in this case a loudspeaker placed on the floor, a possible receiver position, r, and the outwardly
pointing normal, n.

2.3. Discretization

The computational domain, Ω, is discretized using non-overlapping elements. This
process results in a mesh composed of finite elements defined by discrete nodes. Examples
of commonly used finite elements are shown in Figure 2. Note that mesh generation lies
beyond the scope of this review article. The interested reader should consult one of the
numerous works dealing with mesh generation, for example, the review by Ho-Le [4].
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1D 2D 3D

Figure 2. Finite elements in one (left), two (middle) and three (right) dimensions. From left to
right, these are often referred to as: line, triangular, quadrilateral, tetrahedral, and hexahedral
elements. The circles represent the degrees of freedom of the elements. Linear elements are shown
in the top row, and quadratic elements are shown in the bottom row. Note that, depending on the
application, higher-order finite elements or other element shapes (e.g., prismatic, pyramidal) could
also be considered.

It should be clear that we now consider the acoustic pressure at discrete positions only.
To discretize Equation (8), we define a trial function for the pressure (see, e.g., Desmet &
Vandepitte [5]):

p(x) ≈ p̃(x) =
n

∑
j=1

Nj(x)pj , (9)

where x = (x, y, z), n is the number of nodes, Nj is a shape function attached to the jth
node, and pj the pressure at node j. Shape functions are defined by the choice of element
shape used to discretize the physical problem. The shape function is unity at node j, and
zero on all elements not attached to node j.

Using the Galerkin method, we choose to use the same shape functions for the test
function, w, and the trail function, p̃. The weak variational formulation, Equation (8), can
then be written in the discretized domain as

Kp + Cṗ + Mp̈ = q , (10)

where K, C, and M are generally referred to as the stiffness, damping, and mass matrices,
respectively. These matrices are square, symmetric, and, since the shape functions are
non-zero on neighboring elements only, sparsely populated. From here onward, we will
refer to the discrete positions at which the pressure is predicted as degrees of freedom,
rather than nodes. This terminology makes it easier to define the mesh resolution when
using hierarchic shape functions of higher-order than linear (see, e.g., [6]). The number of
degrees of freedom used in a given model determines the size of the matrices. The damping
matrix has non-zero terms only at degrees of freedom that correspond to boundary surfaces
at which sound is absorbed. The superscripts ˙ and ¨ denote the first- and second-order
time derivatives, and q is a source term.

The stiffness, damping, and mass matrices, computed over each element, can be
written as

Ke =
∫

e
∇NT · ∇N dV , (11)

Ce′ =
1
cζ

∫
e′

NTN dS , (12)

Me =
1
c2

∫
e

NTN dV , (13)

where the subscript e represents an interior element, and e′ represents a boundary element.
Mapping to isoparametric elements and numerical integration (see, e.g., Bathe [7]) are used to
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computed these integrals, and a global stiffness matrix is assembled. Isoparametric elements,
numerical integration, and assembly routines are omitted from this review, as there are
many works that deal with these topics, see, for example, the book by Astley [8] (Section 8.5,
pp. 203–212, Section 8.6, pp. 212–217, and Section 4.3, pp. 104–110, respectively).

2.4. Solution

There are a few different types of analysis of the wave equation that can be performed
using the FEM. One might seek solutions in the modal domain, by using eigenvalue analysis
of the FEM system, in the frequency domain, by assuming time-harmonic behavior, or in
the time domain. In general, each type of analysis requires a different kind of solver. The
details and histories of these analyses are presented in the Sections 3–5.

Note that it is possible to define other types of models and analyses. For example,
one could include the effect of vibro-acoustic coupling between a vibrating structure and
an acoustic field. This is sometimes important to consider, for example, when designing
loudspeaker enclosures in which the vibrations generated by the loudspeaker driver can
couple with the loudspeaker enclosure. However, multiphysics models are considered to
be outside of the scope of this review paper.

Once solutions have been obtained, post-processing is often required. Post-processing
is a vital part of FEM modeling, which facilitates the derivation of variables and quantities
of interest from the FEM solutions, and the visualization of results. An important aspect to
consider is the accuracy of the FEM solutions. It is possible to compare the FEM solutions
with analytically obtained solutions and thus determine the error incurred by the numerical
approach. Computing this error while varying the parameters of the model can lead to
what is known as convergence plots. Convergence, as the name implies, suggests that
as the resolution of the numerical method is increased, its solution converges toward the
analytical solution. This approach instills confidence that the method has been correctly
implemented and that it is able to solve the governing equation.

Error analysis is a topic of ongoing interest in the FEM community since measures of
error can be used to determine the minimum computational effort required for a given level
of accuracy. The work by Ihlenburg & Babuska [9] provides an analysis of FEM solutions
to wave problems. From the measures of error provided therein, it is common to define
the number of degrees of freedom per wavelength in an attempt to control the error. A
general rule of thumb states that 6 to 10 degrees of freedom per wavelength should be
used (see, e.g., [3]). Note, however, that this becomes less valid as the frequency of interest
is increased.

In this section we have briefly introduced the FEM. For more detailed presentations
of the FEM for acoustics, see, e.g., the work by Ihlenburg [10], Desmet & Vandepitte [5],
Thompson [11], Harari [12], and Astley [3,8]. Regarding the FEM for room acoustics, see
Sakuma et al. [13].

3. Modal Domain Solutions

In this section we review the literature that deals with FEM solutions in the modal
domain. When performing modal analysis, the source term is neglected. This permits
one to write the weak formulation as an eigenvalue problem. Using the computed eigen-
solutions one can analyze the problem at hand, or reduce the size of the problem of
interest by considering only the most important modes (this last point will be considered in
Sections 4.2 and 5.2).

3.1. Rigid-Walled Rooms

For a rigid-walled room, using Equation (4), we can write the eigenvalue system[
K + λ2M

]
φ = 0 , (14)
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where we have assumed that the pressure is time-harmonic, i.e., p ∼ eiωt with i =
√
−1

and angular frequency ω = 2π f . Here, λ = iω is an eigenvalue and φ is an eigenmode.
If the determinant of

[
K + λ2M

]
is singular, then Equation (14) has non-trivial solutions.

Solution methods for eigenvalue problems are not considered in this work; the interested
reader is directed elsewhere, e.g., the book by Saad [14].

Gladwell [1] was the first to apply the FEM to simple acoustical problems. He per-
formed an eigenvalue analysis on a square domain discretized using only four elements.
He also considered a coupled acousto-mechanical problem, for which good agreement was
found between the numerical and analytical solutions. The first researcher to use the FEM
to solve a room acoustics problem was Craggs [15,16]. He studied the sound produced
inside a room by a shock wave impacting on a window. To verify that the FEM solution
converged to the correct solution, Craggs performed an eigenvalue analysis of the acoustic
domain. A rigid-walled boundary condition was imposed, allowing comparison of the
FEM solution to an analytical solution. He used the analytical solution for a rigid-walled
rectangular cuboid, given by, e.g., Morse [17], or Morse & Ingard [18]. Damping was not
considered due to the additional computational effort that would have been required at
the time.

Craggs [19] modeled a rigid-walled room using tetrahedral and cuboid elements
(which would be referred to as hexahedral in current definitions), with linear interpolating
shape functions. It was noted that there was no need to explicitly handle the uniform
pressure mode, which has a natural frequency in the region of 0 Hz. Good agreement with
the analytical solution was found and it was shown that when using linear elements the
FEM solutions converge like 1/N2, where N is the number of elements. In addition, the
FEM was used to predict the natural frequencies and modes of a car interior. The FEM
solutions were compared to experimental data, and to solutions obtained using the finite
difference method, and encouraging agreement between the numerical solutions and the
measured data was found.

The structural coupling between two enclosures was studied by Craggs [20], with
a view to modeling the sound transmission from a car’s engine bay to its cabin. Modal
analysis of the coupled, undamped, system was carried out. Shuku & Ishihara [21] also
applied the FEM to the analysis of an irregularly shaped car compartment in 2D. They
showed that their FEM solutions were more accurate than finite difference method solutions,
which is to be expected due to the difficulty of modeling complex geometries with the finite
difference method. They also showed that elements with cubic shape functions are more
accurate than linear functions. In passing we note that, in general, higher-order functions
are more accurate than lower-order functions. This can be seen by considering the error of
the FEM for wave problems [22]

error ≤ C1

(
kh
2P

)P
+ C2k

(
kh
2P

)2P
, (15)

where C1 and C2 are constants, k = ω/c is the wavenumber, h is the typical element
length, and P is the order of the shape functions. The first term on the right-hand side of
Equation (15) can be related to an interpolation error, and the second term can be related
to numerical dispersion, which manifests itself as a phase error. The accumulation of the
numerical phase error by a propagating wave is often referred to as the pollution effect (for
more details, see, e.g., Bayliss et al. [23], or Ihlenburg & Babuška [9]).

Petyt et al. [24] sought modal solutions to an irregularly shaped 3D domain with rigid
walls. They used hexahedral elements with quadratic shape functions. They compared their
numerical predictions of a van model to measured data and found qualitative agreement.
Petyt et al. [25] compared the numerically obtained natural frequencies of an enclosure with
a partition to measured data. They investigated the variation of the mode shapes as a result
of varying the height and position of the partition, and used a component mode synthesis
technique (see, e.g., MacNeal [26]) to reduce the computational demands of the method.



Acoustics 2023, 5 373

Richards & Jha [27] also studied the acoustic field in a car cavity. They used a hybrid
method, comprising 2D FEM solutions and Fourier components to compute 3D solutions.
Triangular elements with quadratic shape functions were used to solve the eigenvalue
problem. The numerical results were compared to analytic solutions and measured data,
with good agreement being found. Nefske et al. [28] reviewed the solution of coupled
structural-acoustical problems using the FEM. They considered a frequency range of 20 to
200 Hz and performed an eigenvalue analysis. The effect of modal coupling due to flexible
walls was investigated, and they showed that the frequencies of the coupled modes are
different to those of the uncoupled modes.

Milner & Bernhard [29] considered the modal characteristics of reverberant rooms.
They used the FEM as a tool to model rooms with varying shapes. The FEM was used
in conjunction with an optimization scheme to find a room shape with a more even
distribution of modal frequencies. Otsuru & Tomiku [30] considered the use of spline-based
interpolation elements to model a sound field in a small room. They solved an undamped
eigenvalue problem, and studied the relation between element types and solution accuracy.
They compared the error levels of linear, quadratic, serendipity quadratic, and spline
functions, and showed that spline interpolating functions can provide more accurate
solutions than quadratic Lagrange functions. They also showed that a certain number of
elements per acoustic wavelength is required to achieve a given accuracy.

Papadopoulos [31] used the FEM to determine the distribution of resonant frequencies
in reverberant rooms. An optimization routine was used to identify room geometries with
even distributions of resonant frequencies. The approach successfully redistributed the
resonant frequencies of the room. Yuezhe & Shuoxian [32] studied two coupled rectangular
rooms. They solved an undamped eigenvalue problem and investigated the variation of
the natural frequencies when the coupling area is changed. Roozen et al. [33] used the
FEM to better understand the measurement of reverberation time in a reverberation room.
They considered rooms with non-parallel walls, and performed modal analysis. While
rigid walls were assumed, losses in the air were included by way of a frequency-dependent
complex speed of sound. Good agreement with measured data was obtained.

3.2. Example: A Room with Rigid Walls

As a demonstration of modal-domain FEM solutions, a shoebox-shaped room with
acoustically rigid walls is analyzed in this section. The analytical solution for the natural
frequencies of a rigid-walled rectangular room is, e.g., Kuttruff [34],

fANA =
c
2

√
nx

Lx

2
+

ny

Ly

2
+

nz

Lz

2
, (16)

where nj, j ∈ {x, y, z}, is a non-negative integer, and Lj is the length of the jth dimension of
the room.

The room under test has dimensions Lx = 4 m, Ly = 3 m, and Lz = 2.5 m. The
speed of sound of the air in the room is c = 343 m/s. The natural frequencies and mode
shapes of the room are computed using the FEM, by solving Equation (14), using quadratic
tetrahedral and quadratic hexahedral elements. For both element types, the maximum
element size is determined by requiring 10 degrees of freedom per wavelength, i.e.,

h =
cP

10 fmax
. (17)

For this example, the use of quadratic elements gives P = 2, and we choose
fmax = 100 Hz. The FEM solutions are compared to the analytical solutions in Table 1.
Included in this table are the relative errors of the FEM solutions, computed using

error =
| fANA − fFEM|

fANA
100 . (18)
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It can be seen that the FEM solutions have a small error compared to the analytical
solutions. If the element size is reduced, the error will further decrease, but the size of the
global stiffness matrix will increase.

Table 1. Natural frequencies of a rigid-walled rectangular room, with relative error.

nx ny nz
Exact
[Hz]

FEM, tet.
[Hz]

Error, tet.
[%]

FEM, hex.
[Hz]

Error,
hex. [%]

1 0 0 42.8750 42.8757 0.0016 42.8772 0.0051
0 1 0 57.1667 57.1693 0.0046 57.1727 0.0106
0 0 1 68.6000 68.6056 0.0082 68.6176 0.0256
1 1 0 71.4583 71.4668 0.0119 71.4645 0.0086
1 0 1 80.8964 80.9099 0.0166 80.9125 0.0199
2 0 0 85.7500 85.7707 0.0241 85.8178 0.0790
0 1 1 89.2972 89.3203 0.0258 89.3146 0.0195
1 1 1 99.0568 99.0941 0.0377 99.0734 0.0168
2 1 0 103.0587 103.1089 0.0487 103.1184 0.0580
2 0 1 109.8136 109.8829 0.0631 109.8775 0.0582

3.3. Damped Rooms

The literature reviewed thus far has not considered damping in the models. However,
damping is a vital aspect in room acoustics. We now review the literature that deals
with damped eigenvalue problems. If we include damping, we obtain the quadratic
eigenvalue problem [

K + λC + λ2M
]
φ = 0 . (19)

This can be rewritten as the first-order system([
K 0
0 −M

]
+ λ

[
C M
M 0

]){
φ

λφ

}
=

{
0
0

}
. (20)

This generalized eigenvalue problem can be written more succinctly as

DΨ = λEΨ , (21)

where

D =

[
−K 0

0 M

]
, and , E =

[
C M
M 0

]
. (22)

The resonant frequencies of a damped room can be recovered from the eigenfrequen-
cies, as follows:

fm = Re
(

λm

2πi

)
, (23)

where Re indicates the real part and m identifies the mth room mode. Note that since we
solve a quadratic problem, we obtain pairs of eigenfrequencies with negative and positive
frequencies. Negative frequencies can be ignored. The damping coefficient of the mth mode
is given by

δm = Im
(

λm

i

)
, (24)

where Im represents the imaginary part. When damping is included, the eigenmodes (or,
mode shapes) are complex-valued. The eigenmodes can be normalized as follows:

φ̂m =
φm√

φmMφ∗m
. (25)

Watson & Lansing [35] used the finite difference method, a weighted residual method,
and the FEM to model an acoustically treated duct of infinite extent. A generalized eigen-
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value problem was solved, and the numerical solutions were compared with exact solutions.
Of the three numerical methods considered, they found the FEM solutions to be the most
accurate. Craggs [36] used the FEM to predict the acoustic response of lightly damped
rectangular rooms. He assumed that the surface impedance was large, and thus that the
modes were weakly coupled. Hexahedral elements with linear shape functions were used.
Convergence of the modal decay rates to those given by an analytic solution was presented.
It was observed that in the presence of absorbing surfaces, the axial modes undergo the
least attenuation, and the oblique modes the greatest attenuation. Craggs concluded that
modal decay rates depend on mode type.

Easwaran & Craggs [37] computed the resonant frequencies of lightly damped rect-
angular, cylindrical, and triangular rooms. They also computed the damping coefficients
of irregularly shaped rooms with a patch of absorbing material. They concluded that
damping coefficients depend on the location of absorbing patches and suggested that
acoustic treatments should be placed at pressure maximums for the greatest attenuation.
They proposed that the FEM is good for low-frequency analyses, for which geometrical
acoustic models fail to capture the relevant physics.

Bermudez et al. [38] considered a system damped by a viscoelastic material. A
frequency-independent impedance was placed on one wall of a 2D rectangular room
and an irrotational field was assumed to write the system in terms of acoustic displacement.
They solved the eigenvalue problem for acoustic displacement, using Arnoldi iteration [39].
They compared their solutions for a 2D rectangular cavity with one absorbing wall with
analytical solutions and found excellent agreement. Larbi et al. [40] also considered a
system damped by viscoelastic material. A normal displacement variable was used at
the absorbing boundary. A rectangular 2D room with one absorbing wall with frequency-
independent impedance was modeled. The numerical eigenvalue solutions were compared
to analytical eigenvalues, and good agreement was found.

3.4. Example: Two Rooms with Damped Walls

Two examples of the modal analysis of damped rooms are presented in this section.
A shoebox-shaped room and an L-shaped room are considered, and their floor plans are
presented in Figure 3. Both rooms have two cuboidal loudspeakers placed on the floor and
a rigid sphere positioned at a seated listener’s height. Note that, for a modal analysis, we
do not need to define a source function. A uniform normalized impedance independent of
frequency with a value of ζ = 37 is specified on all surfaces, except for the loudspeakers
and the rigid sphere. Quadratic tetrahedral elements are used and eigenvalue analysis is
carried out to compute the resonant frequencies and damping coefficients of the rooms.

The numerical data are presented in Figure 4. It can be seen that the resonant fre-
quencies differ slightly - this will result in shifted peaks in a comparison of room transfer
functions. While the resonant frequencies are not too dissimilar, the damping coefficients
are significantly different. One result of this is that the reverberation times at low frequen-
cies will differ between rooms. This difference will also appear in the Q-factors of the
resonant peaks of the room transfer functions.

3.5. Modal Domain Summary

Modal analysis can be used to determine the resonant frequencies, damping coeffi-
cients, and mode shapes of a damped room of arbitrary shape. While this is straightforward
for non-uniform frequency-independent boundary conditions, nonlinear solution tech-
niques might be required for frequency-dependent boundary conditions. Modal analysis
can also be used to reduce the computational effort of modeling the acoustic field in a room,
as will be shown in the following section.
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Figure 3. Floor plans of two rooms used to demonstrate the FEM solutions that can be obtained for
damped rooms. Left: a shoebox-shaped room. Right: an L-shaped room. The rooms have the same
height. The loudspeakers, sL and sR, and receivers, rL and rR, have the same positions in both rooms.
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Figure 4. Eigenvalues of the two damped rooms shown in Figure 3. Left: resonant frequencies. Right:
damping coefficients.

4. Frequency Domain Solutions

To obtain solutions in the frequency domain, one begins by assuming that the problem
under consideration is time-harmonic. This is equivalent to applying the Fourier transform
to the wave equation. The resulting equation is the Helmholtz equation:(

∇2 + k2
)

p f = 0 , (26)

where p f is the pressure in the frequency domain. In this section we present a history of
the use of the FEM to obtain frequency-domain solutions to room acoustics problems by
solving the Helmholtz equation.

4.1. Direct Approach

Applying the time-harmonic assumption to Equation (10) we obtain the system

Ap f = q f , (27)

where A =
[
K + iωC−ω2M

]
is the global stiffness matrix and a possible source term is

q f = −iωρ
∫

e
NT û(ω)dS , (28)
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where û(ω) is the complex-valued amplitude of the normal velocity. Equation (27) is
solved for the unknown pressure coefficients, p f , by inverting the global stiffness matrix.
Several solution strategies exist; the most commonly known strategy is Gaussian elimina-
tion. Examples of solvers often used to solve large linear systems are MUMPS [41] and
PARDISO [42]. More details of direct solution methods for sparse systems can be found in,
e.g., the book by Davis [43].

Kagawa et al. [44] modeled expansion chambers and acoustic horns using an axisym-
metric formulation of the Helmholtz equation with triangular elements and quadratic
shape functions. Sound absorbing walls were modeled by defining the acoustic impedance.
The FEM solutions were validated using measured data. Joppa & Fyfe [45] considered
enclosures with an absorbing material in 2D. The field variable used was the velocity
potential, ψ, which can be related to the acoustic pressure as follows:

p = −ρ
∂ψ

∂t
. (29)

It is quite common to find velocity potential being used in computational acoustics
for general acoustical problems. Joppa & Fyfe studied a range of problems, namely:
an impedance tube, a Helmholtz resonator, an exponential horn, a cavity divided by a
permeable membrane cavity, and a folded cavity. They found good agreement in all cases,
and found that the only drawback of the FEM was storage space, but that sparse matrix
storage could help.

Craggs [46] presented a generalized impedance model to avoid the restrictions of
a locally reacting impedance model (which is discussed in Section 6.3.3). An acoustic
domain was coupled to absorbing finite elements, and the continuity of pressure and
normal velocity were enforced at the interface. A 2D model of an impedance tube was
used as a test case. The complex impedance of an absorbing material and its corresponding
absorption coefficient were computed and found to be in good agreement with the analytic
solution. Craggs [47] modeled acoustically lined rooms using his absorbing elements [46].
A rectangular room was investigated, with acoustic treatment on one wall. FEM data was
compared to solutions of the Delany-Bazley model [48], and qualitative agreement was
found between measured and simulated data.

In their review of the use of the FEM to solve coupled structural-acoustical problems,
Nefske et al. [28] predicted the transfer function from a vibrating surface to an observer
position. They compared the numerical predictions with the measured data and found
good agreement. This analysis allowed the researchers to determine the contribution of
each surface to the sound pressure at the observation position. They also considered the
phase relations of the various panels and suggested that varying phase relations would
change the observed pressure level. Maluski & Gibbs [49] studied the transmission of
sound from one room to another, joined by a party wall. They were able to show that if the
rooms differ in volume by 40%, then a 3 dB increase of sound isolation might be achieved.

Tomiku et al. [50] used the FEM to study the spatial variation of sound pressure levels
in reverberation chambers. They compared the spatial correlation of the simulated sound
field with that of a diffuse field. They determined that the shape of the room and the
position of the sound source affect the standard deviation and spatial correlation of the
sound fields, while the absorbing material does not affect the standard deviation.

Naka et al. [51] aimed to reduce the computational cost of solving FEM models of a
rectangular room. This was achieved by reducing the size of the global stiffness matrix, by
introducing an imaginary surface within the room on which a Dirichlet-to-Neumann (DtN)
map boundary condition was imposed. A Krylov subspace iterative method was used to
solve the system (the use of iterative solvers is discussed in Section 6.1.1). Their solutions
were compared to analytic and to standard FEM solutions, and they found that the accuracy
of the DtN procedure is related to the number of modes included. The DtN method was
found to be more computationally efficient than the standard approach. Additionally,
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Naka et al. [52] used the FEM to verify an eigenvalue method for rectangular rooms with
damped walls.

Vorländer [53] considered a hybrid modeling approach, for which wave-based methods
are used for low frequencies, and geometrical methods are used for high frequencies. In
particular, he studied the choice of crossover frequency. The variations of temperature
and phase were also considered in the study, and the effect of uncertainty in the input
data was demonstrated. At low frequencies in a scaled room, qualitative agreement was
found between FEM and measured data. Pelzer et al. [54] simulated acoustic responses
of a reverberation chamber using the hybrid approach, in order to obtain better binaural
rendering. The FEM was used up to the Schroeder frequency [55], and geometrical methods
were used above. The FEM model included a dummy head for binaural solutions, and fitted
absorption coefficients were used to obtain more reliable models. Although qualitative
agreement with the measured data was found, it was noted that the simulations are highly
dependent on the input parameters. Relatedly, the uncertainty of material parameters is
discussed in Section 6.3.1 of this review.

Aretz [56] also investigated the hybrid approach. The resulting room transfer function,
spanning the audible frequency range, was inverse Fourier transformed to recover a
room impulse response. While good agreement was found with the measured data, the
accuracy of the solutions was highly dependent on the impedance information used at the
boundaries. It was found that modeling a 3D absorber as a boundary condition improved
the correspondence between the numerical and measured data. Aretz & Vorländer [57,58]
stated that a significant challenge was the correct description of the impedance of sound
absorbing surfaces. They concluded that FEM solutions are limited by the accuracy of the
boundary and source data used.

Dokmanic & Vetterli [59] considered acoustic source localization in a rigid-walled
room with known geometry. The FEM was used to locate sources in the room, based on
measurements at given points. The problem reduced to the inversion of a matrix at each
frequency of interest. Noise was added to the system and the performance of the approach
was assessed. For sources without a direct line of sight to the microphone, encouraging
results were found.

4.2. Modal Approach

To reduce computational effort, one can solve the eigenvalue problem and use the
eigensolutions to write the Helmholtz equation in modal coordinates. The acoustic pressure
can be mapped onto the modal coordinates as follows:

p f = ΦpΦ
f , (30)

where Φ = [φ̂1, φ̂2, ..., φ̂M], and the superscript Φ identifies quantities written in modal
coordinates. The modal stiffness, damping, and mass matrices are then given by

KΦ = ΦTKΦ , CΦ = ΦTCΦ , and , MΦ = ΦTMΦ , (31)

and the modal source is
qΦ

f = ΦTq f . (32)

Thus, Equation (27) can be rewritten in terms of eigenmodes as

AΦpΦ
f = qΦ

f . (33)

After solving Equation (33), the pressure is given by Equation (30). By choosing a
subset of modes, the size of the matrices can be reduced, enabling more efficient solutions.

Kopuz & Lalor [60] considered a rectangular room with a vibrating wall, and compared
direct and modal approaches. Using hexahedral elements with linear shape functions,
qualitative agreement was found between the direct and modal solutions. Additionally,
it was shown that the modal solution converges to the direct solution as the number of
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modes increases. Tomiku et al. [61] also compared the performance of direct and modal
approaches. The direct analysis problem was solved using an iterative solver, specifically, a
conjugate orthogonal conjugate gradient (COCG) method [62] was used. They considered
two versions of the modal analysis: the first neglected damping, yielding a linear eigenvalue
problem, the second included damping, resulting in a generalized eigenvalue problem.
They used a monopole source, characterized by a volume velocity, and a range of impedance
conditions were considered. Good agreement was found between the solutions of the direct
and modal approaches.

4.3. Example: Room Transfer Function

As an example of frequency-domain analysis, we simulate two room transfer functions
in the L-shaped room shown in Figure 3. A frequency range of 20 to 300 Hz is considered,
with a frequency resolution of 1 Hz. The two loudspeakers, sL and sR, are excited with a
unit normal acceleration. The transfer functions on either side of the rigid sphere, at rL and
rR are computed.

The model is solved using the direct approach and the modal approach. Both solutions
are presented in Figure 5. We see that the solutions are similar, between roughly 50 and
200 Hz. Differences observed above (approximately) 200 Hz are the result of omitting
higher-order modes. Differences observed below (approximately) 50 Hz are a result of
not specifying the uniform pressure mode (see Section 3.1). Note that, while the modal
approach can reduce the size of the model, its accuracy is limited by the number of
modes used.

50 100 150 200 250 300

30

40

50

60

70

50 100 150 200 250 300

30

40

50

60

70

Figure 5. Room transfer functions in the L-shaped room at receiver positions rL and rR, simulated
in the frequency domain. Left: solutions from the direct approach. Right: solutions from the
modal approach.

4.4. Frequency Domain Summary

Generally, obtaining frequency-domain solutions requires one matrix inversion of A
for each frequency of interest. Due to the sparsity of matrix A, if one is interested in a
narrow range of low frequencies, the cost is not too large. However, at higher frequencies
the number of degrees of freedom required to maintain a given level of accuracy (cf.
Equation (15)) results in increasing computational effort. To some extent, frequency-domain
solutions can be more efficiently obtained by using parallel computing. Attempts to reduce
the computational effort of the FEM in frequency and time domains are reviewed in
Section 6.

Obtaining solutions in the frequency domain is straightforward, and for low fre-
quencies not computationally expensive with currently available compute power. When
compared to measured data, deviations occur due to misuse of the method, or lack of
accurate input data. Lastly, we have seen that modal analysis can be used to accelerate the
frequency-domain method, by including only the most important modes.
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5. Time Domain Solutions

There are three main approaches for obtaining solutions in the time domain: (1) use
numerical time-stepping algorithms to solve the wave equation, (2) make use of modal
analysis to reduce the computational effort, or (3) perform an inverse Fourier transform
of frequency-domain solutions. The history of using the FEM to predict time-dependent
behavior of sound fields in rooms is presented in this section, in three separate sections that
are related to these approaches.

5.1. Time-Stepping Approach

A time stepping approach that appears often in the literature is the Newmark-beta
method [63]. Using this approach, the acoustic pressure and its first-order derivative with
respect to time can be approximated as follows:

pt+∆t = pt + (∆t)ṗt + (∆t)2
(

1
2
− β

)
p̈t +

[
(∆t)2β

]
p̈t+∆t , (34)

and
ṗt+∆t = ṗt + (∆t)(1− γ)p̈t + [(∆t)γ]p̈t+∆t , (35)

where ∆t is a time step, and γ and β are parameters that determine the performance of the
method. Generally, γ = 1/2. For more information on common choices for ∆t and β see,
e.g., [13,64]. Inserting Equations (34) and (35) into Equation (10) yields the system[

M +
(∆t)

2
C +

[
β(∆t)2

]
K
]

p̈t+∆t = qt+∆t − Crt −Kst , (36)

where

rt = ṗt +
(∆t)

2
p̈t , (37)

and

st = pt + (∆t)ṗt +

(
1
2
− β

)
(∆t)2p̈t . (38)

Equation (36) can be solved using either a direct or an iterative solver. For more
information on iterative methods in general consider, for example, [65,66]. For more detail
on iterative methods used to obtain FEM solutions for room acoustics problems, the reader
is invited to consult the book by Sakuma et al. [13].

Craggs [16] solved a structural acoustics problem in the time domain using the FEM.
He predicted the pressure in a rigid-walled room subject to a shock wave impacting upon
the window. Later, Otsuru & Uchida [67] sought impulse responses in 3D rooms with
absorbing walls. They tested both locally reacting boundaries and Cragg’s absorbent finite
element [47]. The source used was a tone burst with a driving frequency of 1 kHz, filtered
with a hamming window to give 12 cycles. They used the FEM to predict a reverberant
sound field in a scaled model, using real impedances derived from measured absorption
coefficients. Their solutions were compared to measured data, but the agreement was
poor. It was suggested that inaccurate impedance values were the cause of the observed
discrepancies. A similar study was performed by Murillo et al. [68], in which it was
shown that omitting the imaginary part of the impedance can be a source of error in FEM
predictions. Otsuru et al. [69] investigated the use of the conjugate gradient method to solve
large scale problems. They considered damped systems with complex impedance values,
and applied the method to the prediction of a sound field up to 1 kHz in a room with a
volume of 12,000 m3. The system solved had more than 29 million degrees of freedom.

Okuzono et al. [70] used 27-node hexahedral elements with spline functions, and
a Newmark-beta method to model impulse responses. The linear system was solved
using the COCG method, and four types of preconditioning were studied. Of the four
preconditioners, absolute diagonal with incomplete Cholesky factorization with no fill-in
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was identified as a suitable option for solving time-domain FEM systems. Additionally, an
element-by-element method [71] was used to solve the system on a parallel architecture.
They found an almost linear speedup up to 128 processes. For 256 processes a slowdown
was observed, which was attributed to communication costs between Central Processing
Units (CPUs). With this approach, they were able to model a room with a volume of
approximately 13,000 m3, using 12 million degrees of freedom on 256 CPUs.

Okuzono et al. [72] studied the precision of time-domain FEM with spline functions
for an irregularly shaped reverberation room at frequencies up to 500 Hz in comparison
with measured values. Good agreement between simulated and measured energy decay
curves was found. Papadakis & Stavroulakis [73,74] computed an impulse response of a
reverberant space. They used the implicit, second-order accurate generalized-α [75] time
stepping algorithm. They compared the FEM solutions to measured data of a concrete
walled room, and found good agreement. Okuzono & Sakagami [76] modeled a permeable
membrane using a limp membrane finite element [77] and implicit time integration. Their
proposed method was verified using an impedance tube model. Good agreement was
found with analytical and frequency-domain FEM solutions.

5.2. Modal Approach

A modal analysis can also be used to reduce the cost of the time-domain analysis. As
was done for the frequency-domain modal analysis, the acoustic pressure is mapped to the
modal coordinates. This results in the system

KΦpΦ + CΦṗΦ + MΦp̈Φ = qΦ , (39)

which is solved using a time-stepping algorithm.
Easwaran & Craggs [78] considered a lightly damped room, and used modal coordi-

nates to find the resonant frequencies and damping coefficients of the room. They generated
impulse responses and found good agreement with a transition matrix approach. Otsuru &
Uchida [67] simulated transient responses in 3D rooms with absorption. They assumed a
lightly damped room with locally reacting impedance, and found the uncoupled modes of
the system. Larbi et al. [40] also considered the damped room problem. The undamped
modes of the system were found, and a modal version of the time-domain problem was
solved. They demonstrated the effect of including a limited number of modes in the modal
time-domain approach, and showed that the resulting system is only accurate up to a
maximum frequency, which is determined by the number of modes included.

5.3. Inverse Fourier Transform Approach

Solutions obtained in the frequency domain can be inverse Fourier transformed to
recover solutions in the time domain, as follows:

p =
∫ +∞

−∞
p f (ω)eiωtdω . (40)

Granier et al. [79] considered the use of computational methods for virtual acoustics.
They discussed the inverse Fourier transformation of frequency-domain FEM solutions to
obtain impulse responses. It was stated that the non-causality present in their obtained
impulse responses caused listener annoyance. They also considered a hybrid approach,
using the FEM for low frequencies and geometrical methods for high frequencies. Otsuru
and Uchida [67] also performed inverse Fourier transformation on frequency-domain
solutions to recover impulse responses. They noted that this approach has the advantage of
including frequency-dependent boundary conditions. Both locally reacting and absorbent
element methods were used.

Aretz et al. [80] considered the combination of the FEM and geometrical methods for
auralization. They stated that the frequency resolution of frequency-domain FEM solutions
must be chosen carefully, as there is a trade-off between accuracy and computational effort.
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Roozen et al. [33] also considered solutions in the time domain via the inverse Fourier
transform. They filtered the obtained impulse response to observe the beating of modes.
Some agreement with measured data from a reverberation room was found.

Prinn [81] presented a quantitative analysis of the use of FEM solutions in the fre-
quency domain to obtain impulse responses. The incurred error was quantified and a set of
guidelines was proposed to obtain accurate impulse responses. It was found that accurate
solutions are computationally expensive to compute, due to the small frequency spac-
ing required, and that there are numerical dispersion and non-causality artifacts present
in the time-domain solutions. Yatabe & Sugahara [82] attempted to recover impulse re-
sponses from frequency-domain FEM solutions using a post-processing technique, which
involves convex optimization. They used interpolation and extrapolation of an under-
resolved frequency-domain solution to minimize the non-causality artifacts present in their
impulse responses.

5.4. Example: Room Impulse Response

For this example, the FEM has been used to simulate two impulse responses in the
L-shaped room (presented in Figure 3), using the time-stepping approach. The gradient
of a Gauss pulse is used to define the source condition, imposed as the normal velocity
of the loudspeakers. The impulse responses are shown in Figure 6. Also shown in the
figure are their resulting energy decay curves. It can be seen that the reverberation time
in the L-shaped room is roughly 0.5 s. Note the ability of the FEM to capture the subtle
differences present in the impulse responses and decay curves, caused by a slight change
of receiver position.
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Figure 6. Time-domain solutions obtained using the time-stepping approach. Left: room impulse
response functions at receiver positions rL and rR. Right: energy decay curves at positions rL and rR.

5.5. Time Domain Summary

Time-stepping algorithms may be implicit or explicit, and use of both types can be
found in the literature. While there are advantages and disadvantages to using either type,
explicit methods appear to be preferred because they offer faster solutions (at the cost of
stability). Using inverse Fourier transformed frequency-domain solutions allows for a
natural implementation of complex-valued, frequency-dependent boundary conditions.

6. Challenges and State-of-the-Art

The FEM is a robust and versatile method for computing acoustic fields in complicated
geometries, with complex-valued, frequency-dependent boundary conditions. The current
challenges of using the FEM for room acoustics, and the work carried out to address these
challenges, are discussed in this section.

6.1. Computational Cost

The greatest current challenge is to reduce the computational effort required to sim-
ulate sound fields in rooms. A requirement for broader application of the FEM in room
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acoustics would be to perform these simulations in (or close to) real time, as this would
facilitate the inclusion of wave effects in auralization and virtual acoustics applications, and
would enable more efficient room geometry and material parameter optimization. Note
that there are ongoing efforts by the room acoustics community to achieve this using other
wave-based methods, like the boundary element, finite difference or finite volume methods
(see, e.g., [83–86]).

6.1.1. Iterative Solvers

Obtaining FEM solutions in the frequency domain using a direct method typically
requires one matrix inversion per frequency of interest. While the global stiffness matrix is
sparse, the matrices can become very large and can be costly to solve. When solutions at
many frequencies are required, e.g., when using inverse Fourier transformation to obtain
impulse responses (cf. Section 5.3), the computational cost can be significant. Thus, there is
an incentive to use iterative solvers to solve frequency-domain models [87,88]. However,
iterative solution of the Helmholtz equation is not straightforward and preconditioning is
often required, see, for example, Thompson [11].

Okamoto et al. [89] considered the use of iterative solvers for frequency-domain
solutions. They studied the performance of Krylov subspace iterative solvers and showed
that the COCG method can be used to find solutions that are in good agreement with
solutions obtained using the direct method. They also showed that diagonal scaling of the
global stiffness matrix is a suitable choice for reducing computation time. Good agreement
was obtained between FEM solutions and measured data from an irregularly shaped
reverberation room. A comparison of iterative solvers used for frequency-domain FEM is
given by Sakuma et al. [13].

Okuzono et al. [90] compared the performance of implicit time-domain FEM with
frequency-dependent boundary conditions (see Section 6.3.2) with that of frequency-
domain FEM. They found that the convergence rates of the approaches are the same,
and concluded that the time-domain FEM approach is more efficient than the frequency-
domain FEM approach. Indeed, the majority of recently written articles that have been
reviewed have solved room acoustic problems in the time domain.

6.1.2. Domain Decomposition

For large scale problems, or high frequencies, the number of degrees of freedom sig-
nificantly increases and the matrix storage requirements can exceed the available memory
on laptop and desktop computers. In such cases solutions are often computed on large
computing clusters with multiple CPUs, or multiple Graphics Processing Units (GPUs).
One way to take advantage of multiple processors is to divide a model into several sub-
domains, and then compute a solution for each subdomain using a single processor; This
is a domain decomposition approach. Various sources of information regarding domain
decomposition methods can be found in the literature, e.g., [11,91,92], and the approach
will not be described in any detail here.

Domain decomposition is one way to make use of parallel processing for more efficient
FEM solutions, as shown by Yoshida et al. [93]. They used domain decomposition-based
parallel computing to simulate an auditorium with locally reacting frequency-dependent
boundary conditions. To model the auditorium, with a volume of 2271 m3, approximately
150 million degrees of freedom were required. They were able to model an impulse response
of 3 s up to 3 kHz, using 512 CPU cores. Solution took about 2.5 h.

The use of GPUs for solving wave-based models other than the FEM has been in-
vestigated, e.g., [94–96], and, encouragingly, GPUs have been used to generate real time
solutions with the finite difference method [97]. However, to the best of the author’s
knowledge, domain decomposition has not been used to solve room acoustics problems
with the FEM on GPUs.
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6.1.3. Discontinuous Galerkin Method

Regarding time-domain analyses, there are ongoing efforts to develop the Discontinu-
ous Galerkin Method (DGM) for time-domain room acoustics simulations. Especially in
light of the fact that the DGM lends itself naturally to parallelization on GPUs, e.g., [98,99].

Simonaho et al. [100] studied the performance of the DGM using a Runge-Kutta time-
stepping algorithm. Good agreement with measured was data found. Wang et al. [101]
presented a study of a nodal time-domain DGM for room acoustics, which made use of
an explicit Runge-Kutta time stepping algorithm. Real-valued frequency-independent
impedance boundary conditions were used. They compared the DGM solutions to mea-
sured data and found good agreement. Schoeder et al. [102] presented a high-performance
higher-order DGM code with explicit Runge-Kutta and local time stepping methods. The
convergence of the method was demonstrated and an urban acoustics problem was tackled.

Pind et al. [103] made use of an Equivalent Fluid Model [104] (EFM) formulation to
model Extended Reaction (ER) porous absorbers (discussed in Section 6.3.3) using the
DGM. The proposed approach was verified using analytical data. Wang et al. [105] used
a Taylor series integrator and a local time-stepping algorithm to develop a DGM with
arbitrary high-order derivatives. They demonstrated that the proposed approach reduced
computational cost while maintaining accuracy.

6.1.4. Reduced Basis

When using optimization routines to identify a preferred room shape or optimal
acoustic treatments, the computational cost can be a significant issue. More efficient
methods are required to facilitate faster acoustic design, among other applications.

Sampedro Llopis et al. [106] developed a method to explore the parameter space based
on a reduced basis of a spectral element method formulated in the Laplace domain. Using
Weeks’ method [107] they computed room impulse responses, and found good agreement
with time-domain solutions and full-order method solutions. They considered the accuracy,
efficiency, and storage of the approach and demonstrated the potential speed up of using a
reduced basis for parameter studies in room acoustics.

6.2. Pollution Effect

It has been found that the numerical dispersion present in impulse responses simulated
using wave-based methods can be audible [108]. Unfortunately, dispersion is inherent
to the FEM, and it is difficult to control the resulting pollution effect. To mitigate the
pollution effect, studies of Modified Integration Rules (MIR), higher-order functions, and
the Partition-of-Unity FEM (PUFEM) have appeared in the literature.

6.2.1. Modified Integration Rules

Dispersion reducing techniques aim to reduce the phase error, and in doing so can
reduce the computational effort. One approach that appears often in the literature is the
use of MIR. MIR were introduced by Guddati & Yue, in the frequency domain [109] and in
the time domain [110], to minimize the numerical dispersion.

Okuzono et al. [111] studied the use of MIR for the time-domain FEM. They performed
a dispersion analysis, and demonstrated the improved performance of MIR over conven-
tional integration points. Furthermore, the use of MIR resulted in faster convergence of the
iterative solver. Otsuru et al. [112] made use of MIR to reduce the pollution effect. They
used several shape functions to perform an eigenvalue analysis of an impedance tube,
and found that the performance of linear shape functions with MIR are comparable to the
performance of higher-order spline shape functions. Additionally, the use of MIR required
fewer degrees of freedom to achieve a given accuracy. The approach was used to predict
the sound field in a music hall with a volume of 8050 m3, using a 1 kHz tone burst. The
system that was solved had almost 50 million degrees of freedom.

Okuzono et al. [113] attempted to address the poor efficiency of the FEM at high
frequencies, by reducing the pollution effect using MIR. A 3D problem with real-valued
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impedances was studied and solved in the time domain using an implicit method and an
explicit method. For the explicit approach, the system was split into two coupled first-order
differential equations. Upon comparison, it was found that the explicit method had more
error than the implicit method. The source of the error was a higher level of pollution in the
explicit method solution. The number of degrees of freedom per wavelength was increased
for the explicit method until both approaches gave the same error. For the same accuracy,
the explicit method was faster but required more solving memory.

6.2.2. High-Order Methods

Using higher-order functions in the FEM is often referred to in the literature as the
p-version of the method (see, e.g., [114]). Obtaining solutions with higher-order functions
often requires more computational effort than solution with low order functions. Note,
however, that the use of some higher-order functions can reduce the dispersion while
also reducing the computational effort, see for example the use of Lobatto functions [115].
Higher-order methods are often used to tackle the pollution effect.

Regarding room acoustics, Okuzono et al. [116] proposed a method to reduce the
pollution effect for a frequency-domain FEM using 27 node hexahedral elements with spline
shape functions. The proposed method used fewer degrees of freedom than conventional
spline functions [30] to obtain a given accuracy. Later, Okuzono et al. [117] enhanced the
efficiency and accuracy of the time-domain FEM by using MIR to reduce the phase error. A
stability condition for the Fox-Goodwin method (a subset of Newmark-beta), based on an
eigenvalue analysis of the linear system at the element level, was presented. A dispersion
analysis showed that MIR reduced the numerical dispersion. The improved accuracy and
efficiency (due to relaxed stability conditions) of spline shape functions with MIR over
standard spline and quadratic Lagrange shape functions were demonstrated.

Yoshida et al. [118] presented an explicit time-domain method that is fourth-order
accurate is both space and time. They used dispersion-reduced low-order elements and
a high-order time integration algorithm. Using this approach, the sound fields in a room
containing acoustic diffusers and in a concert hall were modeled. Good agreement was
found with reference solutions. More recently, Yoshida et al. [119] aimed to control the
pollution effect by minimizing the error in the axial and diagonal directions for a given
frequency range and mesh resolution. They showed that the proposed approach is capable
of achieving accuracy and efficiency higher than those of the standard time-domain FEM.

The use of higher-order spectral elements for room acoustics have also appeared in
the literature (see, e.g., Pind et al. [120]). These methods have notable efficiency and low
dispersion. Higher orders also tend to be used in the DGM. For a recent comparison of
the dispersion properties of an FEM and a DGM on tetrahedral meshes for time-domain
simulations, see Geevers et al. [121].

6.2.3. Partition of Unity FEM

The standard shape functions of the FEM form a partition of unity. Therefore, one
way to increase the accuracy of the FEM is to use the partition of unity to add enrich-
ment functions to the approximation space. Typical choices for enrichment functions are
polynomials, plane waves, and spherical waves. When it comes to modeling room acous-
tics, plane waves are often found in the literature. For more details of the PUFEM, see:
Duarte & Oden [122] and Melenk & Babuška [123]. In passing, we note that polynomial-
enriched PUFEM can result in poorly conditioned systems, see, e.g., Prinn [115].

Okuzono et al. [124] studied the use of a PUFEM with plane waves as enrichment
functions. They modeled single and coupled rooms, and showed that PUFEM is poten-
tially more efficient than standard FEM, but noted the poor conditioning of the systems.
Tamaru et al. [125] also used the PUFEM with plane wave enrichment. They sought an
efficient numerical quadrature approach and defined a rule for the number of integration
points to be used for the plane wave enrichment (based on the frequency of interest).
Mukae et al. [126] studied the robustness of the FEM enriched with plane waves. They
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suggested that PUFEM becomes more robust when using a mesh discretized with element
sizes comparable to the wavelength of the upper-limit frequency.

6.3. Material Modeling

To obtain accurate FEM solutions, the characteristics of a room’s materials must be
accurately modeled. However, there is a degree of uncertainty present in the measured
quantities of materials. Additionally, the characteristics of absorbing materials are generally
complex-valued and frequency-dependent, which presents a challenge for time-domain
methods. Lastly, not all absorbing materials are adequately described by the Local Reaction
(LR) model. The literature that deals with these issues is reviewed in this section.

6.3.1. Uncertainty of Material Properties

When defining the input parameters to a computational model of a room, there are
many sources of uncertainty, for example: sound source characteristics, air temperature
and humidity, level of detail in geometrical description, and material properties [127]. In
this section we are concerned with the uncertainty of the acoustic properties of materials.

When specifying boundary conditions a resource often relied upon are tables of
random incidence absorption coefficients of typical building and absorbing materials. How-
ever, there is uncertainty associated with the measurement of the absorption coefficients of
some acoustic treatments (see, e.g., Wittstock [128]). Vorländer [127] demonstrated that the
absorption coefficients obtained using the reverberation chamber method are not accurate
enough to ensure that the differences between the simulated and measured reverberation
times are below just noticeable differences.

Recently, Thydal et al. [129] presented a framework for quantifying uncertainty in
room acoustic simulations. Using the time-domain DGM to model a small rectangular room
with a porous absorber, they studied the uncertainty of the flow resistivity and thickness of
the porous absorber, and the uncertainty of the absorption properties of the walls of the
room. The study included a comparison of uncertainty to auditory perceptual limits. For
the test case considered, it was found that the uncertainty results in differences between
simulated and measured data that exceed just noticeable differences. They speculated that
the lack of adequately resolved complex-valued frequency-dependent impedance and the
use of an LR impedance model could have contributed to the differences.

Impedance estimation is a difficult task, yet the results are a prerequisite for accurate
predictions. There are therefore ongoing efforts to measure surface impedance in situ.
Brandão et al. [130] present a review of in situ impedance measurement methods. With
regards to the modal region of a sound field, Prinn et al. [131] presented an FEM based
eigenvalue approximation method for in situ estimation of the LR impedance of sound
absorbing materials at low frequencies. The proposed approach was verified using FEM
simulations of an impedance tube and a reverberation room.

While the uncertainty of material properties can limit the accuracy of FEM solutions,
we stress that the fault does not lie with the FEM. The absence of certain input parameters
causes disagreement with measured data. Advanced measurement methods and numerical
models are needed to reduce the uncertainty.

6.3.2. Frequency-Dependent Materials

When computing solutions in the time domain, one difficulty that arises is the descrip-
tion of frequency-dependent quantities. This is dealt with in the literature by employing an
Auxiliary Differential Equation (ADE) method [132,133]. Wang & Hornikx [134] presented a
multipole model of a frequency-dependent boundary condition in the time domain. Along
with the ADE method, the multipole approach was used to model LR surfaces with the
DGM in the time domain. The approach was used to simulate a reflection from a glass
wool baffle with rigid backing in a large room.

Okuzono et al. [135] modeled permeable membranes in the time-domain FEM, using
MIR and a limp model that takes into account the flow resistance and surface density of a
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membrane. Although the limp membrane had zero thickness, due to an air-filled backing
the elements modeled a non-locally reacting surface impedance. The approach was verified
using an impedance tube model and subsequently used to model absorption coefficient
measurements in a reverberation chamber.

Yoshida et al. [136] used the ADE method to model the frequency-dependent LR
boundary condition in time-domain FEM. A model of an impedance tube measurement was
used to verify the the approach. Okuzono et al. [90] implemented a frequency-dependent
absorbing boundary using the ADE method and found good agreement between FEM
solutions in the time domain and the frequency domain. Okuzono and Yoshida [137]
modeled the frequency dependence of both LR and ER materials in the time domain.

6.3.3. Extended Reaction Materials

An assumption often made in room acoustics simulations is that absorbing surfaces
can be described using an LR model. This assumption is not valid for many of the materials
that are typically used to absorb sound, for example, porous absorbers. For such acoustical
treatments, the impedance is often of ER type and depends on the incident angle. These
materials are more accurately modeled using an EFM. For a more detailed discussion
of sound absorbing materials, the interested reader is referred to the books by Allard &
Atalla [104] and by Cox & D’antonio [138].

Chazot et al. [139] aimed to solve medium to high frequency problems using PUFEM
with plane wave enrichment. They modeled 2D cavities with ER absorbing material using
an EFM. Lagrange multipliers were used to enforce the continuity of acoustic velocity
and pressure at the interface between the air and the absorbing material domains, and the
approach was verified by comparison with a 1D analytical solution. Chazot et al. [140]
extended PUFEM to solve problems with poroelastic materials, i.e., problems which include
elastic and pressure waves. They used the approach to model the sound field in a car with a
seat made of poroelastic foam. Mukae et al. [141] used plane-wave-enriched FEM to model
microperforated panels and permeable membrane sound absorbers. They found that the
pollution effect was smaller with the PUFEM than with the standard FEM.

Okuzono & Sakagami [142,143] proposed a frequency-domain FEM formulation with
linear hexahedral elements and MIR that included ER microperforated panels. The mi-
croperforated panels were modeled by a lumped limp model with the Maa impedance
model [144]. Good agreement with analytical solutions was found. Okuzono & Sak-
agami [145] presented linear hexahedral absorption finite elements based on an EFM with
MIR to model porous materials more efficiently. Two plane wave propagation problems in
porous and coupled air-porous domains showed that the absorption finite elements have
better accuracy than the conventional linear absorption finite elements.

Yoshida et al. [146] presented an implicit formulation in the time domain of ER porous
absorbers. They used an EFM and an ADE to model the frequency dependence of the
absorber. An implicit Runge-Kutta method was used to solve the ADE, and the proposed
model was coupled to an air-filled domain. Additionally, MIR were used. The coupled
model was used to simulate the measurement of impedance in an impedance tube, and
good agreement with analytical data was found. Okuzono & Yoshida [137] considered the
FEM in the time domain for small room acoustics. They modeled frequency-dependent LR
and ER sound absorbers, and simulated impulse responses up to 6 kHz. They compared
the costs of solving in the time domain and the frequency domain (using both direct
and iterative solvers), and found the time-domain approach to be more efficient than the
frequency-domain method for a given accuracy, both in terms of computation time and
required memory.

An ER model based on the EFM was also considered in the context of the time-
domain DGM by Pind et al. [103]. Solutions obtained using an LR model and a field-
incidence approximation were compared with solutions given by an ER model, and it was
shown that the ER model results in lower levels of error when compared to the LR model.
The approach was experimentally validated. Pind et al. [147] presented a wave-splitting
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technique to model the angle dependency of a reflected wave. They also demonstrated
the improvement of the ER model over the LR model. The proposed approach was
developed with sparse reflections in mind, i.e., the early reflections in large rooms. Wang &
Hornikx [148] considered ER materials in the time domain. They modeled porous absorbers
covered by thin materials using the time-domain DGM. A coupled model was presented, in
which the porous material domain was modeled using an EFM. The effective density and
compressibility of the equivalent fluid were modeled using multipole rational functions,
and an upwind numerical flux formulation, which reduces the computational effort when
compared to other approaches, e.g., [103,147], was presented. The approach was verified
using analytical solutions, with good agreement being found.

6.4. Verification and Validation

As more advanced techniques are developed it is likely that acousticians will aim to
solve larger and more convoluted problems, which would suggest that the challenge of
computational cost will not disappear overnight. Furthermore, with more complicated
problems comes the issue of verifying and validating the advanced techniques. The
determination of the precision or efficiency of solutions arising from new techniques can be
made easier by using databases of benchmark test cases, which contain simulation results
from well established methods or measured data.

Benchmark databases can be found in the literature, for example, Otsuru et al. [149]
presented a database of benchmark problems for assessing the performance of computa-
tional methods for architectural and environmental acoustics [150]. The database enables
comparison with solutions from other researchers’ tools, and can serve as a sanity check
for new approaches. More recently, Hornikx et al. [151] have proposed a benchmark
database [152], which can be used to verify computational methods for both interior and
exterior acoustics. While specifically for room acoustics, Brinkmann et al. [153] have also
presented a benchmark database [154] consisting of measured impulse responses in a
variety of rooms. Unification of these celebrated efforts would greatly aid the verification
and validation of advanced computational methods for acoustics.

7. Conclusions and Future Directions

The FEM has been used to predict sound fields in rooms for more than 50 years. Due
to recent increased interest in using wave-based methods for more accurate simulations
for room acoustics, this review has been carried out to provide a source of information for
both neophytes and experts.

In this review, the standard FEM has been derived in order to elucidate the construction
and properties of the method. The three domains in which the FEM can be used to obtain
solutions (i.e., modal, frequency, and time) have been introduced. For each of these domains,
histories of the use of the FEM for room acoustics have been presented. Through this, the
solid foundation of the method has been demonstrated.

More recent developments of the method, in the context of room acoustics, have also
been reviewed. It has been found that current research efforts focus on

• time-domain solutions, because they are faster and more convenient that frequency-
domain solutions,

• dispersion reducing techniques, and higher-order approaches,
• the DGM, due to its accuracy, speed, and parallelizability, and
• ER models written using an EFM and ADEs.

Currently, it is possible to simulate a three second long impulse response in an audito-
rium by using 512 CPUs to solve a finite element system containing 150 million degrees of
freedom [93]. Although there does not appear to be any similar published data regarding
the DGM, it is expected that the DGM will have similar or improved performance. With
these advances, the use of hybrid methods (i.e., use of a wave-based method up to the
Schroeder frequency and geometrical methods above) for simulating the entire audible
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frequency range in short time frames is on our doorstep. What is required now are advances
of the currently available methods, and novel approaches.

Future Directions

Various research directions that aim to improve the efficiency of the FEM can be
identified. The development of optimized adaptive-order finite element and discontinu-
ous Galerkin methods, which ensure a minimum computational cost for a given level of
accuracy, could improve the efficiency of the method, e.g., using adaptive-order hierarchic
shape functions on a fixed mesh can reduce the cost of obtaining solutions at multiple
frequencies [115,155]. Indeed, techniques that reduce the effort of mutli-frequency ap-
proaches could result in next-generation frequency-domain FEMs. Model order reduction
techniques are also a promising avenue for more efficient room acoustics simulations, as
demonstrated in Ref. [106]. Another area of possible exploration is the use of low-order
elements with dispersion reduction techniques. In addition to efficiency, to make the FEM
more attractive for auralization and virtual acoustics, techniques for including moving
sources and time-varying domains should be devised.

Machine learning approaches are attracting a great deal of attention from practitioners
in room acoustics [156] and virtual acoustics [157], due to their reduced computational
effort. Currently, the FEM can be used to generate training and test data for machine
learning approaches in room acoustics. For example, in the context of data-driven methods
for room acoustics, Tuna et al. [158] used finite element data to train a machine learning
approach that improves loudspeaker equalization. The current impetus to make use of
machine learning algorithms to realize more efficient models is already starting to have an
effect on physical modeling approaches, e.g., physical constraints are being built into cost
functions, and neural networks are being used to solve differential equations. In the future,
it may be possible to combine the FEM and machine learning methods to further reduce
costs while maintaining a given level of accuracy.

The uncertainty of input data can seriously affect the quality of the FEM solutions. Ad-
vanced measurement methods and numerical models are needed to reduce the uncertainty
of input data. Although it is difficult to speculate on advanced measurement techniques
that might appear, we can say a few words on numerical models. More advanced and accu-
rate approaches for including complex-valued, frequency-dependent boundary conditions
in time-domain FEM approaches will be required as the fidelity of the models is increased,
or as more complicated materials are included in models. For example, metamaterials
may soon be used in the construction and treatment of rooms. Developing efficient and
accurate approaches for including metamaterials in room acoustics simulations could be an
interesting research track.

One aspect that does not seem to have received any attention in the literature is the de-
velopment of nonlinear eigenvalue analysis techniques for frequency-dependent boundary
conditions in the context of room acoustics. Such a study would provide more information
on the behavior of modal fields in rooms with realistic or advanced acoustic treatments.

Aside from the development of more efficient methods and advanced material model-
ing techniques, the advance of computing power will of course facilitate faster simulations.
Hardware is already contributing to the development of more efficient approaches, for
example, the use of GPU clusters to realize more efficient solutions [85,94]. The develop-
ment of GPU-based FEM solvers could be a rewarding avenue for future research. Finally,
looking hopefully into the not-too-distant future, real-time room acoustic simulations might
even benefit from advances in quantum computing technologies.
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Abbreviations
The following abbreviations are used in this manuscript:

1D one dimensional
2D two dimensional
3D three dimensional
ADE auxiliary differential equation
COCG conjugate orthogonal conjugate gradient
CPU central processing unit
DGM discontinuous Galerkin method
DtN Dirichlet-to-Neumann
EFM equivalent fluid model
ER extended reaction
FEM finite element method
GPU graphics processing unit
LR local reaction
MIR modified integration rules
PUFEM partition of unity FEM
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