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Abstract: Acoustic echo in full-duplex telecommunication systems is a common problem that may
cause desired-speech quality degradation during double-talk periods. This problem is especially
challenging in low signal-to-echo ratio (SER) scenarios, such as hands-free conversations over mobile
phones when the loudspeaker volume is high. This paper proposes a two-stage deep-learning
approach to residual echo suppression focused on the low SER scenario. The first stage consists of a
speech spectrogram masking model integrated with a double-talk detector (DTD). The second stage
consists of a spectrogram refinement model optimized for speech quality by minimizing a perceptual
evaluation of speech quality (PESQ) related loss function. The proposed integration of DTD with the
masking model outperforms several other configurations based on previous studies. We conduct
an ablation study that shows the contribution of each part of the proposed system. We evaluate the
proposed system in several SERs and demonstrate its efficiency in the challenging setting of a very
low SER. Finally, the proposed approach outperforms competing methods in several residual echo
suppression metrics. We conclude that the proposed system is well-suited for the task of low SER
residual echo suppression.
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1. Introduction

Modern telecommunication systems often suffer from speech intelligibility degrada-
tion caused by an acoustic echo. A typical scenario includes two speakers communicating
between a far-end and a near-end point. At the near-end point, a microphone captures
both the near-end speaker’s signal and the acoustic echo of a loudspeaker playing the
far-end signal [1]. When the far-end speaker speaks, he hears the echo of his voice, thus
reducing the quality of the conversation. Therefore, canceling the acoustic echo while
preserving near-end speech quality is desired in any full-duplex communication system.
Linear acoustic echo cancellers (AECs) are commonly employed to cancel the echo com-
ponent of the microphone signal and are traditionally based on linear adaptive filters [2].
Linear AECs estimate the acoustic path from the loudspeaker to the microphone. The
estimated filters are applied to the far-end reference signal resulting in an estimate of the
echo signal as received by the microphone. Then, the estimated near-end signal is obtained
by subtracting the estimated echo from the microphone signal. However, due to their linear
nature, residual non-linear components of the echo remain at the output of the linear AECs.
In most cases, the residual echo still interferes and degrades the near-end speech quality.

In recent years, deep-learning neural networks (DNNs) achieved unprecedented
performance in many fields, e.g., computer vision, natural language processing, audio and
speech processing, and more. Possessing high non-linear modeling capabilities, DNNs
became a natural choice for acoustic echo cancellation. Zhang and Wang [3] employ a bi-
directional long short-term memory (BLSTM) [4] recurrent neural network (RNN) operating
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in the time-frequency (T-F) domain to capture dependency between time frames. The model
predicts an ideal ratio mask (IRM) [5] applied to the microphone signal’s spectrogram
magnitudes to estimate the near-end signal’s spectrogram magnitudes. Kim and Chang [6]
propose a time-domain U-Net [7] architecture with an additional encoder that learns
features from the far-end reference signal. An attention mechanism [8] accentuates the
meaningful far-end features for the U-Net’s encoder. Westhausen and Meyer [9] combine T-
F and time-domain processing by adapting the dual-signal transformation LSTM network
(DTLN) [10] to the task of acoustic echo cancellation. Although DNN AECs achieve
performance superior to linear AECs and allow for end-to-end training and inference, they
are prone to introducing distortion to the estimated near-end signal, especially when the
signal-to-echo ratio (SER) is low.

An alternative for end-to-end DNN acoustic echo cancellation is residual echo sup-
pression. In a typical residual echo suppression setting, a linear AEC is followed by a
DNN aimed at suppressing the residual echo at the output of the linear AEC. Linear AECs
introduce little distortion to the near-end signal. Their estimation of the echo and near-end
signals provides the residual echo suppressor (RES) with better features, allowing for better
near-end estimation with smaller model sizes. Carbajal et al. [11] propose a simple fully-
connected architecture that receives the spectrogram magnitudes of the far-end reference
signal and the linear AEC’s outputs and predicts a phase-sensitive filter (PSF) [12] to recover
the near-end signal from the linear AEC’s error signal. Pfeifenberger and Pernkopf [13]
suggest utilizing an LSTM to predict a T-F gain mask from the log differences between the
powers of the microphone signal and the AEC’s echo estimate. Chen et al. [14] propose a
time-domain RES based on the well-known Conv-TasNet architecture [15]. They employ
a multi-stream modification of the original architecture, where the outputs of the linear
AEC are separately encoded before being fed to the main Conv-TasNet. Fazel et al. [16]
propose context-aware deep acoustic echo cancellation (CAD-AEC), which incorporates
a contextual attention module to predict the near-end signal’s spectrogram magnitudes
from the microphone and linear AEC output signals. Halimeh et al. [17] employ a complex-
valued convolutional recurrent network (CRN) to estimate a complex T-F mask applied
to the complex spectrogram of the AEC’s error signal to recover the near-end signal’s
spectrogram. Ivry et al. [18] employ a 2-D U-Net operating on the spectrogram magnitudes
of the linear AEC’s outputs. A custom loss function with a tunable parameter allows a
dynamic tradeoff between the levels of echo suppression and estimated signal distortion.
Franzen and Fingscheidt [19] propose a 1-D fully convolutional recurrent network (FCRN)
operating on discrete Fourier transform (DFT) inputs. An ablation study is performed
to study the effect of different combinations of input signals on the joint task of residual
echo suppression and noise reduction. Although achieving state-of-the-art residual echo
suppression performance, none of the above studies focus on the challenging scenario of
extremely low SER. Low SER may occur in typical real-life situations such as a conversation
over a mobile phone where the loudspeaker plays the echo at a high volume.

In a typical residual echo suppression scenario, one of four situations may occur at
each time point: both speakers are silent, only the far-end speaker speaks, only the near-end
speaker speaks, and double-talk, where both speakers speak at the same time. When only
the near-end speaker speaks, the microphone signal should remain unchanged to keep
the near-end speech distortionless. Ideally, the microphone signal should be canceled
when only far-end speech is present to remove any echo component. The challenging
situation is double-talk, where it is desired to cancel the echo of the far-end speech while
keeping the near-end speech distortion to a minimum. Therefore, it is natural to integrate
a double-talk detector (DTD) into the system. Linear AECs typically employ a DTD to
prevent the cancellation of the near-end speech in double-talk situations [20,21]. Several
studies also integrate double-talk detection in deep-learning acoustic echo cancellation or
residual echo suppression models. Zhang et al. [22] employ an LSTM, which operates on
the spectrogram magnitudes of the microphone and far-end reference signals, and predicts
near-end speech presence via a binary mask that is applied to the output of the DNN
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AEC. Zhou and Leng [23] formulate the problem as a multi-task learning problem where
a single DNN learns to perform residual echo suppression and double-talk detection in
tandem. The model consists of two output branches: the first branch predicts a PSF and
acts as a RES and the second branch detects double-talk. The RES is conditioned on the
DTD’s predictions by supplying it with features before the classification. Ma et al. [24]
propose to perform double-talk detection with two voice activity detectors (VADs), one
for detecting near-end speech and the other for detecting far-end speech. Features from
several layers of the VADs are fed to a gated recurrent unit (GRU) [25] RNN that performs
residual echo suppression. Ma et al. [26] propose a multi-class classifier that receives the
encoded features of the time-domain microphone and far-end signals and classifies each
time frame independently of the AEC’s predictions. Zhang et al. [27] also incorporate
a VAD as an independent output branch in a residual echo suppression model. While
exhibiting high residual echo performance, their results show that adding the VAD does
not lead to improved objective metrics. The rest of the works mentioned above do not study
the effect of the DTD/VAD on the RES’s performance. Therefore, it is worth studying the
effect of DTD and RES integration configurations on the system’s performance, especially
in the low SER setting where the echo may entirely screen the near-end speech.

This study proposes a two-stage residual echo suppression deep-learning system
focused on the challenging low SER scenario. Our approach is inspired by [28], where
a two-stage spectrogram masking and inpainting approach is taken to tackle the low
signal-to-noise ratio (SNR) speech enhancement problem. We adopt this approach to the
residual echo suppression setting while introducing changes and improvements. The first
stage in our system is double-talk detection and spectrogram masking. We propose an
architecture with fewer parameters and a faster inference time than the masking stage in [28].
Furthermore, we study several ways of integrating double-talk detection in our model
based on previous studies and show that the proposed configuration achieves the most
significant improvement in residual echo suppression performance. The second stage in our
system is spectrogram refinement. Unlike [28], where the second stage consists of creating
holes in the spectrogram and applying spectrogram inpainting to reconstruct the desired
signal, we propose instead to perform spectrogram refinement. We optimize the model
to maximize the desired speech quality measured by the perceptual evaluation of speech
quality (PESQ) [29] score by minimizing the perceptual metric for speech quality evaluation
(PMSQE) loss function [30]. We perform an ablation study to show the effectiveness of
every component of the proposed system. Furthermore, we train and evaluate the proposed
system in several levels of SER and show that it is most effective in the extremely-low SER
setting. Finally, we compare the proposed system to several other residual echo suppression
systems and show that it outperforms others in several residual echo suppression and
speech quality measures.

The outline of this paper is as follows. In Section 2, we formulate the residual echo
suppression problem, present the proposed system’s components, and provide details
regarding the data and model training procedure. Results and discussion are provided in
Section 3. Section 4 concludes the paper.

2. Materials and Methods

In this section, we first formulate the problem of residual echo suppression and denote
the different signals. Next, we present the various components of the proposed system.
Lastly, we discuss the data used for training and evaluation and provide details about the
training procedures.

2.1. Problem Formulation

To formulate the problem of residual echo suppression, we denote the different signals
as follows: x(n) denotes the far-end reference signal at time point n. We denote the echoic
loudspeaker signal received by the microphone by y(n) and the near-end speaker’s signal
by d(n). The microphone signal is denoted by m(n) and is given by
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m(n) = y(n) + d(n) . (1)

The inputs to the linear AEC are m(n) and x(n), and its outputs are a(n) and
e(n) = m(n) − a(n), the estimated echo signal y(n) and the error signal, respectively.
The goal is to enhance e(n) to obtain a better estimate of d(n) by further suppressing the
residual echo. d̃(n) denotes the estimated near-end speaker’s signal at the entire system’s
output. Figure 1 depicts the residual echo suppression setup and the different signals.
The following sections will refer to the spectrogram magnitudes of the different signals’
short-time Fourier transform (STFT). These will be denoted by capital letters of their re-
spective time-domain signal notation, e.g., X( f , k) is the STFT spectrogram magnitude of
x(n), where f and k denote the frequency-bin and time-bin indices, respectively.

Figure 1. Residual echo suppression setup.

2.2. Proposed System

The proposed system comprises three modules: A linear AEC, a double-talk detection
and spectrogram masking model, and a spectrogram refinement model. The masking and
spectrogram refinement models together form the RES. They are inspired by [28], where
a two-stage deep-learning system consisting of spectrogram masking and spectrogram
inpainting performs speech enhancement. To better suit the task of residual echo suppres-
sion, we present a few changes and improvements, as will be detailed in the following
sub-sections.

2.2.1. Linear Acoustic Echo Cancellation

We employ an AEC with the normalized sign-error least mean squares (NSLMS) [31]
algorithm for linear acoustic echo cancellation. NSLMS adjusts each filter tap’s weight
according to the error signal’s sign. Despite the NSLMS being less common for acoustic
echo cancellation than the normalized least mean squares (NLMS), several studies have
shown its advantages over the NLMS [32,33]. We employ a subband domain NSLMS that
transforms the signals using uniform single-sideband filter banks [34]. Each subband’s
filter tap weights are updated according to the update equation

c(n + 1) = c(n) +
α(n)sgn(e(n))xN(n)

||xN(n)||2
. (2)

In the above equation, α(n) is the step size. The vector c(n) = [c1(n), . . . , cN(n)]T

is the filter tap weights vector, N is the number of filter taps, and (·)T is the transpose
operation. The vector xN(n) = [x(n), x(n− 1), . . . , x(n− N + 1)]T is the far-end reference
signal vector of length N at time n, and sgn(·) is the signum function. The normalization
factor allows the steady-state error of the AEC to be independent of the far-end signal’s
power [35].
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2.2.2. Double-Talk Detection and Spectrogram Masking

The spectrogram masking model aims to perform a significant portion of the residual
echo suppression. The greatest challenge in residual echo suppression is suppressing the
echo during double-talk periods while reducing the near-end speech distortion. Therefore,
the model may benefit from optimization for double-talk detection in tandem with residual
echo suppression.

In the masking stage, we employ the U-Net architecture [7]. This architecture differs
from the one in [28], where the architecture comprises convolutional blocks consisting of
residual connections, requiring more model parameters and resulting in a longer inference
time than the U-Net architecture while achieving similar performance. U-Net has a fully-
convolutional encoder-decoder structure with skip connections between levels of the
encoder and the decoder. The proposed model is a concatenation of two U-Nets. The first
U-Net performs double-talk detection and is also used to learn a feature representation
from the double-talk predictions and the input signals used for the masking task. The
second U-Net receives the outputs of the first U-Net and all input signals and predicts a
spectrogram ratio mask.

The first U-Net’s input is the log of the input signals X( f , k), A( f , k), M( f , k), and
E( f , k), concatenated along the channel dimension. The encoder comprises down-sampling
convolution blocks (referred to as “down-blocks” from here on), where each block consists
of a 2-D convolution layer, instance normalization layer [36], and leaky rectified linear
unit (leaky ReLU) [37] activation function. The convolution window stride is 2 along the
frequency dimension and 1 along the time dimension—effectively down-sampling the
inputs along the frequency dimension while preserving the time dimension. The output
of the encoder is fed to a uni-directional GRU which learns time dependency between the
different frames. The GRU’s output has two purposes—it is used both as features utilized
by a classifier that predicts double-talk for each time frame and as inputs to the decoder,
which learns a representation from the DTD’s features. We frame the double-talk detection
task as a binary multi-label classification task, where each time frame is labeled as either
containing near-end speech or not as well as either containing far-end speech or not. We
empirically found that this approach leads to better classification performance than the
more common approach of multi-class classification, where each time frame is assigned a
single label (most commonly, the labels are: silence, near-end speech only, far-end speech
only, or double-talk). In order to classify each time frame, the outputs of the GRU are fed to
a fully-connected layer responsible for reducing the feature dimension (while preserving
the time dimension as we want to classify each time frame) to 2, which corresponds to the
two possible labels.

The features learned by the encoder for double-talk detection are employed to assist
the task of learning a spectrogram mask. Instead of directly feeding the masking U-Net
with the encoder’s features, the decoder learns a feature representation. The decoder
comprises up-blocks similar to down-blocks, except that the inputs are first up-sampled
via nearest-neighbor up-sampling with a factor of 2 along the frequency dimension and
1 along the time dimension. The up-sampled inputs are concatenated along the channel
dimension with the outputs of the matching level of the encoder. The output of the decoder,
P( f , k), has a single channel and is of the same frequency and time dimensions as the input
signals. In order to learn a spectrogram mask, an additional U-Net is concatenated to
the first U-Net. This U-Net accepts as inputs the log of all input signals X( f , k), A( f , k),
M( f , k), and E( f , k), as well as the output of the first U-Net P( f , k), resulting in 5 input
channels. The second U-Net’s structure is similar to that of the first U-Net with a few
exceptions - the down-sampling (as well as the up-sampling) factor is 2 for both frequency
and time dimensions, and the last decoder block contains neither an activation function
nor a normalization layer. The model’s output, denoted by Ĥ( f , k), consists of one channel
and has the same frequency and time dimensions as the input signals. The entire DTD and
masking model’s architecture is depicted in Figure 2.
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Figure 2. Structure of the double-talk detector (DTD) and masking model architecture. FC stands for
fully connected.

As previously mentioned, we empirically found that the DTD performs better when
trained to detect near-end and far-end speech separately for each time frame. Therefore,
the DTD’s training target for each utterance is a tensor of shape (B, 2, T), where B is the
batch size, and T is the number of time frames. The first and second rows of the second
dimension represent the presence of near-end speech and far-end speech, respectively,
where 1 indicates the presence of speech and 0 represents its absence. The training target of
the masking model is the log of the ratio between the spectrogram magnitudes of the clean
near-end speech and that of the error signal, denoted by H( f , k) and given by

H( f , k) = log10(
D( f , k)

E( f , k) + ε1
+ ε2) , (3)

where ε1 and ε2 are small constants for numerical stability. The loss function used for the
double-talk detection task is denoted by lDTD and given by

lDTD =
1
2
(lDTD-nearend + lDTD-farend) , (4)

where lDTD-nearend and lDTD-farend are binary cross entropy (BCE) loss terms for near-end
and far-end speech detection, respectively. The quantity lDTD-nearend is given by

lDTD-nearend = − 1
T

T

∑
k=1

[vk · log σ(v̂k) + (1− vk) · log(1− σ(v̂k))] , (5)

where vk is the ground-truth label for time frame k, v̂k is the predicted label for time frame
k, and σ(·) is the sigmoid function. lDTD-farend is similarly defined. For the masking task,
we use the mean squared error (MSE) loss between the labels and the outputs, denoted by
lmask and given by

lmask =
1
n ∑

f
∑
k
(H( f , k)− Ĥ( f , k))2 , (6)

where n is the total number of spectrogram bins. The overall loss function used to optimize
the model is a weighted sum of the two loss functions with a weight parameter λDTD
applied to lDTD:

l = λDTD lDTD + lmask . (7)

2.2.3. Spectrogram Refinement

The spectrogram masking approach alone may not be sufficient to both suppress the
residual echo and preserve the near-end speech’s quality. It is especially true in the low
SER scenario, where the echo signal’s energy is considerably higher than the near-end
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signal’s. In this case, spectrogram masking can suppress the residual echo to a large degree,
at the cost of degrading the near-end speech quality. In the most severe cases, the masking
operation completely cancels parts of the near-end speech during double-talk. In [28],
following the masking stage, the speech is further enhanced by a spectrogram inpainting
stage. The inpainting operation aims to reconstruct spectrogram bins containing speech
canceled in the masking stage. In the residual echo suppression case, near-end speech
is screened by the far-end echoic speech rather than noise. The screening renders the
reconstruction operation more challenging as it may be difficult to distinguish the speech
components of the near-end signal from those of the far-end signal. Instead, we frame this
stage as spectrogram refinement, where the mask learned by the masking model is used
as an additional feature along with the input signals rather than to mask the signal from
which we want to obtain the desired near-end speech.

For spectrogram refinement, we adopt the architecture used in [28]. In our experiments,
we found that when using the U-Net architecture for this stage, the model’s performance
was almost identical to the performance of the masking model. Since the masking model
achieves good performance on its own, and due to the skip connection between the inputs
and the decoder outputs, the refinement model with the U-Net architecture achieved
negligible performance gain compared to the masking model. Instead, we employ a fully-
convolutional architecture consisting of residual connection blocks, as proposed in [28].

The input to the model is the log of the input signals X( f , k), A( f , k), M( f , k), and
E( f , k), the output of the masking model Ĥ( f , k), and the double-talk features P( f , k),
concatenated along the channel dimension. The input is first fed to two consecutive down-
blocks similar to the encoder blocks in the masking stage. The inputs are down-sampled by
a factor of 2 along both time and frequency dimensions. Instead of leaky ReLU, we employ
an exponential linear unit (ELU) activation function [38] as proposed in [28]. Following
the down-blocks is a series of identical residual blocks. A residual block comprises two
consecutive down-blocks with a convolution kernel stride (1, 1). The output of the second
convolution block is summed element-wise with the input to the residual block. Following
the last residual block are two up-blocks with an up-sampling factor of 2 along both time
and frequency dimensions. The output layer is a 2-D convolution layer with one output
channel. Figure 3 depicts the refinement model’s architecture and the residual blocks.

Figure 3. Structure of refinement model architecture and residual blocks. (a) Refinement model
architecture. (b) Structure of the residual blocks.

We frame the refinement stage as a regression task, where the model learns to predict
the near-end spectrogram magnitudes directly. Therefore, the training target is the log
of the near-end signal’s spectrogram magnitudes log10(D( f , k) + ε), where ε is a small
constant for numerical stability. Inverting the log operation and applying inverse STFT
(iSTFT) using the error signal’s phase, we obtain the time-domain near-end signal d(n).
Since a significant portion of the residual echo was suppressed in the masking stage, the
main goal of the refinement stage is to improve the estimated near-end speech quality. We
achieve this goal by optimizing the model for speech quality measured by PESQ. Since
the PESQ function is non-differentiable, it cannot be used as a loss function in gradient-
descent-based algorithms. The PMSQE loss function [30] aims to approximate PESQ with a
differentiable function. PMSQE, unlike MSE, takes into account perceptual-related features
of the predicted signal by incorporating two disturbance terms inspired by the PESQ
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algorithm. We denote the PMSQE loss term by lPESQ (for brevity, we do not formulate the
loss function and its different components here - the reader is referred to [30] for additional
details). We empirically found that minimizing the PMSQE loss function alone does not
achieve the desired results since, although the loss value converges, the different evaluation
metrics diverge. Therefore, we add a regularizing MSE loss term defined as

lMSE =
1
n ∑

f
∑
k
(log10(D̃( f , k) + ε)− log10(D( f , k) + ε))2 . (8)

The complete loss function minimized during the refinement model training is given by

l = lPESQ + λMSElMSE , (9)

where λMSE is a weight parameter. The specifications for each model are detailed in
Appendix A. Code is provided in [39].

2.3. Datasets

We employ an independently recorded dataset to train and evaluate the proposed
system in real-life conditions. Several conditions and configurations were considered when
conducting the recordings. A total of 5.5 h of speech from the TIMIT [40] corpus and 5.5 h of
speech from the LibriSpeech [41] corpus were used in the recordings. Recorded data were
split between the training and test sets, such that the test set contains unique speakers not
shared by the training set and unique conditions and setups not seen during training. In
order to augment the training dataset, synthetic data from the ICASSP 2021 AEC challenge
dataset [42] were also used during training. In 80% of the cases, the far-end signal in the
synthetic dataset was processed with a nonlinear function. Some examples of nonlinear
functions are clipping of the maximum value, a sigmoidal function, or a learned nonlinear
distortion function. More details regarding the synthetic data can be found in [42]. The SER
in both datasets (synthetic and independent recordings) was set to −20± 3 dB. For analysis
in different SERs, the same data were used in every experiment, where the SER was set
to −15± 3 dB, −10± 3 dB, or −5± 3 dB. The combined dataset consists of 34.1 h of data
with a 16 kHz sampling rate. Further details regarding the data and training procedures
can be found in Appendix B.

3. Results

This section presents the performance measures used to evaluate the different systems,
shows the ablation study results, and compares the proposed system with two other
systems. Audio examples of the proposed system’s output, along with the microphone,
error, and clean near-end speech, can be found in [39].

3.1. Performance Measures

In order to evaluate the performance of the proposed and compared systems, two
scenarios are considered: far-end only and double-talk. Near-end only periods are not
considered for performance evaluation since all systems introduce little distortion to the
input signal when no echo is present. Furthermore, since it is a trivial task to determine that
the far-end speaker is silent, during these periods, the microphone signal can be directly
passed to the system’s output. Thus, no distortion will be applied to it.

During far-end only periods, we expect the enhanced signal to have as low energy
as possible (ideally, it is completely silent). Therefore, performance is evaluated during
these periods using the echo return loss enhancement (ERLE), which measures the echo
reduction between the microphone signal and the enhanced signal. ERLE is measured in
dB and is defined as

ERLE = 10log10
||m(n)||2

||d̃(n)||2
. (10)
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ERLE may not always correlate well with human subjective ratings [43]. AEC mean
opinion score (AECMOS) [44] provides a speech quality assessment metric for evaluating
echo impairment that overcomes the drawbacks of conventional methods. AECMOS is a
DNN trained to directly predict subjective ratings for echo impairment using ground-truth
human ratings of more than 148 h of data. The model predicts two scores in the range [1, 5],
one for echo impairment (AECMOS-echo) and the other for other degradations (AECMOS-
degradations). The model distinguishes between three scenarios: near-end single-talk,
far-end single-talk, and double-talk. In the far-end single-talk case, only AECMOS-echo
is considered.

We aim to suppress the residual echo during double-talk periods while maintaining
the near-end speech’s quality. During these periods, performance is evaluated using two
different measures. The first measure is perceptual evaluation of speech quality (PESQ) [29].
PESQ is an intrusive speech quality metric based on an algorithm designed to approximate
a subjective evaluation of a degraded audio sample. PESQ score range is [−0.5, 4, 5], where
a higher score indicates better speech quality. However, like ERLE, PESQ does not always
correlate well with subjective human ratings. Therefore, the second performance measure is
AECMOS-echo which measures the echo reduction during double-talk periods. We do not
use AECMOS-degradations for performance evaluation for two reasons. The first reason is
that we focus on the low SER scenario without including intense noise or distortions, which
may cause additional degradation. The second reason is that, as we show in the results,
AECMOS-degradations fail to capture the true residual echo suppression performance in
the low SER case.

Finally, although not a performance measure, we formally define SER, measured in
double-talk periods and used to measure the near-end signal’s energy relative to the echo
signal’s energy. SER is expressed in dB as

SER = 10log10
||d||2
||y||2 . (11)

3.2. Ablation Study

First, we present the ablation study’s results, showing how each part of the proposed
system contributes to the performance. Table 1 shows the performance of the AEC, the
performance of the AEC followed by the masking stage with and without double-talk
detection (AEC+M+D and AEC+M, respectively), the performance of the AEC followed by
the refinement stage without the masking stage’s outputs (AEC+R, using only the input
signals), and the entire system’s performance—AEC followed by masking and double-talk
detection followed by the refinement model (AEC+M+D+R).

Table 1. Ablation study results. M stands for masking, D for DTD, and R for refinement.

Far-End Only Double-Talk
ERLE AECMOS PESQ AECMOS

AEC 18.80 4.67 2.25 4.15
AEC+M 40.39 4.67 2.74 4.66
AEC+M+D 42.28 4.67 2.84 4.69
AEC+R 40.69 4.66 2.75 4.57
AEC+M+D+R 44.32 4.68 2.94 4.71

From the table, combining the DTD with the masking model improves ERLE by almost
2 dB while achieving on-par far-end only AECMOS, which indicates better echo suppression
performance when there is no near-end speech. During double-talk, there is a notable
increase of 0.1 in the PESQ score and a minor increase of 0.03 in AECMOS. These results
indicate that combining the DTD with the masking model improves performance compared
to not combining a DTD during double-talk periods. When adding the refinement stage
to the masking+DTD stage, there is an additional improvement in all measures. Most
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notably, ERLE is increased by an additional 2.04 dB, and PESQ is increased by 0.1. Far-end
AECMOS and double-talk AECMOS are also improved, albeit by a negligible amount.
It can also be observed how, without first employing the masking stage, the refinement
stage on its own achieves on-par performance with the masking model without the DTD.
This further asserts the efficacy of the proposed system; the masking stage, aided by the
DTD, performs the initial residual echo suppression, and the refinement stage, which relies
on the features provided by the masking stage, further improves performance. It can be
concluded from the ablation study that the proposed configuration of the DTD aids the
masking model’s performance and that the refinement stage indeed performs refinement
to the outputs of the first stage since its stand-alone performance is inferior. Figure 4 shows
examples of spectrograms from different stages of the system.

Figure 4. Visualization of spectrograms of the different stages’ outputs. (a) Error signal spectrogram.
(b) Spectrogram of the signal reconstructed from the masking stage’s output. (c) Spectrogram of the
refinement stage’s output. (d) Near-end signal’s spectrogram.

It can be observed from the figure that the masking model suppresses the majority
of the residual echo, notably evident after 1.25 s and above 4000 Hz. The finer details of
the near-end speech are blurred compared to the near-end spectrogram. The refinement
model refines the output of the masking model, resulting in a finer-detailed spectrogram
that closely resembles the near-end spectrogram.

Next, we study different ways to combine the DTD with the masking model. We
compare five different configurations:

• No double-talk detection—A single U-Net is utilized to perform spectrogram masking
(similar to the proposed system, without the first U-Net).
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• Configuration 1: Shared encoder—A single U-Net, where the outputs of the encoder
are used both by a double-talk classifier and by the decoder that outputs the spectro-
gram mask. This is similar to the configuration proposed in [26].

• Configuration 2: Separate encoders, shared features—Two identical encoders are
employed. The first encoder learns features used for double-talk detection. The
second encoder receives all input signals, and each level’s features are concatenated
with features from the matching level of the DTD’s encoder. This is similar to the
configuration proposed in [17].

• Configuration 3: Separate decoders, conditioning—The features learned by a single
encoder are fed into two separate decoders. The first decoder performs double-talk
detection. The second decoder learns a spectrogram mask, its outputs conditioned on
the DTD’s predictions by sharing the decoders’ features in each matching level. This
is similar to the configuration proposed in [23].

• Proposed—the configuration proposed in this study, as detailed in Section 2.

Table 2 shows the performance of the masking model combined with the DTD in
each of the above configurations. The proposed configuration achieves the best residual
echo suppression performance during far-end only periods, as indicated by ERLE and
AECMOS. The proposed configuration’s ERLE is more than 1 dB greater than the second-
best ERLE (Conf. 3), and the AECMOS equals the no-DTD baseline AECMOS. In contrast,
all other configurations see a minor degradation. In the double-talk scenario, the proposed
configuration’s PESQ score is nearly 0.1 greater than the second-best PESQ (Conf. 2), which
is only 0.01 greater than the no-DTD baseline PESQ. The AECMOS is also the highest
among all compared configurations’ AECMOS. Overall, results show that the proposed
configuration of DTD combined with the masking model achieves a notable performance
improvement compared to not combining a DTD, where all other configurations have little
to no effect on performance. We conclude that combining a DTD with the masking model
is beneficial when the double-talk detection is performed before the masking and that it
is necessary to learn a feature representation from the DTD’s predictions to enable the
masking model to use these predictions effectively.

Table 2. Study of different configurations of the masking model with a DTD. Conf. stands for
configuration.

Far-End Only Double-Talk
ERLE AECMOS PESQ AECMOS

No DTD 40.39 4.67 2.74 4.66
Conf. 1 41.07 4.61 2.69 4.56
Conf. 2 39.88 4.66 2.75 4.60
Conf. 3 41.17 4.66 2.72 4.65
Proposed 42.28 4.67 2.84 4.69

For completion, we provide the DTD’s performance in Table 3. Since the proposed
DTD operates as a multi-label classifier where the labels are the presence of near-end
speech and far-end speech, double-talk is not an actual class for the classifier. Instead, it is
determined for time-frames containing both near-end and far-end speech. The provided
results for near-end and far-end include time frames where both are present (double-talk).
Multi-class classification results are also provided for comparison. We can observe from
the table that both near-end and far-end performance is high and that precision and recall
are balanced. The far-end performance is slightly better than that of the near-end. This
small performance gap is expected in the low SER setting since, during double-talk periods,
the near-end speech may be almost indistinguishable. This observation is also evident in
the double-talk results, notably degraded. During these periods, the DTD may predict a
time frame as containing far-end speech and not containing near-end speech. When using
the DTD’s prediction directly as inputs to the subsequent masking model, it may cancel
these time frames, as it learns to do so from the actual far-end-only time frames. Learning
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a representation from the DTD’s predictions helps overcome this issue. It can also be
observed from the table that the proposed multi-label classifier outperforms the multi-class
classifier. While near-end performance is on-par, the far-end performance and overall
accuracy of the multi-label classifier are superior to that of the multi-class classifier. In
the double-talk scenario, the multi-label classifier achieves superior precision and inferior
recall, and its overall accuracy is notably superior to that of the multi-class classifier.

Table 3. Performance of the DTD. Numbers in parentheses represent the respective results of the
multi-class classifier.

Precision Recall Accuracy

Near-end 0.96 (0.95) 0.95 (0.96) 0.97 (0.97)
Far-end 0.98 (0.94) 0.97 (0.89) 0.98 (0.97)
Double-talk 0.90 (0.88) 0.91 (0.93) 0.86 (0.80)
Overall - - 0.98 (0.95)

Finally, we address an issue with double-talk AECMOS-degradations in the low SER
scenario. Figure 5 shows double-talk AECMOS-degradations at different SERs, where the
‘degraded’ signals used to obtain the scores are m(n), e(n), d(n), and d̃(n). The graphs
show how the microphone signal’s AECMOS is substantially higher than the clean near-end
speech’s AECMOS. Furthermore, the gap between the two is more significant when the
SER is lower. When the SER is low, the far-end speech is loud (and its quality is high
since we do not consider noise or additional distortions in our data), while the near-end
speech is nearly indistinguishable. Thus, the microphone signal’s AECMOS-degradations
are high, despite mainly containing undesired echo. On the other hand, the clean near-end
speech signal’s AECMOS-degradations are considerably lower, degrading further when
the SER is lowered. This may indicate that the AECMOS model was not trained on such
extreme cases since we expect this score to be high regardless of the SER as it contains no
noise or distortions. Nevertheless, we can see that, at all SERs, the enhanced signal d̃(n)
obtains slightly better AECMOS-degradations than the error signal e(n), indicating that
the proposed model improves AECMOS-degradations compared to its input.

Figure 5. AECMOS-degradations of the different signals at various signal-to-echo ratios (SERs).

3.3. Comparative Results

We compare the proposed system to two recent RES systems: Regression-U-Net [18]
and Complex-Masking [17]. Both systems operate in the T-F domain. Regression-U-
Net’s inputs are the spectrogram magnitudes of e(n) and a(n). The model predicts the
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spectrogram magnitudes of d̃(n). Since we optimize our refinement model to increase
the PESQ score, we choose α = 0 in the Regression-U-Net’s implementation, as it yields
the best PESQ [18]. Complex-Masking’s model consists of a convolutional encoder and
decoder and a GRU between them. All layers in the model are complex, which allows the
model to learn a phase-aware mask while utilizing the complete information from the input
signals. The model’s inputs are the complex spectrograms of e(n) and x(n), and its output
is a complex mask applied to the spectrogram of e(n). We note the differences between
the two systems: Regression-U-Net is real-valued and performs regression (outputs the
desired signal directly). At the same time, Complex-Masking is complex-valued and
performs masking rather than regression. Both systems were trained using the original
code provided by the authors and the same training data used to train the proposed system,
and they were evaluated using the same test data. Since our work focuses on the RES
part, all systems used the same preceding linear AEC. Table 4 shows the performance of
the different systems, their number of parameters and memory consumption, and their
real-time factor (RTF), defined as

RTF =
tinference

tsignal
, (12)

where tinference is the time it takes the model to infer an output for an input of duration
tsignal. All systems’ RTF is measured on the standard Intel Core i7-11700K CPU @ 3.60 GHz.

Table 4. Comparison of the proposed, the Residual-U-Net (U-Net), and the Complex-Masking
(Masking) systems. Param. stands for parameters and Mem. for memory.

Far-End Only Double-Talk # Param. Mem. RTFERLE AECMOS PESQ AECMOS (Bytes)

U-Net 39.39 4.62 2.56 4.04 0.14 M 0.5 M 0.03
Masking 44.54 4.67 2.73 4.55 1.86 M 7.0 M 0.32
Proposed 44.32 4.68 2.94 4.71 5.1 M 21.3 M 0.04

Results show that the proposed and Complex-Masking systems achieve on-par perfor-
mance during far-end only periods. Complex-Masking achieves negligibly better ERLE,
and the proposed system achieves negligibly better AECMOS-echo. Regression-U-Net’s
performance is inferior to the other two systems - most notably, its ERLE is 4.93 dB less than
that of the proposed system. Regression-U-Net’s performance is also inferior to the other
systems during double-talk periods. This performance gap may be due to the model’s
low complexity; it has only 0.14 M parameters, which is 1.72 M fewer than Complex-
Masking. Therefore, it may be hard for the model to learn the input-output relations in
such extreme conditions properly. Contrary to far-end only periods, during double-talk,
the proposed system’s performance is notably superior to that of Complex-Masking. The
proposed system’s PESQ is higher by more than 0.2, and AECMOS is higher by 0.16 dB.
Although the proposed system’s number of parameters is about three times greater than
that of Complex-Masking, its RTF is significantly lower. Thus, when inference time is a
more critical constraint than memory consumption, the proposed system is favorable over
Complex-Masking. It is worth noting how the proposed system’s RTF is only slightly larger
than Regression-U-Net’s RTF, despite having significantly more parameters and higher
memory consumption. It is due to the difference in the systems’ input sizes; the proposed
model was trained on 2 s-long segments while Regression-U-Net was trained on 0.3 s-long
segments. Although the proposed system’s architecture allows for variable-size input,
it provides the best performance for 2 s-long inputs. Thus, in cases where low memory
consumption and short algorithmic delay are high priorities while performance is not,
Regression-U-Net might be favorable. We also note Complex-Masking’s high RTF despite
the relatively small parameter number. This is due to the complex operations, which are
more time-consuming.
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Next, we study the different systems’ performance in different SERs. We focus on
far-end only ERLE and double-talk PESQ. Figure 6a shows the ERLE difference between
the systems’ output signal d̃(n) and the error signal e(n). Similarly, Figure 6b shows the
PESQ difference.

Figure 6. Systems’ performance in different SERs. (a) Echo return loss enhancement (ERLE) difference
between the systems’ outputs and the error signal. (b) Perceptual evaluation of speech quality (PESQ)
difference between the systems’ outputs and the error signal.

The proposed system’s graphs show its efficiency in lower SERs - it can be seen that
both ∆ERLE and ∆PESQ are increased when the SER is lowered, and the increase rate is
also increasing (the graphs’ slopes are higher in lower SERs). In other words, the proposed
system is more effective in lower SERs. A similar trend can be seen in Regression-U-Net’s
performance, although the ∆PESQ increase rate is lower. Regarding Complex-Masking,
which is more comparable to the proposed system, it can be seen that although its ERLE is
consistently higher than the proposed system’s ERLE, the rate at which ∆ERLE increases
is lower. At −20 dB SER, the gap between the two graphs is negligible. The increase rate
of ∆PESQ is lower at lower SERs, while for the proposed system, it grows larger, i.e., the
proposed system is more effective at lower SERs than Complex-Masking.

Finally, we compare the performance of the proposed masking architecture
(AEC+M, without the DTD) with the performance of the masking architecture proposed
in [28] (Masking-inpainting). Table 5 shows the different performance measures, the
number of parameters, the memory consumption, and the RTF of the models.

Table 5. Comparison of the proposed masking architecture without the DTD (AEC+M) and the
masking architecture in Masking-inpainting.

Far-End Only Double-Talk # Mem. RTFERLE AECMOS PESQ AECMOS Param. (Bytes)

Masking-inpainting 40.21 4.67 2.72 4.68 2.56 M 9.76 M 0.031
AEC+M 40.39 4.67 2.74 4.66 1.01 M 3.85 M 0.007
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Results show that the performance measures of the two models are on-par with negligi-
ble differences. On the contrary, the proposed model is preferable to Masking-inpainting’s
model concerning memory and running-time performance. Masking-inpainting’s parame-
ter number and memory consumption are roughly 2.5 times that of AEC+M, and its RTF
is an order of magnitude greater than AEC+M’s RTF. Hence the choice of the proposed
masking architecture over the one proposed in [28].

4. Conclusions

We have presented a two-stage deep-learning residual echo suppression and double-
talk detection system focused on the low-SER scenario. The first stage combines the
DTD with a spectrogram masking model based on the U-Net architecture. We conducted
experiments with different configurations (based on previous studies) of the DTD with
the masking model. The results show that the proposed configuration outperforms all
other configurations. To the best of our knowledge, this is the first study of different ways
to combine a DTD with a residual echo suppression model and the first study to report
improved results due to the DTD. The second stage performs spectrogram refinement. The
architecture is based on convolution blocks consisting of residual connections. The model is
optimized to maximize the desired speech quality by minimizing the PMSQE loss function,
which approximates PESQ. We performed an ablation study which shows the contribution
of each stage of the system. Furthermore, we conducted experiments at different levels
of SER. We showed that the proposed algorithm achieves the best performance gain in
the low SER setting, approving its effectiveness in this challenging scenario. Lastly, we
compared the proposed system to several other systems. The proposed system outperforms
all others in near-end speech quality during double-talk periods, as measured by PESQ
and AECMOS. During far-end only periods, the system’s performance is on par with one
of the compared systems and outperforms the other system.
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Abbreviations
The following abbreviations are used in this manuscript:

SER Signal-to-echo ratio
DTD Double-talk detector
PESQ Perceptual evaluation of speech quality
AEC Acoustic echo canceller
DNN Deep-learning neural network
BLSTM Bi-directional long short-term memory
RNN Recurrent neural-network
T-F Time-freuqency
IRM Ideal ratio mask
DTLN Dual-signal transformation LSTM network
PSF Phase-sensitive filter
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CRN Convolutional recurrent netowrk
FCRN Fully-convolutional recurrent network
DFT Discrete Fourier transform
VAD Voice activity detector
GRU Gated recurrent unit
SNR Signal-to-noise ratio
PMSQE Perceptual metric for speech quality evaluation
STFT Short-time Fourier transform
NSLMS Normalized sign-error least mean squares
NLMS Normalized least mean squares
BCE Binary cross-entropy
MSE Mean squared error
iSTFT Inverse STFT
ERLE Echo return loss enhancement
AECMOS AEC mean opinion score
RTF Real-time factor

Appendix A. Model Specifications

This appendix details the specifications of the different layers of the two DNNs
discussed in Section 2. The various layers of the DTD and masking model are described in
Table A1. The different layers of the refinement model are detailed in Table A2.

Table A1. Double-talk detection and spectrogram masking model specifications. Module names
with an asterisk (*) are model outputs. For down-blocks and up-blocks, the numbers in the Details
column represent input channels, output channels, kernel size, and stride of the convolution window
or up-sampling factor, respectively. For the GRU layer, the Details column’s numbers represent
hidden-layer size and number of layers, respectively. For fully-connected (FC) layers, the number
represents the number of neurons. More than one module in the Input column means concatenation
of the modules in parentheses.

Module Details Inst. Norm Activation Input

Down-block 1 (4, 32, 3, (2, 1))
√

Leaky ReLU Model’s input
Down-block 2 (32, 64, 3, (2, 1))

√
Leaky ReLU Down-block 1

Down-block 3 (64, 128, 3, (2, 1))
√

Leaky ReLU Down-block 2
Down-block 4 (128, 256, 3, (2, 1))

√
Leaky ReLU Down-block 3

GRU (128, 1) - - Down-block 4
FC 1 * 2 - Sigmoid GRU
FC 2 2816 - Leaky ReLU GRU
Up-block 1 (384, 128, 3, (2, 1))

√
Leaky ReLU (FC2, Down-block 3)

Up-block 2 (192, 64, 3, (2, 1))
√

Leaky ReLU (Up-block 1, Down-block 2)
Up-block 3 (96, 32, 3, (2, 1))

√
Leaky ReLU (Up-block 2, Down-block 1)

Up-block 4 * (36, 1, 3, (2, 1))
√

Leaky ReLU (Up-block 3, Model’s input)
Down-block 5 (5, 32, 3, (2, 2))

√
Leaky ReLU (Up-block 4, Model’s input)

Down-block 6 (32, 64, 3, (2, 2))
√

Leaky ReLU Down-block 5
Down-block 7 (64, 128, 3, (2, 2))

√
Leaky ReLU Down-block 6

Down-block 8 (128, 256, 3, (2, 2))
√

Leaky ReLU Down-block 7
Up-block 5 (384, 128, 3, (2, 2))

√
Leaky ReLU (Down-block 8, Down-block 7)

Up-block 6 (192, 64, 3, (2, 2))
√

Leaky ReLU (Up-block 5, Down-block 6)
Up-block 7 (96, 32, 3, (2, 2))

√
Leaky ReLU (Up-block 6, Down-block 5)

Up-block 8 * (37, 1, 3, (2, 2)) - - (Up-block 7, Up-block 4, Model’s input)
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Table A2. Refinement model specifications. Module names with an asterisk (*) are model outputs.
For down-blocks, up-blocks and residual blocks (Res. blocks), the numbers in the Details column
represent input channels, output channels, kernel size, and stride of the convolution window or
up-sampling factor, respectively.

Module Details Inst. Norm Activation Input

Down-block 1 (6, 64, 3, (2, 2))
√

ELU Model’s input
Down-block 2 (64, 128, 3, (2, 2))

√
ELU Down-block 1

Res. block 1 (128, 128, 3, (1, 1))
√

ELU Down-block 2
Res. block 2 (128, 128, 3, (1, 1))

√
ELU Res. block 1

Res. block 3 (128, 128, 3, (1, 1))
√

ELU Res. block 2
Res. block 4 (128, 128, 3, (1, 1))

√
ELU Res. block 3

Res. block 5 (128, 128, 3, (1, 1))
√

ELU Res. block 4
Up-block 1 (128, 64, 3, (2, 2))

√
ELU Res. block 5

Up-block 2 (64, 32, 3, (2, 2))
√

ELU Up-block 1
Up-block 3 * (32, 1, 3, (1, 1)) - - Up-block 2

Appendix B. Data and Training Procedures

The independently recorded dataset was created as follows. Double-talk utterances
were generated with an average overlap of 90% and contained two different speakers. The
generated dataset contains an equal amount of female and male speakers. To simulate a
low SER scenario, such as a conversation over a mobile phone where the loudspeaker plays
the far-end signal with high volume, Spider MT503TM or Quattro MT301TM speakerphones
were employed, in which the microphone and loudspeaker are enclosed within a distance
of 5 cm. In order to introduce echo path changes, in some of the recordings, the echo was
played by a Logitech type Z120TM loudspeaker. The loudspeaker was moved 1, 1.5, or 2 m
away from the microphone during recordings. In order to simulate near-end speech, mouth
simulator type 4227-ATM of Bruel&Kjaer was employed to generate the near-end signal.
Three different positions were used for the mouth simulator, either at 1, 1.5, or 2 m from
the microphone. Additional variations in recording conditions include four different room
sizes (between 3 × 3 × 2.5 m3 and 5 × 5 × 4 m3) and different reverberation times (RT60),
which vary between 0.3 and 0.6 s. Further details concerning the recordings can be found
in [18].

As mentioned in Section 2, the linear AEC operates in the subband domain. Therefore
before being fed to the AEC, the input signals are transformed using uniform 32-band
single-sideband filter banks [34]. The linear AEC comprises filters of 150 taps in each
subband, equivalent to time-domain filters of length 150 ms with 2400 taps.

All inputs to the RES system are transformed to the time-frequency domain using a 320-
point STFT with a window length of 20 ms and hop length of 10 ms. For utterances of 2 s,
this results in an input tensor of size (B, 4, 161, 201) where B is the batch size, 4 corresponds
to the four input signals, and 161 and 201 are the frequency and time bins, respectively.
Both stages’ models are optimized with the Adam optimizer [45]. The initial learning rate
of the masking model is 6 × 10−4, and the initial learning rate of the refinement model is
10−4. For both models, learning-rate scheduling is applied such that it is multiplied by a
factor of 0.5 each time there was no validation loss improvement for 4 consecutive epochs.
Early stopping is applied if there was no validation loss improvement for 8 consecutive
epochs. We set λDTD = 0.5 to balance the size of the two loss terms of the masking and
DTD model. λMSE is set to 1 since the regularizing loss term lMSE is a magnitude-of-order
smaller than lPESQ. We set ε1 = ε2 = ε = 10−8. For both models, the mini-batch size is 32,
and the maximum number of epochs is 100. All models are implemented with Pytorch,
and a single Nvidia GeForce GTX 1080 is used for training.
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