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Abstract: MPEG-1 Layer 3 (MP3) is one of the most popular compression formats used for sound
and especially for music. However, during the coding process, the MP3 algorithm negatively affects
the spectral and dynamic characteristics of the audio file being compressed. The aim of this study
is to evaluate the effect the MP3 coding format for different music genres and different bitrates
via listening tests in which the original uncompressed files and the compressed files are compared.
For this purpose, five different music genres were selected (rock, jazz, electronic, classical and solo
instrument), and the files were compressed in three different bitrates (96 kbps, 160 kbps and 320 kbps).
The semantic differential method was used, and ten bipolar scales were selected for the listening
tests (e.g., better–worse, more distortion–less distortion, etc.). The following are the most important
findings of this study: classical music was negatively affected the most among the genres due to the
MP3 compression (lowest ratings in 8 out of 10 bipolar scales), the solo instrument was least affected
among the genres (highest rating in 7 out of 10 bipolar scales), and for higher bit rates, the differences
in ratings were small for all music genres. The findings of this study could be used to optimize and
adapt the standard, depending on the music genre and the musical piece that needs to be encoded.

Keywords: MP3; MPEG-1 Layer 3; compression algorithm; compression artifacts; lossy compression;
listening test; semantic differential

1. Introduction

MPEG-1 Layer 3 (MP3) is one of the most widely used sound compression methods. Its
small storage space requirement (which enables fast distribution over the Internet), along
with its compatibility with every audio player, makes it ideal for audio sharing, streaming
and online entertainment. Big streaming services, such as Amazon Music, Google Play
Music and various others, offer the majority of their content in MP3 form [1]. Audiobook
platforms (Audible, Amazon, Scribd, etc.) sell their books exclusively in MP3 form [2].
Even forensic analysis and investigation make use of the algorithm [3,4] for detecting
forgeries, etc.

MP3’s build takes advantage of our hearing’s inability to perceive all the information
contained in a complex audio signal (perceptual audio coding). All perceptual coding
algorithms contain a filterbank, a perceptual model, quantization and coding elements. The
encoder contains a hybrid filterbank (polyphase and modified discrete cosine transform
(MDCT)) through which the audio signal passes and becomes divided into sub-bands [5].
The polyphase filterbank divides the signal into 32 equal sub-bands, and the MDCT
splits those sub-bands into 18 smaller ones, creating a total of 576 frequency lines [6].
Simultaneously, the signal passes through the FFT block that transforms the signal in the
frequency domain. The output of the FFT block feeds the psychoacoustic model. The
psychoacoustic model uses the critical bands of human hearing [7,8] to determine which
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part of the information contained can be discarded as inaudible. Next comes the distortion
control loop, where the quantization of the signal takes place and the Huffman encoding
block encodes the quantized values, producing the final audio signal. More details on the
MP3’s encoding process can be found in [9].

MP3 is a lossy compression algorithm. As the term “lossy” implies, when the compres-
sion takes place, parts of the information contained in the audio signal are lost. As stated
in [10], the person performing the encoding can specify how many bits should be allotted
to storing each second of music, which in effect sets a “tolerance” level—the lower the data
storage allotment, the more data will be discarded and the worse the resulting music will
sound. This specification determines the bitrate of an MP3 file. The bitrate can range from
8 kbps to 320 kbps [6], and the recommended bitrate is at least 128 kbps [11]. Two more
features that the user can control and affect the size and quality are the sampling rate, which
is determined by the MPEG-1 protocol at 32 kHz, 44.1 kHz and 48 kHz [12], and the channel
mode, with four supported choices: monophonic mode, stereo mode, dual-monophonic
mode (identical to stereo mode) and joint stereo mode [13]. Some studies have suggested
improvements on the MP3 algorithm, in terms of encryption [14], prevention of multiple
compression [15], improved over-the-Internet transmission [16] and also for improving the
quality of low bitrate files [17].

The MP3 algorithm, however, has some disadvantages regarding the quality of the
audio files, due to its lossy nature. The usage of lossy, perceptual compression alters
the sound being compressed. According to [18,19], the most common artifacts are the
birdie effect, pre-echo effect, spectral clipping in the high frequencies, spatial distortions
and temporal smearing. Most of the previous work carried out focuses on the objective
evaluation of the MP3 algorithm [20–22], the comparison of the algorithm with high
resolution audio [23] and the comparison among different compression algorithms (in terms
of quality) for a variety of music genres [24], rather than the comparison between the MP3
and WAV formats [25,26]. Although these studies have identified and described in detail
the nature of the MP3 artifacts and the impact these have on the audio signal, the human
factor is almost absent in the majority of them. The MP3 algorithm is a product addressed
to humans, and humans perceive sound through a non-linear mechanism that renders
some features more or less audible than objective measurements can reveal. Moreover,
there are hundreds of musical genres, each with their own unique sound characteristics.
The MP3 algorithm is applied on all of them; thus, it is of great importance to subjectively
evaluate the impact it has on as many genres as possible.

In order to study the artifacts produced by the algorithm, questionnaires were created,
according to the semantic differential method [27]. The aim of this research is to study
the alterations introduced by the MP3 algorithm in five musical genres (rock, jazz, elec-
tronic, classical and solo) using three different bitrates (96 kbps, 160 kbps and 320 kbps).
The alterations are going to be evaluated with the use of questionnaires including ten
bipolar scales.

This paper has been organized as follows: Section 2 presents the methodology em-
ployed. Section 3 includes the findings of the research, while the discussion section analyzes
the data, addresses the research questions and identifies areas for further research. Finally,
the conclusion section gives a brief summary of this research and contextualizes the study.

2. Methods
2.1. Musical Excerpts

Five music genres were used in this study: rock, jazz, electronic, classical and solo
instrument. The genres examined where chosen based on their popularity in various
music-linked studies [28–30], in music genre classification studies [31–33] and in similar
studies (rock and classical) [25,26], with the exception of “solo instrument”, which is not a
music genre but possesses unique features, as mentioned later. Table 1 shows the pieces
selected for each music genre and additional information. Short audio clips of each piece
(in WAV format) were chosen, with durations ranging from 8 to 11 s. This was carried out
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for two reasons: to make sure that all participants would rate the exact same audio excerpt
and to keep the duration of the listening tests to a minimum and avoid participants’ fatigue.

Table 1. Related information about the music excerpts used in this study.

Music Genre Piece Artist/Composer Music Sample (s)

Rock Poison Alice Cooper 1:52–2:00 (8 s)
Jazz Blue Train John Coltrane 0:52–1:03 (10 s)

Electronic Traffic DJ Tiesto 1:15–1:25 (12 s)
Classical Symphony No. 3 Ludwig van Beethoven 0:42–0:53 (11 s)

Solo instrument Piano Sonata No. 14 Ludwig van Beethoven 1:15–1:25 (10 s)

The audio clips were carefully selected so they would contain all the unique char-
acteristics that represent each music genre. Rock music’s features usually are distinct
vocals, electric guitars, electric bass and intense drum line. Jazz’s features are complicated
melodic lines (often without the presence of vocals), dynamic fluctuations, use of wind
instruments (trumpet, saxophone, etc.), distinct rhythmic patterns that come from string
instruments (guitars, double-bass, electric bass) and piano. Electronic music’s features are
exclusively electronic instruments (samplers, pads, etc.), simple, repeating melodic patterns
and fast tempo. Classical music’s features are wide variety of acoustic instruments (wind
instruments, chordophones, percussions, piano) in big numbers, multiple and complex
melodic lines and significant dynamic fluctuations. The category of the “solo instrument”
is not a music genre in itself. However, its characteristics are widely different from any
music genre. The frequency range of the sound is limited to the instrument’s capabilities, a
very small number of melodic lines can be present (one or two), the timbre of the sound is
constant and the masking effect taking place in such an audio excerpt is different from any
specific music genre.

Out of these WAV audio clips selected, three MP3 files were created for each genre,
in three bitrates: 96 kbps, 160 kbps and 320 kbps. In total, for each music genre, four
audio files were used: one WAV (44.1 kHz, 16-bit) and three MP3’s (96 kbps, 160 kbps
and 320 kbps). All files were encoded with the LAME MP3 encoder (sampling frequency
44.1 kHz).

The bitrate 96 kbps is one step below the recommended 128 kbps bitrate of the standard
and is very popular for streaming, while 320 kbps is the highest available bitrate and is
thus the one that produces the highest quality. These two bitrates have been used in similar
studies [25,34] and the 96 kbps bitrate in one study [26]. On the other hand, 160 kbps is not
a very popular bitrate amongst studies but is one step above the recommended bitrate and
has a good compression/quality ratio. Some suggest that 160 kbps should be the minimum
bitrate used for the compression of all audio files [35]. It is also the lowest bitrate used in
some download and streaming applications, such as audiobook platforms. Spectrographs
of the original and compressed files, as well as their dynamic ranges, can be found in
Figure 1 and in Appendix A, respectively.
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Figure 1. Spectographs of the original and compressed audio files for all the music genres. Scale is common for every audio file and is presented as Power/frequency (dB/Hz).  

 
 

Figure 1. Spectrographs of the original and compressed audio files for all the music genres. Scale is common for every audio file and is presented as power/frequency
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2.2. Participants

In total, 30 persons participated in the listening tests (Mage = 23.8 years, SDage = 2.5 years).
According to Heise [36], the minimum number of participants for conducting tests using the
semantic differential method is 30. They comprised 15 male participants (Mage = 24.0 years,
SDage = 3.0 years) and 15 female participants (Mage = 23.5 years, SDage = 2.0 years). Par-
ticipants’ ages ranged from 18 to 29 years. This particular age range was chosen in order
to avoid age-related hearing loss [37]. In order to achieve a homogenous group, a quali-
fied majority of participants were university students, self-reporting normal hearing. The
participants were recruited through an ad posted in a university campus. During recruit-
ment, participants were told that the study involved listening tests on several perceptual
attributes. All participants are users of MP3 audio files on a daily basis. All participants,
self-reported, were not professional musicians. In total, five participants reported being
amateur musicians. No participants reported possessing a technical knowledge regarding
the algorithm’s function. Participants were not reimbursed for their time and took part
voluntarily. Informed consent was obtained from all participants before the experiment.

2.3. Questionnaire

In order to form the questionnaire for this study, various other approaches and ques-
tionnaires from other audio-linked studies were taken into account [24,25,38–42]. For this
study, the semantic differential method [27] was selected in order to evaluate various
aspects of the MP3 compression effects. This method allows the measurement of objec-
tive sound characteristics (amplitude, frequency, etc.) by using easily perceived, bipolar
subjective scales.

The three criteria for selecting the bipolar scales used in semantic differential method
were compliance with the EPA (Evaluation, Potency, Activity) structure, the nature of
the subject examined [43] (in this case, the evaluation of the audio files’ compression)
and the easy and common interpretation by the participants. Each scale belongs to one
of three categories (Evaluation, Potency, Activity), called factors. The Evaluation and
Activity factors contain three scales each, and the Potency factor contains four scales. All
scales are linear and semantically stable. Linearity is a characteristic associated with the
integers appointed to each interval of a scale. According to the method [44], all intervals
are assumed to be equal, so consecutive integers are appointed to each interval, ranging
from −3 (negative pole) up to 3 (positive pole). Semantic stability is associated with the
ability of the participants to interpret the meaning of the scale in the exact same way [45].
Table 2 shows the bipolar scales used for each factor.

Table 2. Correspondence between factors (Evaluation, Potency, Activity) and the ten bipolar scales
used in this study for the application of the semantic differential method.

Evaluation Potency Activity

Better–Worse Fuller spectrum–Poorer spectrum More changes in dynamics–Less changes
in dynamics

More enjoyable–More annoying Louder–Less loud Less noise–More noise
Easier instrument separation–Harder

instrument separation Warmer–Less warm Less distortion–More distortion

Brighter–Less bright

2.4. Experimental Design and Procedure

The experiment was conducted in a sound-proof test room in university facilities. The
participants were seated in the middle of the test room behind a desk, and the questionnaires
were presented. The listening sessions were carried out with headphones, Sennheiser HD-
215 (Sennheiser, Wedemark, Germany). The values of the sound levels used in the listening
tests were in accordance with the reference level typically recommended by the ITU-
R [46,47], since listening to music on headphones can be annoying [48–50]. The headphones
were calibrated with a dummy head “Artificial head-John” (Soundman, Berlin, Germany).
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Possible effects of the headphones due to irregularities in the frequency response were
minimal due to the nature of the specific listening tests. Listening tests included pair
comparison of the original and the compressed audio and the evaluation of the differences
through bipolar scales. Therefore, the effects on the frequency responses due to headphones
would be the same for both sound samples (original and compressed), thus minimizing
the alteration of the result. In the listening tests, written instructions were given to the
participants which informed them that they would be presented with pairs of audio files
for different music genres. Their task was to compare the audio files of each pair and rate
them for ten characteristics, presented in ten scales. The participants were instructed to
submit their opinion for each comparison by placing one “X” mark on each scale. The
participants were advised to make sure they rated all ten scales for each audio pair before
proceeding to the next one in the questionnaire. Participants were tested individually.

At the beginning of each session, a short training sequence was inserted consisting
of 5 stimulus combinations, one for each music genre, at random bitrate. The participants
were asked to rate the training sequence’s stimulus as if they were part of the listening test.
After the practice sequence, the participants were presented with the 15 pair comparisons
in random order. Each comparison was presented for approximately 8–11 s, and there was
no time limit for giving a response. Each audio pair was evaluated via a 7-point bipolar
scale, such as the one demonstrated in Table 3. Since the study was in Greek, the original
scale is presented in Appendix B. This resulted in 15 ratings per subject per session. The
whole experiment lasted approximately 50 min. After the experiment, the participants were
informed about the nature of the study and were allowed to ask questions. The study was
approved by the Committee on Ethics and Deontology of Research (C.E.D.R), Technical
University of Crete, Greece (project identification code: protocol number 38/5.5.2022).

Table 3. Seven-point bipolar scale.

A Lot/Much Quite Slightly Same Slightly Quite A Lot/Much

Bipolar Scale Adjective
(Negative Connotation)

Bipolar Scale Adjective
(Positive Connotation)

−3 −2 −1 0 1 2 3

3. Results

Comparisons of results between genres for different bitrates are presented in Figure 2.
Diverging stacked bar charts [51] are used, which are suggested to be appropriate for
the presentation of rated scales such as semantic differential [52,53]. The advantages of
diverged stacked bars over other graphical forms for rating scales are presented in [53].
The percentages of respondents who agree with the statement are shown to the right of
the zero line; the percentages who disagree are shown to the left. The percentages for
respondents who neither agree nor disagree are split down the middle and are shown in a
neutral color. Results are presented for different bitrates (96 kbps, 160 kbps and 320 kbps)
and for different genres (rock, jazz, electronic, classical and solo instrument).

In addition, for convenience, average evaluation scores are also presented in
Figures 3 and 4. The data of the rating for the semantic differential method are ordinal;
however, it is common practice to average the evaluation results to be presented in similar
studies (e.g., [54,55]). Average evaluation scores are presented in Figure 3 for different
bitrates (96 kbps, 160 kbps and 320 kbps) and in Figure 4 for different genres (rock, jazz,
electronic, classical and solo instrument). Additionally, average evaluation scores are
presented in Appendix C in tables for different bitrates. The reason for the additional
presentation is that the differences in the case of higher bitrates (e.g., 320 Kbits) are very
small and difficult to distinguish in Figures 3 and 4.
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In order to evaluate the reliability of the ten bipolar scales, Cronbach’s alpha was
calculated (Table 4) [56]. In general, Cronbach’s alpha produced internal consistencies
of more than 0.7 for almost all of the ten scales. However, a value smaller than 0.7 was
reported for the scale “More noise-Less noise”. Regarding the acceptable values of alpha,
there are different reports ranging from 0.70 to 0.95 [57]. However, according to Hair
et al. [58], a good standardized loading factor of each measurement’s latent variable, which
is quantified from a manifest variable, should be above 0.5 and ideally 0.7 or higher. A
low value of alpha could be due to a low number of questions [59], poor inter-relatedness
between items or heterogeneous constructs [60]. Possibly, a score below 0.7 suggests that
the items within the tool may not be measuring the same underlying construct. In the
case of the bipolar scale “More noise-Less noise”, there is a possibility that the participants
estimated the underlying construct of the effect of the MP3 coding format differently, and
there was an interaction due to another underlying concept (e.g., endogenous noise of
music). However, since the value is not far from the recommended and above 0.5 [58], we
decided to keep this result in this section and also as a reference for future studies. Further
experimental studies are needed to estimate the effect and extent of this possible interaction.

Table 4. Reliability of the ten bipolar scales.

Scales Cronbach’s Alpha

Worse–Better 0.782
Poorer spectrum–Fuller spectrum 0.760

More noise–Less noise 0.612
More annoying–More enjoyable 0.744

Less loud–Louder 0.713
Less changes–More changes (dynamics) 0.734

Harder separation–Easier separation
(instruments) 0.705

Less warm–Warmer 0.739
More distortion–Less distortion 0.720

Less bright–Brighter 0.741

4. Discussion
4.1. Impact of MP3 Compression on Classical Music

Perhaps the most striking result of this study is the impact of MP3 compression on
classical music. Among all genres, classical music was affected the most and especially for
the lowest bitrate. It can be seen in Figures 2 and 3 that in 8 out of the 10 bipolar scales,
classical music had the lowest ratings among all genres (can also be seen in Appendix D
(Table A3)). Therefore, the application of the MP3 standard caused the classical music
sample to have the lowest ratings amongst all genres and therefore was the most assessed
as being (in comparison with the original file): worse, with poorer spectrum, with more
noise, to be more annoying, to be less loud, to have fewer dynamic changes and to be
less warm.

A possible explanation for this phenomenon is likely due to the very nature of the
MP3 algorithm. As mentioned in detail in the introduction, the audio signal is divided into
sub-bands [5], which are later split into 18 smaller ones, creating a total of 576 frequency
lines [6]. Thereafter, the psychoacoustic model uses the critical bands of human hearing [7,8]
to determine which part of the information contained can be discarded as inaudible.
Therefore, a musical signal that has a large amount of musical information that spans the
entire auditory spectrum is likely to have the greatest negative impact from the application
of the MP3 algorithm. Classical music (orchestral) contains a great variety and number
of music instruments. Its long term average spectra have differences from other music
genres [61].

Additionally, although the note range of the typical orchestra instruments does not
exceed 3520 Hz, the harmonic overtones that are created can reach up to 20,000 Hz, es-
pecially in the violins [62]. When an MP3 file is encoded with a bitrate of 96 kbps, all
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frequencies above 15 kHz are discarded, so all the instrument harmonics above that limit
are lost, resulting in the perception of poorer spectrum and loss of brightness.

Dynamic changes in classical music are in general more prominent than other genres
such as rock or rap [63]. As opposed to some other genres examined, classical music is
a genre that rarely becomes dynamically compressed during the mixing and mastering
processes; therefore, the dynamic compression applied by the MP3 algorithm is easily
perceived, degrading the quality of the audio file. Similar effects regarding the dynamic
range of the orchestral excerpt were observed in another study [25].

4.2. Impact of MP3 Compression on Solo Instrument

Another important finding of this research, related to the previous case, is that the solo
instrument was least affected by the encoding of the MP3 standard for the lowest bitrate. It
can be seen in Figures 2 and 3 that in 7 out of the 10 bipolar scales, the solo instrument had
the highest ratings among all the genres (this can also be seen in Appendix D (Table A3)).

Again, a possible explanation, presented previously in Section 4.1, is likely due to
the very nature of the MP3 algorithm. Since the audio signal is divided into sub-bands
and a large number of frequency lines, of which part of them is discarded as inaudible
according to the psychoacoustic model, a signal which has a relatively small amount of
sound information (relative to a signal with a large number of instruments and harmonics)
is likely to experience the least quality reduction from the MP3 compression. Given that the
excerpt of this genre (solo instrument) contains audio information that comes from just one
instrument, with the spectrum limitations that accompany it, it is possible that the MP3’s
compression affects it the least.

Additionally, the limit of 15 kHz, for the 96 kbps bitrate, takes away very little audible
information. Although the piano is the acoustic instrument with the biggest note range
(A0/27.5 Hz—C8/4168 Hz) and produces a lot of harmonic overtones, the majority of
the frequencies that are loud enough to be easily perceived are from 70 Hz–4000 Hz. The
algorithm’s encoding process does not heavily affect this range, since it functions on a
psychoacoustic basis and is aware of a human’s sensitivity in the range of 1000–5000 Hz.
Moreover, lower frequencies need fewer bits to become encoded than higher frequencies,
so the algorithm’s bit allocation method does not affect them widely.

4.3. Impact of MP3 Compression on Electronic, Rock and Jazz Music

Regarding the impact of MP3 compression on electronic, rock and jazz music, it seems
that the results for these genres are somewhere in between the results for classical music
and the solo instrument. This can be seen in Figures 2 and 3 and Appendix C. As mentioned
in Section 4.1, it seems that quality reduction from the MP3 compression depends on the
amount of sound information that is spread across the audible spectrum for each music
genre and music piece.

Additionally, the algorithm’s impact on electronic music appears to be also related a lot
to its dynamics and loudness characteristics. The two worst scores in terms of specific music
attributes for the lowest bitrate examined belong to the scales “Less changes-More changes
(dynamics)” and “Less loud-Louder”. The scores of these two scales combined with the
“Worse-Better” score (which has the lowest score amongst all scales) point to the assumption
that the electronic music’s likeability is heavily connected to its loudness characteristics.

The results for rock music genre revealed a possible correlation between noise per-
ception and overall satisfaction for this genre. Surprisingly, although at 96 kbps the MP3
audio clip was perceived as less noisy compared to the WAV clip, the scales “Worse-Better”
and “More annoying-More enjoyable” had the worst ranking for the MP3 clip amongst
all scales.

Interestingly, the algorithm seemed to have a similar effect on jazz regarding noise as
the one stated for rock music. Again, for the 96 kbps bitrate, the MP3 clip was perceived
as less noisy than the WAV file, but the scales “Worse-Better” and “More annoying-More
enjoyable” received the worst scores.
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4.4. General Remarks

The findings of this study confirm the fact that MP3’s lossy nature produces audible
artifacts that people can perceive, thus affecting the quality of the compressed audio signal
compared to its uncompressed form. The findings share a big number of similarities with
Pras et al.’s [25] and Ruzanski’s [26] findings. Although differences can be spotted among
them (music genres, bitrates and population), it becomes apparent that one must take under
consideration the music genre of the audio file that needs to be encoded, in order to achieve
the best quality/size ratio. In both [25,26], the listeners’ overall preference for the CD
quality audio is clear, just like in the present study. Regarding higher bitrates, participants
of these studies could not discriminate CD quality over MP3. Similarly, in this study, the
differences between the MP3 files and the original are very small for all the music genres.

The results of this study support the idea that MP3’s lossy nature affects a wide range
of audio characteristics. More specifically, bitrates below 160 kbps are not recommended
for any of the music genres studied. Lower bitrates introduce artifacts that can be easily
perceived and thus lower the audio quality drastically. However, this research has given
rise to many questions and possibilities for future work in need of further investigation.
Those are going to be discussed in the next section.

4.5. Future Work

Subjective evidence from this study supports the idea that the effectiveness of MP3
coding depends on the music genre. The authors find that the results reported here are
encouraging but also should be validated by a larger sample size and for more music
genres. Additionally, the results of this study could possibly have some implications for
research into improving the efficiency of the algorithm.

One possible application could be the utilization of various music genre classification
techniques that could be incorporated into the MP3 algorithm to improve its efficacy. For
music genre classification, machine learning techniques could be used [64–66] that would
automatically recognize the music genre of the audio file to be compressed. Classification
through machine learning could be applied with the use of spectrograms [67] or even with
the use of deep neural networks [68]. The outcome of this step could potentially be used
in a number of ways. For example, suggestions could be given by the algorithm for a
minimum recommended coding quality according to the music genre of the audio file.

The next and most important step after using the algorithm to identify the musical
genre of the audio file that is going to be compressed is how the MP3 encoding could be
improved according to the music genre. Various directions could possibly be explored.
For example, the results of this study show that there are differences in the evaluation
scores for the bipolar scales for each music genre. Compression has a different effect
between genres for scales such as “Poorer spectrum-Fuller spectrum”, “Less changes -More
changes (dynamics)” and “More distortion-Less distortion”. Therefore, improvement of
the algorithm for lower bitrates could focus so that there is the least possible alteration of
scales at which each music genre has the greatest sensitivity. Future work will concentrate
on this problem. We hope that our study will serve as a base for future studies on this
important issue.

5. Conclusions

The main aim of this research was to evaluate the effect of the MP3 coding format
for different music genres and different bitrates via listening tests in which the original
uncompressed files and the compressed files are compared. The semantic differential
method was used, and ten bipolar scales were utilized for the listening tests. For this
purpose, five different music genres were selected (rock, jazz, electronic, classical and solo
instrument), and the files were compressed in three different bitrates (96 kbps, 160 kbps
and 320 kbps).
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The most important findings of this research are:

• Classical music had the greatest negative impact due to MP3 compression, among the
genres (lowest ratings in 8 out of 10 bipolar scales).

• The solo instrument was least affected by the MP3 encoding, among the genres (highest
rating in 7 out of 10 bipolar scales).

• For electronic, rock and jazz music, it seems that the results for these genres are
somewhere in between the results for classical music and the solo instrument.

The conclusions and implications of this research are:

• A musical signal that has a large amount of musical information that spans the entire
auditory spectrum is likely to be negatively affected the most from the application
of the MP3 algorithm. The music genre is of great importance when choosing the
compression bitrate.

• The findings of this study can be used to optimize and adapt the MP3 standard,
depending on the music genre and the music piece that needs to be encoded.
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Appendix A

Table A1. Dynamic ranges of original and compressed audio files.

Dynamic Range (dB)

Music Genre Original 320 kbps 160 kbps 96 kbps

Rock 12.0 11.8 11.8 11.9
Jazz 10.3 10.3 10.2 10.6

Electronic 6.4 6.9 6.8 6.3
Classical 8.5 8.6 8.6 8.7

Solo instrument 9.9 9.9 9.9 9.9

Appendix B

Frequency response of the Sennheiser HD 215 headphones retrieved from [69].
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Since the study was in Greek, the original seven-point bipolar scale is presented in
Table A2. More about an appropriate translation of scales and attributes can be found
in [70].

Table A2. Seven-point bipolar scale (Greek).

Πoλύ Aρκετά Λίγo To ίδιo Λίγo Aρκετά Πoλύ

Bipolar Scale Adjective
(Negative Connotation)

Bipolar Scale Adjective
(Positive Connotation)

−3 −2 −1 0 1 2 3

Appendix D

Table A3. Average evaluation scores for the bipolar scales for 96 Kbits.

Rock (96) Jazz (96) Electronic (96) Classical (96) Solo (96)

Worse–Better −0.733 −0.533 −0.867 −1.167 −0.200
Poorer spectrum–Fuller spectrum −0.700 −0.433 −0.500 −0.800 −0.200

More noise–Less noise 0.233 0.300 −0.167 −0.400 −0.067
More annoying–More enjoyable −0.767 −0.533 −0.467 −1.033 −0.200

Less loud–Louder −0.533 −0.567 −0.567 −0.933 −0.333
Less changes–More changes (dynamics) −0.667 −0.333 −0.667 −0.733 −0.267

Harder separation–Easier separation (instuments) −0.733 −0.333 −0.467 −0.500 −0.100
Less warm–Warmer −0.167 −0.300 −0.200 −0.700 −0.300

More distortion–Less distortion −0.667 −0.433 −0.167 −0.233 −0.267
Less bright–Brighter −0.667 −0.433 −0.367 −1.133 −0.367

Table A4. Average evaluation scores for the bipolar scales for 160 Kbits.

Rock (160) Jazz (160) Electronic (160) Classical (160) Solo (160)

Worse–Better −0.233 0.100 −0.233 −0.233 −0.133
Poorer spectrum–Fuller spectrum −0.400 0.000 −0.200 −0.067 0.033

More noise–Less noise 0.067 −0.133 0.167 0.200 0.033
More annoying–More enjoyable −0.233 0.100 −0.033 −0.133 0.000

Less loud–Louder −0.233 −0.133 −0.033 −0.100 0.100
Less changes–More changes (dynamics) −0.167 −0.067 −0.200 −0.267 −0.067

Harder separation–Easier separation (instuments) −0.400 0.033 −0.200 −0.133 −0.033
Less warm–Warmer −0.033 0.200 −0.133 −0.467 0.000

More distortion–Less distortion −0.133 0.167 −0.133 −0.067 0.067
Less bright–Brighter −0.467 0.200 −0.067 −0.100 0.167
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Table A5. Average evaluation scores for the bipolar scales for 320 Kbits.

Rock (320) Jazz (320) Electronic (320) Classical (320) Solo (320)

Worse–Better −0.033 0.167 −0.167 −0.133 0.033
Poorer spectrum–Fuller spectrum −0.333 0.133 0.000 −0.133 −0.167

More noise–Less noise −0.033 −0.067 −0.133 −0.067 0.167
More annoying–More enjoyable 0.233 0.000 0.033 0.000 0.100

Less loud–Louder −0.100 0.033 0.00 0.200 0.000
Less changes–More changes (dynamics) −0.033 0.200 0.167 −0.067 0.067

Harder separation–Easier separation (instuments) −0.033 0.033 −0.200 0.033 −0.133
Less warm–Warmer −0.033 −0.033 −0.133 −0.167 −0.233

More distortion–Less distortion 0.033 −0.067 −0.200 −0.033 0.033
Less bright–Brighter −0.100 0.000 0.067 0.300 −0.233

References
1. Falkowski-Gilski, P. On the consumption of multimedia content using mobile devices: A year to year user case study. Arch.

Acoust. 2020, 45, 321–328.
2. Crawford, W. MP3 Audiobooks: A New Library Medium? Am. Libr. 2001, 32, 64–66.
3. Xiang, Z.; Bestagini, P.; Tubaro, S.; Delp, E.J. Forensic Analysis and Localization of Multiply Compressed MP3 Audio Using

Transformers. arXiv 2022, arXiv:2203.16499.
4. Yang, R.; Qu, Z.; Huang, J. Detecting digital audio forgeries by checking frame offsets. In Proceedings of the 10th ACM Workshop

on Multimedia and Security, Oxford, UK, 22–23 September 2008; pp. 21–26.
5. Pan, D.Y. Digital audio compression. Digit. Tech. J. 1993, 5, 28–40.
6. Raissi, R. The Theory behind MP3. MP3’Tech 2002. Available online: http://www.mp3-tech.org/programmer/docs/mp3_theory.

pdf (accessed on 25 June 2022).
7. Zwicker, E. Subdivision of the audible frequency range into critical bands (Frequenzgruppen). J. Acoust. Soc. Am. 1961, 33, 248.

[CrossRef]
8. Greenwood, D.D. Critical bandwidth and the frequency coordinates of the basilar membrane. J. Acoust. Soc. Am. 1961, 33,

1344–1356. [CrossRef]
9. Brandenburg, K. MP3 and AAC explained. In Proceedings of the Audio Engineering Society Conference: 17th International

Conference: High-Quality Audio Coding, Florence, Italy, 2–5 September 1999.
10. Hacker, S. MP3: The Definitive Guide; O’Reilly: Sebastopol, CA, USA, 2000.
11. Musmann, H.G. Genesis of the MP3 audio coding standard. IEEE Trans. Consum. Electron. 2006, 52, 1043–1049. [CrossRef]
12. Vaseghi, S.V. Multimedia Signal Processing: Theory and Applications in Speech, Music and Communications; John Wiley & Sons:

Hoboken, NJ, USA, 2007.
13. Pan, D. A tutorial on MPEG/audio compression. IEEE Multimed. 1995, 2, 60–74. [CrossRef]
14. Yen, C.-H.; Wei, H.-Y.; Wu, B.-F. New Encryption Approaches to MP3 Compression; Department of Electrical and Controling

Engineering, National Chiao Tung University: Hsinchu, Taiwan, 2003.
15. Yang, Y.; Yi, X.; Zhao, X.; Zhang, J. A Robust MP3 Steganographic Method against Multiple Compressions Based on Modified

Discrete Cosine Transform. Secur. Commun. Netw. 2021, 2021, 4471117. [CrossRef]
16. Ito, A.; Konno, K.; Ito, M.; Makino, S. Robust Transmission of Audio Signals over the Internet: An Advanced Packet Loss

Concealment for MP3-Based Audio Signals. Interdiscip. Inf. Sci. 2012, 18, 99–105. [CrossRef]
17. Cantzos, D.; Kyriakakis, C. Quality enhancement of low bit rate MPEG1-layer 3 audio based on audio resynthesis. In Proceedings

of the Audio Engineering Society Convention 119, New York, NY, USA, 8 October 2005.
18. Liu, C.-M.; Hsu, H.-W.; Lee, W.-C. Compression artifacts in perceptual audio coding. IEEE Trans. Audio Speech Lang. Process. 2008,

16, 681–695. [CrossRef]
19. Marins, P.; Rumsey, F.; Zielinski, S.K. The relationship between selected artifacts and basic audio quality in perceptual audio

codecs. In Proceedings of the Audio Engineering Society Convention 120, Paris, France, 20–23 May 2006.
20. D’Alessandro, B.; Shi, Y.Q. MP3 bit rate quality detection through frequency spectrum analysis. In Proceedings of the 11th ACM

Workshop on Multimedia and Security, Princeton, NJ, USA, 7–8 September 2009; pp. 57–62.
21. Luo, D.; Luo, W.; Yang, R.; Huang, J. Identifying compression history of wave audio and its applications. ACM Trans. Multimed.

Comput. Commun. Appl. (TOMM) 2014, 10, 1–19. [CrossRef]
22. Nishimura, A.; Unoki, M.; Kondo, K.; Ogihara, A. Objective evaluation of sound quality for attacks on robust audio watermarking.

In Proceedings of the Meetings on Acoustics ICA2013, Montreal, QC, Canada, 2–7 June 2013; p. 030052.
23. Kanetada, N.; Yamamoto, R.; Mizumachi, M. Evaluation of sound quality of high resolution audio. In Proceedings of the

IEEE/IIAE International Conference on Intelligent Systems and Image Processing, Kitakyushu, Japan, 26–27 September 2013.
24. Cunningham, S.; McGregor, I. Subjective evaluation of music compressed with the ACER codec compared to AAC, MP3, and

uncompressed PCM. Int. J. Digit. Multimed. Broadcast. 2019, 2019, 8265301. [CrossRef]
25. Pras, A.; Zimmerman, R.; Levitin, D.; Guastavino, C. Subjective evaluation of mp3 compression for different musical genres. In

Proceedings of the Audio Engineering Society Convention 127; Audio Engineering Society: New York, NY, USA, 2009.

http://www.mp3-tech.org/programmer/docs/mp3_theory.pdf
http://www.mp3-tech.org/programmer/docs/mp3_theory.pdf
http://doi.org/10.1121/1.1908630
http://doi.org/10.1121/1.1908437
http://doi.org/10.1109/TCE.2006.1706505
http://doi.org/10.1109/93.388209
http://doi.org/10.1155/2021/4471117
http://doi.org/10.4036/iis.2012.99
http://doi.org/10.1109/TASL.2008.918979
http://doi.org/10.1145/2575978
http://doi.org/10.1155/2019/8265301


Acoustics 2022, 4 718

26. Ruzanski, E.P. Effects of MP3 encoding on the sounds of music. IEEE Potentials 2006, 25, 43–45. [CrossRef]
27. Osgood, C.E.; Suci, G.J.; Tannenbaum, P.H. The Measurement of Meaning; University of Illinois press: Chicago, IL, USA, 1957.
28. North, A.C.; Hargreaves, D.J.; O’Neill, S.A. The importance of music to adolescents. Br. J. Educ. Psychol. 2000, 70, 255–272.

[CrossRef]
29. Schäfer, T.; Sedlmeier, P. From the functions of music to music preference. Psychol. Music 2009, 37, 279–300. [CrossRef]
30. Pilgrim, L.; Norris, J.I.; Hackathorn, J. Music is awesome: Influences of emotion, personality, and preference on experienced awe.

J. Consum. Behav. 2017, 16, 442–451. [CrossRef]
31. Costa, Y.M.; Oliveira, L.; Koerich, A.L.; Gouyon, F.; Martins, J.G. Music genre classification using LBP textural features. Signal

Process 2012, 92, 2723–2737. [CrossRef]
32. Li, T.; Ogihara, M.; Li, Q. A comparative study on content-based music genre classification. In Proceedings of the 26th

Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval, Toronto, ON, Canada,
28 July 2003–1 August 2003; pp. 282–289.

33. Li, T.; Ogihara, M. Music genre classification with taxonomy. In Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing, Philadelphia, PA, USA, 23 March 2005; Volume 195, pp. v/197–v/200.

34. Vercellesi, G.; Zerbini, M.; Vitali, A.L. Objective and subjective evaluation MPEG layer III perceived quality. In Proceedings of the
2006 14th European Signal Processing Conference, Florence, Italy, 4–8 September 2006; pp. 1–5.

35. Salovarda, M.; Bolkovac, I.; Domitrovic, H. Estimating perceptual audio system quality using PEAQ algorithm. In Proceedings of
the 2005 18th International Conference on Applied Electromagnetics and Communications, Dubrovnik, Croatia, 12–14 October
2005; pp. 1–4.

36. Heise, D.R. Some methodological issues in semantic differential research. Psychol. Bull. 1969, 72, 406. [CrossRef]
37. Takeda, S.; Morioka, I.; Miyashita, K.; Okumura, A.; Yoshida, Y.; Matsumoto, K. Age variation in the upper limit of hearing. Eur. J.

Appl. Physiol. Occup. Physiol. 1992, 65, 403–408. [CrossRef]
38. Dal Palù, D.; Buiatti, E.; Puglisi, G.E.; Houix, O.; Susini, P.; De Giorgi, C.; Astolfi, A. The use of semantic differential scales in

listening tests: A comparison between context and laboratory test conditions for the rolling sounds of office chairs. Appl. Acoust.
2017, 127, 270–283. [CrossRef]

39. Guski, R. Psychological methods for evaluating sound quality and assessing acoustic information. Acta Acust. United Acust. 1997,
83, 765–774.

40. Schütte, M.; Müller, U.; Sandrock, S.; Griefahn, B.; Lavandier, C.; Barbot, B. Perceived quality features of aircraft sounds: An
analysis of the measurement characteristics of a newly created semantic differential. Appl. Acoust. 2009, 70, 903–914. [CrossRef]

41. Vieira, J.; Santos, J.A.; Noriega, P. Using semantic differential scales to assess the subjective perception of auditory warning
signals. In Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, 4–8 September
2018; pp. 126–132.

42. Hülsmeier, D.; Schell-Majoor, L.; Rennies, J.; van de Par, S. Perception of sound quality of product sounds a subjective study
using a semantic differential. In Proceedings of the International Congress on Noise Control Engineering, Melbourne, Australia,
16–19 November 2014; pp. 843–851.

43. Al-Hindawe, J. Considerations when constructing a semantic differential scale. La Trobe Pap. Linguist. 1996, 9, 1–9.
44. Messick, S.J. Metric properties of the semantic differential. Educ. Psychol. Meas. 1957, 17, 200–206. [CrossRef]
45. Norman, W.T. Stability-characteristics of the semantic differential. Am. J. Psychol. 1959, 72, 581–584. [CrossRef] [PubMed]
46. ITU-R. General Methods for the Subjective Assessment of Sound Quality. In Proceedings of the International Telecommunication

Union Recommendation; 2003. Available online: https://www.itu.int/rec/R-REC-BS.1284/en (accessed on 25 June 2022).
47. ITU-R. Methods for the Subjective Assessment of Small Impairments in Audio Systems. In Proceedings of the International

Telecommunication Union Recommendation; 2015. Available online: https://www.itu.int/rec/R-REC-BS.1116 (accessed on
25 June 2022).

48. Okabe, D.; Nakatoh, Y. Study on headphone hearing loss prevention methods based on the melody structure of music on portable
music player. In Proceedings of the 2018 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA,
12–14 January 2018; pp. 1–2.

49. Higashi, T.; Tanaka, Y.; Nakatoh, Y. Study of volume limit for headphone hearing loss prevention on portable music player. In
Proceedings of the 2016 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 7–11 January 2016;
pp. 397–398.

50. Iannace, G.; Ciaburro, G.; Trematerra, A. Video games noise exposure in teenagers and young adults. Noise Vib. Worldw. 2020, 51,
3–11. [CrossRef]

51. Heiberger, R.; Robbins, N. Design of diverging stacked bar charts for Likert scales and other applications. J. Stat. Softw. 2014, 57,
1–32. [CrossRef]

52. Gratzl, S.; Lex, A.; Gehlenborg, N.; Pfister, H.; Streit, M. Lineup: Visual analysis of multi-attribute rankings. IEEE Trans. Vis.
Comput. Graph. 2013, 19, 2277–2286. [CrossRef]

53. Robbins, N.B.; Heiberger, R.M. Plotting Likert and other rating scales. In Proceedings of the 2011 Joint Statistical Meeting, Miami
Beach, FL, USA, 30 July–4 August 2011.

54. Kang, J.; Zhang, M. Semantic differential analysis of the soundscape in urban open public spaces. Build. Environ. 2010, 45, 150–157.
[CrossRef]

http://doi.org/10.1109/MP.2006.1649011
http://doi.org/10.1348/000709900158083
http://doi.org/10.1177/0305735608097247
http://doi.org/10.1002/cb.1645
http://doi.org/10.1016/j.sigpro.2012.04.023
http://doi.org/10.1037/h0028448
http://doi.org/10.1007/BF00243505
http://doi.org/10.1016/j.apacoust.2017.06.016
http://doi.org/10.1016/j.apacoust.2009.01.004
http://doi.org/10.1177/001316445701700203
http://doi.org/10.2307/1419502
http://www.ncbi.nlm.nih.gov/pubmed/14427634
https://www.itu.int/rec/R-REC-BS.1284/en
https://www.itu.int/rec/R-REC-BS.1116
http://doi.org/10.1177/0957456519889956
http://doi.org/10.18637/jss.v057.i05
http://doi.org/10.1109/TVCG.2013.173
http://doi.org/10.1016/j.buildenv.2009.05.014


Acoustics 2022, 4 719

55. Jeon, J.Y.; Lee, P.J.; You, J.; Kang, J. Acoustical characteristics of water sounds for soundscape enhancement in urban open spaces.
J. Acoust. Soc. Am. 2012, 131, 2101–2109. [CrossRef] [PubMed]

56. Cronbach, L.J. Coefficient alpha and the internal structure of tests. Psychometrika 1951, 16, 297–334. [CrossRef]
57. Bland, J.M.; Altman, D.G. Statistics notes: Cronbach’s alpha. BMJ 1997, 314, 572. [CrossRef]
58. Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, R.L. Multivariate Data Analysis; Cengage: Hampshire, UK, 2006;

Volume 6.
59. Streiner, D.L. Starting at the beginning: An introduction to coefficient alpha and internal consistency. J. Personal. Assess. 2003, 80,

99–103. [CrossRef] [PubMed]
60. Tavakol, M.; Dennick, R. Making sense of Cronbach’s alpha. Int. J. Med. Educ. 2011, 2, 53. [CrossRef] [PubMed]
61. Borch, D.Z.; Sundberg, J. Spectral distribution of solo voice and accompaniment in pop music. Logop. Phoniatr. Vocology 2002, 27,

37–41. [CrossRef] [PubMed]
62. Yokoyama, M.; Awahara, Y.; Yagawa, G. Relation between violin timbre and harmony overtone. In Proceedings of the Meetings

on Acoustics, Honolulu, HI, USA, 28 November–2 December 2016; p. 035001.
63. Kirchberger, M.; Russo, F.A. Dynamic range across music genres and the perception of dynamic compression in hearing-impaired

listeners. Trends Hear. 2016, 20, 2331216516630549. [CrossRef]
64. Silla, C.N.; Koerich, A.L.; Kaestner, C.A. A machine learning approach to automatic music genre classification. J. Braz. Comput.

Soc. 2008, 14, 7–18. [CrossRef]
65. Bahuleyan, H. Music genre classification using machine learning techniques. arXiv 2018, arXiv:1804.01149.
66. Chillara, S.; Kavitha, A.; Neginhal, S.A.; Haldia, S.; Vidyullatha, K. Music genre classification using machine learning algorithms:

A comparison. Int. Res. J. Eng. Technol. 2019, 6, 851–858.
67. Costa, Y.M.; Oliveira, L.S.; Koericb, A.L.; Gouyon, F. Music genre recognition using spectrograms. In Proceedings of the 2011 18th

International Conference on Systems, Signals and Image Processing, Sarajevo, Bosnia and Herzegovina, 16–18 June 2011; pp. 1–4.
68. Ghosal, D.; Kolekar, M.H. Music Genre Recognition Using Deep Neural Networks and Transfer Learning. In Proceedings of the

Interspeech, Hyderabad, India, 2–6 September 2018; pp. 2087–2091.
69. Analyzer, R.A. Sennheiser HD 215 (Report for a Pro). Available online: https://reference-audio-analyzer.pro/en/report/hp/

sennheiser-hd-215.php#gsc.tab=0 (accessed on 18 July 2022).
70. Papadakis, N.M.; Aletta, F.; Kang, J.; Oberman, T.; Mitchell, A.; Stavroulakis, G.E. Translation and Cross-Cultural Adaptation

Methodology for Soundscape Attributes—A study with Independent Translation Groups from English to Greek. Appl. Acoust. 2022.

http://doi.org/10.1121/1.3681938
http://www.ncbi.nlm.nih.gov/pubmed/22423706
http://doi.org/10.1007/BF02310555
http://doi.org/10.1136/bmj.314.7080.572
http://doi.org/10.1207/S15327752JPA8001_18
http://www.ncbi.nlm.nih.gov/pubmed/12584072
http://doi.org/10.5116/ijme.4dfb.8dfd
http://www.ncbi.nlm.nih.gov/pubmed/28029643
http://doi.org/10.1080/140154302760146961
http://www.ncbi.nlm.nih.gov/pubmed/12375627
http://doi.org/10.1177/2331216516630549
http://doi.org/10.1007/BF03192561
https://reference-audio-analyzer.pro/en/report/hp/sennheiser-hd-215.php#gsc.tab=0
https://reference-audio-analyzer.pro/en/report/hp/sennheiser-hd-215.php#gsc.tab=0

	Introduction 
	Methods 
	Musical Excerpts 
	Participants 
	Questionnaire 
	Experimental Design and Procedure 

	Results 
	Discussion 
	Impact of MP3 Compression on Classical Music 
	Impact of MP3 Compression on Solo Instrument 
	Impact of MP3 Compression on Electronic, Rock and Jazz Music 
	General Remarks 
	Future Work 

	Conclusions 
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	References

