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Abstract: Guided ultrasonic waves are suitable for use in the context of structural health monitoring
of thin-walled, plate-like structures. Hence, observing the wave propagation in the plates can
provide an indication of whether damage has occurred in the structure. In this work, the wave
propagation in fiber metal laminate consisting of thin steel foils and layers of carbon fiber-reinforced
polymer is studied, focusing on the main propagation characteristics like dispersion diagrams and
displacement fields. For this purpose, the dispersion diagrams derived from the analytical framework
and numerical simulations are first determined and compared to each other. Next, the displacement
fields are computed using the global matrix method for two excitation frequencies. The results
derived from the analytical framework is used to validate the numerically determined displacement
fields based on a 2D and a 3D modeling approach. For both investigations the results of the analytical
treatment and the numerical simulation show good agreement. Furthermore, the displacement field
reveals the typical and well-known characteristics of the propagation of guided waves in thin-walled
structures. Since the use of full 3D models involves a very high computational cost, this work also
successfully investigates the possibility for model order reduction to decrease the computational time
and costs of the simulation without the loss of accuracy.

Keywords: guided ultrasonic waves; fiber metal laminate; dispersion diagram; displacement field

1. Introduction

It is only natural that the use of structures made of different materials is automatically
associated with the fact that the defects in the material occur at different life cycles of these
structures. Furthermore, not every defect is easily detectable by means of visual inspection.
This is especially the case when dealing with composite materials and layered structures,
which are increasingly being used in the aeronautical industry. One recent approach in the
development of composite materials are fiber metal laminates (FML). They are of great interest
because they combine the advantages of high ductility, often found in metals, with the high
specific stiffness of fiber-reinforced polymers (FRP) [1,2]. However, this comes with the high
risk of low-velocity impact induced internal damage like delaminations [3,4]. Therefore, it is
of great importance to detect such hidden defects to ensure a safe operation of the component.

One technique here is the use of guided ultrasonic wave (GUW) based structural
health monitoring (SHM) [5,6], which has been profoundly analyzed over the last decades
for isotropic materials as well as thin-walled structures made from FRP. In both cases the
stiffness and density are constant over the thickness. The complex multi-modal nature
of Lamb waves, first described by Horace Lamb [7], derived by the solution of the an-
alytical framework is discussed in Refs. [8–11] for isotropic materials. The adaption to
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single transversely-isotropic layers, orthotropic layers, and layered structures is provided
in Refs. [12–15]. Since GUW propagation is not only of multi-modal nature but also strongly
dispersive, the phase and group velocities are a function of the frequency [6]. A common
way to depict the propagation characteristics are dispersion diagrams.

Besides their dispersive nature, the displacement fields are of great interest, be-
cause they are crucial for the interaction of the propagating wave with damage hidden
in the structure. The displacement fields of different propagating modes are discussed
in Refs. [5,11] for isotropic materials and [16,17] for wave guides made of FRP. It is shown
that the constant material properties over the thickness lead to a displacement field cover-
ing the whole thickness of the component without a phase shift between the upper and
lower surface. In contrast to these findings, the wave propagation in sandwich structures
behaves significantly different [18]. It is shown that the impedance differences between the
layers in sandwich structures lead to frequency-dependent wave propagation phenomena.
Until a certain wavelength to thickness ratio is reached, the so called global Lamb waves
propagate acting like the well-known Lamb wave propagation by covering the whole
thickness without a phase shift [19,20]. This changes when the frequency is increased
and hence, the wave length to thickness ratio passes a threshold value. In this case one
speaks of true modes [21,22] propagating in the skin layers only and leaky Lamb waves [21].
In this case, large attenuation occurs due to waves propagating in the thickness direction,
causing an energy dissipation into the core. It is shown in Ref. [23], that the leakage effect is
strongly affected by geometry and acoustic impedance as well as wave mode and frequency.
For more details about the leakage effects, the reader is kindly referred to [20,22–24].

Due to the high impedance changes between the metal and FRP perpendicular to
the fiber orientation, this might also be an issue for the wave propagation in FML. First
investigations reveal that in structures formed of aluminum and glass fiber-reinforced
polymer (GFRP) layers, the wave propagation meets the framework of GUW in thin-walled
structures [25–28]. However, no further material combination is analyzed. In this work,
the approach is extended to FML consisting of carbon fiber-reinforced polymers (CFRP)
paired with thin steel foils. In contrast to aluminum-GFRP, which has a stiffness ratio
of approximately 15, steel CFRP exhibits a stiffness ratio of up to 20 with respect to the
Young’s modulus. Based on the shear modulus, the ratios are 10 and 15, respectively.
Therefore, the first objective of this work presented here is the analysis of the wave propa-
gation characteristics in FML consisting of steel and CFRP layers by solving the analytical
framework with respect to the well-known boundary conditions for the GUW propagation
in thin-walled structures and numerical simulations. Subsequently, dispersion diagrams
and the displacement field are obtained based on the analytical framework and numerical
simulations before comparing the results.

The numerical models are used to calculate displacement fields in the wave propaga-
tion direction of the GUW’s and in the thickness direction. Interlayer boundary conditions
were considered by the use of the global matrix method [17,29]. The method used here
for numerical determination of dispersion diagrams has been successfully applied in the
evaluation of experimental data [30,31]. It is based on the evaluation of displacement
fields along the wave propagation direction using a discrete 2D Fourier transform [32] and
specially tuned excitation signals. Similar evaluations can also be found in Refs. [33–35].

To profoundly understand the propagation of GUW in the FML as well as to quantify
the uncertainties of the material properties, it is required to solve the forward model several
times with input parameter variations. As the multiple queries of the underlying high-fidelity
system is associated with high computational cost, it is of great interest to investigate whether
an order reduction of the numerical models can significantly reduce the computational effort.
Model order reduction (MOR) seeks to swiftly capture the essential features of a higher order
complex dynamical system by approximating it to a lower dimension without losing the
accuracy of the system response. Depending on the nature of the system, reduced order
modeling can be accomplished by any of the existing techniques that are classified into
Krylov and singular value decomposition (SVD) methods [36]. The former methods are
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based on iterative approaches while the latter depends on the idea of expanding the high-
dimensional solution into a sequence of orthonormal basis functions, describing the most
important features of spatial and temporal variation of the state of the system. One of the
most renowned techniques in SVD methods is the proper orthogonal decomposition (POD)
method [37]. The POD method has been successfully applied in several fields like geophysical
fluid dynamics [38–40], meteorology, signal analysis, and pattern recognition [41,42]. Based
on this, the second objective of the work is the application of POD based MOR on the wave
propagation in undamaged FML to analyze the possibility of runtime reduction.

Following these two objectives presented above, Section 2 deals with the analytical
framework of GUW in thin-walled structures. In Section 3, we define the material and models
that are used in Sections 4 and 5 to analyze the main wave propagation characteristics of GUW
in FML. Subsequently, Section 6 covers the application of MOR on the wave propagation in
undamaged FML. Finally, Section 7 gives a summary and conclusion of the presented work.

2. Analytical Dispersion Relation in Fiber Metal Laminates

This section covers the analytical framework of GUW in layered structures. Hence,
it first gives a brief description of the dispersion relation of transversely-isotropic layers
and then a description of the layered structures. This is followed by the computation of
displacement fields.

2.1. Dispersion Relation of a Single Layer

This work focuses on GUW in FML consisting of thin steel foils and CFRP layers.
Since the analysis is limited to the wave propagation in fiber direction and perpendicular
to it, it is sufficient to assume transversely-isotropic material symmetry. For this case, a
detailed implementation can be found in Refs. [17,29,43]. The analytical consideration of
the dynamic behavior of a solid is provided by the balance of momentum

div σ + ρb = ρü. (1)

here, σ is the Cauchy stress tensor, ρ is the density, b are the volume forces, u represents
the displacement field, and the dots indicate the second derivative with respect to the time.
Furthermore, to derive the equation of motion, linear strains are considered

E =
1
2
(grad u + gradT u), (2)

and the material behavior is described by Hooke’s law

σ = C : E. (3)

In Equations (2) and (3), E denotes the linear Green Lagrange strain tensor and C is
the elasticity tensor. Substituting the linear strain and Hooke’s law into Equation (1) and
neglecting the volume forces yields

div(C : grad u) = ρü. (4)

To solve Equation (4), a plane harmonic approach is used for the displacement field
given by

u = U0ei(kjxj−ωt), (5)

where k j is the wavenumber vector, the angular frequency is given by ω = kcp, cp is the
phase velocity, and t stands for the time. Without loss of generality the wave propagation
can be described in the x1–x3 plane, with x3 being perpendicular to the plate surface, see
Figure 1. In this case, the wavenumber vector is k j = kx(1, 0, α)T = knj. Introducing
the harmonic approach in Equation (5) with the angular frequency and the provided
wavenumber definition into the equation of motion in Equation (4) leads to
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Λil pl = (δilρc2
p − λil)pl = 0, (6)

with
λil = Cijklnknj, (7)

which is also known as the Christoffel equation [6]. Here, pl is the polarization vector,
holding the information about the particle motion direction, and δil is the Kronecker-delta.
In the case of isotropic and transversely-isotropic material behavior, the displacement fields
of Lamb and shear horizontal waves are decoupled, which is indicated by the separation
of the Christoffel equation into two independent systems of equations. Here, the analysis
based on the existence of Lamb waves in FML is of interest. Therefore, we focus on the
description in the x1–x3 plane. To obtain the non-trivial solution the determinant of the
matrix Λil must be equal to zero

det(δilρc2
p − λil) = 0. (8)

This condition leads to a biquadratic equation for Lamb waves providing solutions for
the parameter α

αL
1 = −αL

3 , αL
2 = −αL

4 . (9)

Each individual solution of α corresponds to a partial wave. In order to describe the
propagation of Lamb waves accurately, all these partial waves must be superimposed.
Thus, the displacement field of Lamb waves is described by the following equations

u1 = ei(kx1−ωt)
4

∑
j=1

U j
0eikαL

j x3 = ei(kx1−ωt)U1(x3), (10)

and

u3 = ei(kx1−ωt)
4

∑
j=1

SjU
j
0eikαL

j x3 = ei(kx1−ωt)U3(x3), (11)

where Sj =
ρc2

p−C11−C55(α
L
j )

2

(C55+C12)α
L
j

.

By combining Equations (10) and (11) with (4), we get the following expressions
describing the stress components result

σ33 = ikei(kx1−ωt)
4

∑
j=1

U j
0H1je

ikαL
j x3 , (12)

σ13 = ikei(kx1−ωt)
4

∑
j=1

SjU
j
0H3je

ikαL
j x3 . (13)

Here, H1j and H3j are defined as follows

H1j = C13 + C33Sjα
L
j , (14)

H3j = C55(α
L
j + Sj). (15)

Finally, the dispersion relation is determined by assuming stress-free boundary con-
ditions at the top and bottom surfaces of the plate. Summarizing the solution in matrix
form yields


u1
u3

σ
′
33

σ
′
13

 = ei(kx1−ωt)


1 1 1 1
S1 S2 −S1 −S2

H11 H12 H11 H12
H31 H32 −H31 −H32




U1
0 eikαL

1 x3

U2
0 eikαL

2 x3

U3
0 eikαL

3 x3

U4
0 eikαL

4 x3

, (16)
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with σ′33 = σ33
ik , σ′13 = σ13

ik . It is also often given in compact form

UUD = GUDHUDUUD
0 ei(kx1−ωt). (17)

Here the abbreviation UD stands for a unidirectional layer. The detailed consideration
of the solution of the dispersion relation is described and discussed in Refs. [17,29].

x1

x2

x3

steel 4 layers CFRP

1.98 mm

Figure 1. Material layout of the FML plate.

2.2. Wave Propagation in Layered Structures

In this work, the dispersion relation for a layered plate is established utilizing the
global matrix method [17,29]. In this method, a continuity condition for the stresses and
displacements at the layer boundaries is introduced to describe the wave propagation in a
layered structure. This condition is expressed by

U+
n = U−n−1, (18)

where “+” indicates an association with the top edge and “−” with the bottom edge of
the layer, respectively. For materials with a symmetric stacking sequence, it is possible
to formulate separate dispersion relations for the symmetric and antisymmetric wave
mode, respectively. Therefore, only one half of the plate is described, which enables one
to introduce new boundary conditions at the symmetry plane. For the symmetric wave
modes the boundary conditions at the symmetry plane are given by

u3 = 0 and σ23 = σ13 = 0. (19)

For the antisymmetric wave modes, the boundary conditions read

u1 = u2 = 0 and σ33 = 0. (20)

With these boundary conditions and the continuity condition, the following expression
for the symmetric wave modes is obtained∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[GN′H
+
N′ ]2,4 0

GN′H
−
N′ −GN′−1H+

N′−1 0
. . . . . .

Gn+1H−n+1 −Gn H+
n

. . . . . .
0 G2H−2 −G1H+

1
0 [G1H−1 ]3,4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (21)

In the formulation of the dispersion relation of the antisymmetric modes, the indices
in the symmetry plane are changed from 2 and 4 to 1 and 3 in Equation (21).
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2.3. Displacement Fields

For each solution of the dispersion relation characterized by a frequency–phase velocity
pair, the corresponding displacement field can be calculated by inserting the solution
into the provided framework to determine the still missing amplitude. For this, the
vector U0 in Equation (5) is split into the amplitude A and the polarization vector p.
In order to be able to determine the displacement field, first these two still unknown
quantities are calculated. This is done by introducing the phase velocities, which is a
solution of Equation (21), into Equation (6). The result is an eigenvalue problem. Hence,
the eigenmodes are arbitrarily scalable. Therefore, to be able to determine the polarization
vector, the component p1 of the polarization vector is set to 1.

After the polarization vector is known, the last unknown quantity, the amplitude A
of the displacement field is obtained by solving GHU0 = 0. Again, one component is
arbitrary. Following this procedure, the system of equations for the determination of the
amplitude is given by

[GN′H
+
N′ ]2,4 0

GN′H
−
N′ −GN′−1H+

N′−1 0
. . . . . .

Gn+1H−n+1 −Gn H+
n

. . . . . .
0 G2H−2 −G1H+

1
0 [G1H−1 ]3,4





A1

...

An


= 0. (22)

The displacement field is finally obtained by introducing the polarization vector and
the amplitude components into Equation (10). By doing so, the displacement field, which
is of complex nature, can be derived at a certain position and a defined point in time.
The real-valued solution is given by

u(x1, x3, t) = Re(U(x3)) cos(wt− kx1) + Im(U(x3)) sin(wt− kx1). (23)

3. Material and Model Definition

In this section, the numerical models are defined, which are used in this work for
the analysis of the main wave propagation characteristics in FML. The section covers the
specimen’s layout and the numerical models used to compute dispersion diagrams and
displacement fields, respectively. Furthermore, a model order reduction method is applied
to the numerical model.

3.1. Material Layout

The FML plate analyzed here combines CFRP layers with thin steel foils. The stacking
sequence is [steel/0◦4/steel/0◦2 ]s, where the steel layers have a thickness of 0.12 mm each
and the CFRP layers of 0.125 mm each. Thus, the total thickness of the plate is 1.98 mm.
The material layout is depicted in Figure 1, including a coordinate system definition that
is valid for all simulations. The x1-axis coincides with the fiber orientation, the x2-axis is
perpendicular to it, and the x3-axis indicates the thickness direction of the specimen.

The corresponding material properties of the two constituents that are used throughout
this work are provided in Table 1.

Table 1. Material properties of the CFRP layer and steel foil.

E11 E22 G12 ν12 ν23 ρ
[GPa] [GPa] [GPa] [-] [-] [kg/m3]

Steel 180 180 69.2 0.30 0.30 7900
CFRP 127 9.24 4.83 0.30 0.37 1580
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3.2. Model Definition

The numerical simulations provided in this work cover the determination of disper-
sion diagrams and displacement fields. Furthermore, a model order reduction algorithm
is applied. All investigations are based on a two-dimensional model in two different di-
rections, one coincides with the fiber direction, the second is perpendicular to it. Hence,
the numerical model in fiber direction represents the x1–x3-cross section defined in Figure 1.
Vice versa, the x2–x3 plane is used to analyze the wave propagation perpendicular to the
fiber orientation.

In addition to these simulations, the displacement field is also computed based on a
full three-dimensional representation of the FML laminate to investigate any influences
induced by the reduction from 3D to a 2D modeling approach.

4. Analysis of the Dispersion Diagram

This section covers the analysis of the dispersion diagram derived from the theoretical
framework provided in Section 2 and computed by numerical simulations. The results are
compared and discussed.

4.1. Analytical Treatment

There is no closed solution of the analytical framework provided in Section 2. Hence,
to obtain the frequency-phase velocity pairs that fulfill the dispersion relation in Equation (21),
numerical algorithms are used. In this case, the dispersion relation is solved by an iterative
approach incorporating the bisection procedure up to a frequency of 250 kHz. Furthermore,
only the fundamental S0 and A0 wave mode are of interest.

4.2. Numerical Simulations

In order to derive the dispersion diagrams from the numerical data, a method of
the authors is used, which has already been successfully applied in the evaluation of
experimental data [30,31]. The method is based on the evaluation of the displacement
fields along the propagation direction of the waves, seen in Equation (10), using a discrete
2D-DFT [32]. Thereby, the property that the propagating part of the displacement field
behaves sinusoidal in both time and spatial domain [10] is exploited. Similar evaluation
methods can also be found in Refs. [33–35]. By transferring the data into the frequency-
wavenumber domain, a separation of the multifrequency signal components succeeds.
Frequency-wavenumber pairs can be detected for each frequency, which describe the
dispersion relations of the individual modes over the course of the frequency range.

The numerical simulations are performed using the finite element method within the
commercial software COMSOL Multiphysics®. The two-dimensional numerical model
and the corresponding boundary conditions used are depicted in Figure 2. The total
length of the model is 1 m and the discretization is realized by second-order Lagrangian
elements under plane strain assumption. Subsequently, a structured mesh of rectangular
elements with quadratic shape functions is generated. For the excitation of the wave field,
a multifrequency signal is used, see Ref. [31]. It is tuned to be able to generate dispersion
diagrams over a predefined frequency range and hence, to avoid multiple simulations. The
same signal is used for both directions, covering a frequency range from 25 kHz to 245 kHz
in the steps of 10 kHz. The signal is applied by a force boundary condition at a distance of
4 mm from the left edge at the upper surface of the plate. Subsequently, both fundamental
A0- and S0-modes are excited. A mode-selective excitation is not necessary, because the
evaluation is done at the center line of the plate. Due to the theoretical displacement field
characteristics, the S0-mode shows only an in-plane displacement component at the center
line, whereas the A0-mode is limited to an out-of-plane motion. Therefore, with the help of
the displacement component u1 the S0-mode and with the help of the component u3, the
A0-mode can be evaluated separately. Details about the model size and the discretization
are provided in Table 2.
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x3

1.98 mm

1 m

x1, x2

u3(t)

4 mm

Figure 2. Numerical model for the computation of the dispersion diagrams including the boundary
conditions.

To evaluate the required frequency range with the help of the 2D-DFT, the numerical
model must fulfill requirements to the spatial and temporal resolution as well as simulation
time and propagation distance. The choice of the model parameters ensures that the wave
bodies can be clearly detected and the individual contained frequencies can be separated
from each other during the evaluation. The specific model parameters are shown in Table 2.

Table 2. Parameters of the numerical 2D model for the computation of dispersion diagrams.

Parameter Value Unit

Thickness 1.98 mm
Length 1000 mm
Element size CFRP 0.2× 0.25 mm2

Element size steel 0.2× 0.12 mm2

Nodes per element 9 -
Propagation length 1000 mm
Simulation time 10 ms
Sampling frequency 6 MHz
Min. excitation frequency 25 kHz
Max. excitation frequency 245 kHz

4.3. Results and Comparison

In this subsection, the dispersion curves of GUW in FML are compared, which are
obtained firstly from analyses based on the analytical framework and secondly, from finite
element simulations. The corresponding results are collected in two diagrams, one holding
the information of the phase velocity-frequency pairs for the wave propagation in fiber
direction, see Figure 3, left, and the other one for the wave propagation perpendicular to
the fiber direction (right).

In addition, Figure 4 gives the deviations between the results of the analytical and
numerical approach. The comparison shows that the maximum deviation of the phase
velocity is about 0.6%. Thus, the results prove that the numerical and analytical models
provide almost identical results for the dispersion behavior over a larger frequency range.
This agreement is valid for the fiber direction as well as perpendicular to it.

The dispersion diagrams reveal that the propagation of GUW in FML is still of multi-
modal and dispersive nature. At least two modes are generated even at low frequencies.
While the fundamental symmetric mode (S0) shows almost a constant phase velocity over
the frequency range of up to 250 kHz, the phase velocity of the fundamental antisymmetric
mode (A0) increases with increasing frequency. This meets the main characteristics of the
wave propagation behavior in unidirectional composite [6]. In addition to this, the phase
velocity of the S0-mode in the fiber direction is much higher than perpendicular to it. This
is also observed for the wave propagation in FRP and can be assigned to the lower Young’s
modulus of the CFPR layer perpendicular to the fiber orientation.
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Figure 3. Comparison of numerically and analytically determined dispersion diagrams in fiber
direction (left) and perpendicular (right) to the fiber orientation.
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Figure 4. Deviation of the numerically and analytically determined dispersion diagrams in fiber
direction (left) and perpendicular (right) to the fiber orientation.

5. Displacement Field Analysis

The analysis of the displacement field again comprises the solution of the analytical
framework and two-dimensional numerical simulations. Furthermore, full 3D simulations
are conducted to analyze the effect of the domain reduction on the numerical solution.
The analysis focuses on a frequency of 120 kHz. In addition, although the dispersion plots
in Figure 3 do not suggest significantly different findings, computations were performed at
80 kHz. The results are shown in the Appendix A.



Acoustics 2022, 4 526

5.1. Analytical Treatment

Based on the solution of the dispersion relation at a frequency of 80 kHz and 120 kHz the
analytical results are determined by evaluating the displacement field given in Equation (15).
Since the calculation of the analytical displacement fields involves solving an eigenvalue
problem, the normalized displacements are computed.

5.2. Numerical Simulations

For the numerical simulations, 2D and a 3D modeling approaches are utilized. The 2D
model with the corresponding boundary conditions is shown in Figure 5. In comparison to
the dispersion diagram investigation, this model has a length of 0.3 m and the displacement
field over the thickness is extracted only at one position. Furthermore, at this point, a
mode selective excitation is realized to be able to analyze the displacement fields of the
fundamental A0 and S0-mode separately. Therefore, the excitation is implemented by a five
cycle Hanning windowed sine burst at the upper and lower left corner of the wave guide.
For the generation of the A0-mode, the displacements at these two points is oriented in
the same direction. In contrast to this, they point in opposite directions for the excitation
of the S0-mode. The signal is captured at a distance of 0.1 m from the excitation point.
Again the model is discretized with second-order Lagrange elements by assuming a plane
strain state.

For the full 3D numerical simulations, only a quarter of the steel CFRP plate is modeled
to reduce the computational cost. A schematic of the model is provided in Figure 6.
The model reduction requires the introduction of the symmetry boundary conditions
at the sides marked in gray. Beside the adaption to the third dimension, the modeling
approach is not changed. All parameters of the models and simulations for the two cases
are summarized in Table 3.

x3

1.98 mm

0.3 m

x1, x2

u3(t)

0.1 m

u3(t)

Figure 5. Numerical 2D model for the computation of the displacement fields including the
boundary conditions.

x3
1.98 mm

0.15 m

0.3 m

x2

x1

O1

u3(t)

u3(t)

0.1 m

O2

Figure 6. Numerical 3D model for the computation of displacement fields including the bound-
ary conditions.
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Table 3. Parameters of the numerical models and simulations for the computation of displacement fields.

Parameter Value Unit

Thickness 1.98 mm
Length 0.3 m

2D model Element size CFRP 0.75× 0.25 mm2

Element size steel 0.75× 0.12 mm2

Nodes per element 9 -

Thickness 1.98 mm
Length 0.3 m

3D model Width 0.15 m
Element size CFRP 0.75× 0.75× 0.25 mm3

Element size steel 0.75× 0.75× 0.12 mm3

Nodes per element 27 -

Excitation frequency 80 kHz
Analysis at 80 kHz Sampling frequency 1.6 MHz

Simulation time 0.3 ms

Excitation frequency 120 kHz
Analysis at 120 kHz Sampling frequency 2.4 MHz

Simulation time 0.21 ms

5.3. Results and Comparison

Since the calculation of the analytical displacement fields involves solving an eigen-
value problem, the normalized displacements are evaluated and compared. First, the results
for the wave propagation in fiber orientation for a frequency of 120 kHz are presented in
Figure 7. Here, excellent agreement can be seen between the numerically and analytically
determined results. In the first row the displacement fields for the symmetric wave mode
are shown, where also the typical features of the displacement fields of the axial symmetry
of the in-plane component (left) and the point symmetry for out-of-plane component (right)
can be observed. The x-axis of the diagrams was strongly refined for the in-plane compo-
nent in order to be able to represent the deviations. The second row shows the in-plane
and out-of-plane components of the displacement field for the antisymmetric wave mode.
Again, the already-known behavior of the displacement field can be seen. In contrast to the
symmetric wave mode, the in-plane component is point symmetric and the out-of-plane
component is axisymmetric.

Subsequently, Figure 8 shows the components of the displacement fields when con-
sidering the wave propagation perpendicular to the fiber orientation at 120 kHz. Here,
the typical features such as point symmetry and axis symmetry can again be observed.
Among other things, the analytical and numerical results also agree excellently.

In order to quantify the small observable deviations between the solution of the
analytical framework and the numerical simulations, Tables 4 and 5 hold the mean error
for each component and wave mode obtained by the 2D and 3D simulations at 120 kHz.
Following these results, a 2D modeling approach for the wave propagation in FML is still
sufficient to capture the main wave propagation characteristics adequately. The results are
also confirmed for the wave propagation at 80 kHz. Here, Figure 9 holds the results for
the displacement field of the S0-mode for the wave propagation perpendicular to the fiber
orientation. All remaining results are summarized in Appendix A.
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Table 4. Calculated mean error for the 2D model at 120 kHz.

A0 A0 S0 S0
in-Plane Out-of-Plane in-Plane Out-of-Plane

In fiber direction 0.072% 0.019% 0.042% 0.22%
Perpendicular 0.57% 0.016% 0.06% 0.28%

Table 5. Calculated mean error for the 3D model at 120 kHz.

A0 A0 S0 S0
in-Plane Out-of-Plane in-Plane Out-of-Plane

In fiber direction 0.22% 0.055% 0.054% 1.53%
Perpendicular 1.02% 0.01% 0.074% 0.31%
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Figure 7. In-plane (left) and out-of-plane (right) components of normalized displacement field for S0

(top) and A0 (bottom) wave modes in the fiber orientation at 120 kHz from analytical treatment and
numerical 2D- and 3D-simulations.
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Figure 8. In-plane (left) and out-of-plane (right) components of normalized displacement field for S0

(top) and A0 (bottom) wave modes perpendicular to the fiber orientation at 120 kHz from analytical
treatment and numerical 2D- and 3D-simulations.
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Figure 9. In-plane (left) and out-of-plane (right) components of normalized displacement field for S0

wave modes perpendicular to the fiber orientation at 80 kHz from analytical treatment and numerical
2D- and 3D-simulations.
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6. Parametric Model Order Reduction of Numerical Model
6.1. Fundamentals

We performed several numerical simulations in Sections 4.2 and 5.2, by utilizing a
finite element discretized undamped linear dynamic structural model as expressed in the
following equation

Mü + Ku = f. (24)

Equation (24) follows from the balance of momentum in Equation (1) by applying vari-
ational calculus and subsequent discretization of the equilibrium in its weak form, where
M(θ) ∈ RN×N denotes the global mass matrix, K(θ) ∈ RN×N represents the global stiffness
matrix, f ∈ RN×m the load matrix, and u(θ) ∈ RN×m the displacement matrix. The vector
θ ∈ D ⊂ RNp contains Np parameters that define the system from parametric domain D
and t ∈ [0, tmax] is the time variable. The total number of degrees of freedom in the system
is given by N and the number of discretized time steps is indicated by m. The adapted
model order reduction method is as described in Ref. [44] and summarized below.

The projection of basis functions, using a projection matrix Φ(θ) ∈ RN×n with n << N,
from high-dimensional space RN allows the order reduction of the high-fidelity model to
its lower dimensional space Rn

u ≈ Φur, ü ≈ Φür. (25)

Substituting Equation (25) in Equation (24) and projecting them on the reduced order
space results in the following equations

ΦTM Φ ür + ΦTK Φ ur = ΦTf,

Mrür + Krur = fr.
(26)

In Equation (26), Mr, Kr ∈ Rn×n and fr ∈ Rn×m denote the reduced system matrices.
The projection matrix Φ can be obtained by the POD method. This involves the collection
of observations from the HiFi model into a snapshot matrix Ψ(θ)

Ψ = [u(θ, t1), u(θ, t2), . . . , u(θ, tm)],

= [u1, u2, . . . , um],
(27)

and decomposing it by thin singular value decomposition method as follows:

Ψ = WΣVT. (28)

in Equation (28), the left and right-singular matrices are given by W(θ) = [w1, w2, . . . , wm] ∈ RN×m

and V, respectively. The right-singular matrix V serves no interest in this context, while the
left-singular matrix W contains orthogonal basis functions also known as proper orthogonal
models (POMs) of the system. The diagonal matrix Σ = diag(σ1, σ2, . . . , σm) ∈ Rm×m

contains singular values
{

σk
}m

k=1 with σ1 ≥ σ1 ≥ . . . σm > 0. The relative energy measure
Ξ, which is used to determine the number of most influential modes and its approximation
error ε are obtained as follows

Ξ =

n
∑

k=1
σk

m
∑

k=1
σk

, ε =

m
∑

k=n+1
σk

m
∑

k=1
σk

. (29)

As the projection matrix Φ = [w1, w2, . . . , wn] ∈ RN×n is computed, the reduced order
Equation (26) can be deduced and solved for ur and ür. Eventually, the solution for the
HiFi system can be evaluated using Equation (25). The choice of the observations extracted
in the snapshot matrix largely influence the accuracy of the reduced-order model. As the
reduced-order models produced through this technique are based on a certain parameter,
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their application at off-design parameters often fails to accurately predict the solution.
In other words, whenever the system parameters changes, the reduced order basis should
be rebuilt again. This is practically intractable in inverse problem analysis wherein the
system should be solved for several thousand times. Therefore, a more sophisticated robust
reduced-order modeling technique that preserves the parametric dependence of the system
has to be developed. PMOR methods precisely satisfy this requirement. PMOR involves the
extraction of global proper orthogonal modes (POMs) that accurately define the behavior
of the underlying system for any given parameter set within the parametric domain.

The parameterized elliptic and parabolic PDE models are well approximated by POD-
based global reduced-order models. However, the PMOR of a wide range of hyperbolic
problems with non-linearity and discontinuity still remain a challenge. Therefore, the re-
searchers within the MOR community are intensively seeking methodologies to reduce
the Kolmogorov n-width of the solution manifold [45,46]. Boncoraglio et al. [47] effi-
ciently solved multidisciplinary design optimization problem, which blends both linear
and nonlinear constraints in aerodynamics using projection-based MOR along with an
active manifold. The authors utilized a deep convolutional autoencoder to discover the
relevant active manifold for dimensionality reduction of a high-dimensional design param-
eter space. An efficient adaptive algorithm was implemented by Bui-Thanh et al. [48] to
achieve MOR for design optimization of a heat conduction fin to determine appropriate
sample points over a large input parametric space. Based on Refs. [49,50] McBane et al.
proposed a component-wise reduced-order model to optimize the topology of a lattice-type
structure [51]. Moreover, they simplified the model to increase the speedup of the optimiza-
tion process. A space-time MOR method built on least-squares Petrov–Galerkin projection
was presented by Kim et al. to solve linear dynamical systems [52]. The approach was well
demonstrated on 2D diffusion and 2D convection diffusion problems. Further contribu-
tions on PMOR span across the domains of contact in multibody nonlinear dynamics [53],
nonlinear fluid–structure interaction problems [54], uncertainty quantification [55,56], and
contact mechanics [57].

6.2. Application

In this research work, a POD-based adaptive parametric model order reduction tech-
nique along with a surrogate model for estimating the error indicator, based on the work of
Paul-Dubois-Taine et al. [58], was employed to produce the global POMs. The adaptive
sampling of the parameters was achieved in a greedy sense, wherein the locally best solu-
tion in a particular iteration was sampled, assuming it to be the global optimal solution.
The training phase resulted in global reduced-order basis, which could approximate the
HiFi solution with a very high accuracy. A detailed description of the procedure along with
its algorithms can be found in Ref. [44], wherein the authors have applied the proposed
PMOR method to approximate the GUW propagation in FML containing a damage. In this
paper, the analysis is restricted to the GUW propagation in an intact plate. Since the PMOR
method employed in this research is a model-intrusive approach, the Newmark’s time
integration technique is utilized to solve Equation (24). This required the excitation of
the specimen to be applied in a force-controlled manner and the other boundary condi-
tions are consistent with those from the study of the displacement fields on the 2D model.
The discretization is realized by quadratic Lagrangian elements with a size of 0.5 mm in
the length direction and one element over the thickness for each layer. The evaluation was
performed at a distance of 57.5 mm from the excitation points in the center of the upper
CFRP layer package.

The comparison plot of the out-of-plane displacement of FML over time obtained
using the HiFi model and the reduced-order model, produced using the proposed method
of adaptive PMOR approach with Galerkin projection, is shown in Figure 10. The displace-
ment field was measured at 57.5 mm away from the left end of the laminate and 1.49 mm
through the thickness from the bottom of the laminate.
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Figure 10. Comparison of high-fidelity and reduced-order solution of GUW propagation in FML.

It can be seen that a precise approximation of the solution was achieved by the
reduced-order model. The global reduced-order basis has gathered 250 modes to attain
this accuracy of approximation of GUW propagation in an intact FML. This numerical
experiment was conducted on a 4-core Intel(R) Core(TM) i7-10510U CPU @ 1.80 GHz
processor with 16 GB RAM. Table 6 summarizes the computational costs of HiFi solution
and its reduced-order solution. The application of a POD-based adaptive PMOR approach,
which employed the surrogate model for estimating error indicators, resulted in a speedup
factor of 45.72, corresponding to the setting mentioned in this research paper. This essential
reduction of computation time affords an opportunity to conduct several parametric studies
and analyze the GUW propagation in FML.

Table 6. Computation time for high-dimensional and reduced-order models.

Model Training Time Computational Time

High-dimensional - 66.29 s
Reduced-order 17.6 h 1.45 s

7. Conclusions

The investigations presented here are based on an FML plate with the stacking se-
quence [steel/04/steel/02]s. As the first step, the dispersive nature of GUW in a steel-CFRP
laminate was analyzed by computing the dispersion diagrams for the wave propagation in
the fiber direction and perpendicular to it. This was done by utilizing the analytical frame-
work and numerical 2D simulations. The analytically and numerically obtained dispersion
diagrams for a frequency range up to 250 kHz coincide very well. Furthermore, it was
found that the dispersive nature is similar to the propagation characteristics in FRP. In the
following step, the phase velocity derived from the dispersion diagram for two excitation
frequencies (80 kHz and 120 kHz) was used to compute the displacement field following
the analytical framework. Furthermore, numerical 2D and 3D simulations were conducted
to obtain the displacement field components for the wave propagation in the fiber direction
and perpendicular to it. The resulting displacement fields show identical properties, as
described in the literature for the GUW propagation in isotropic, transversely-isotropic, and
orthotropic materials [16,17,29]. For the wave propagation in the fiber orientation as well as
perpendicular to it, the in-plane component of the S0-wave mode showed an axisymmetric
shape and the out-of-plane component showed a point-symmetric shape. For the A0-wave
mode, the opposite features were observed—point symmetry for the in-plane component
and axisymmetry for the out-of-plane component. The agreement between the qualita-
tive analytical and numerical results both in the direction and perpendicular to the fiber
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orientation is excellent, and the deviations are difficult to detect, which was also shown
by the overview of the percentage deviations of the displacement fields in Tables 4 and 5.
The complex shape of the displacement fields indicate that finite shell elements are not
suitable for modeling and 3D continuum elements should be used to accurately represent
the displacement fields when a full 3D simulation is required.

Since the investigations presented here involve high computational effort, the possi-
bility of model reduction is also investigated using a 2D model as an example. For this
purpose, a PMOR method is applied to approximate the GUW propagation in an FML plate.
In Figure 10 it can be seen that in the context of this model reduction, no disadvantages in the
accuracy of the model occurred, and also a speed-up factor of the model of 45.72 was achieved.

In conclusion, the numerical investigation of the main wave propagation character-
istics in a steel-CFRP laminate reveal the well-known wave propagation properties of
GUW in thin-walled structures. As already shown for isotropic, transversely-isotropic,
and orthotropic materials, the modeling approach can successfully be reduced to 2D for
the wave propagation along a symmetry axis. Furthermore, the computation time can be
significantly reduced by a PMOR method with a minimal loss of information regarding the
wave propagation. In further investigations, the displacement fields on other FML plate
configurations with different metal-UD layer ratios will be investigated.
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Appendix A

Below, we summarize the results of the displacement field analysis at 80 kHz. There-
fore, Figures A1 and A2 hold the results of the displacement field components of the
A0-mode perpendicular to the fiber direction and the components of the displacement
fields in fiber direction for both the A0- and S0-modes. The corresponding results of
the mean error calculation are collected in Table A1 for the 2D simulation results and in
Table A2 for the 3D simulation results.
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Figure A1. In-plane (left) and out-of-plane (right) components of a normalized displacement field for
A0 wave mode perpendicular to the fiber orientation at 80 kHz derived from the analytical framework
and numerical 2D- and 3D-simulations.
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Figure A2. In-plane (left) and out-of-plane (right) components of a normalized displacement field for
S0 (top) and A0 (bottom) wave modes in the fiber orientation at 80 kHz derived from the analytical
framework and numerical 2D- and 3D-simulations.
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Table A1. Calculated mean error for the 2D model at 80 kHz.

A0 A0 S0 S0
in-Plane Out-of-Plane in-Plane Out-of-Plane

In fiber direction 2.01% 0.01% 0.007% 0.035%
Perpendicular 1.02% 0.006% 0.023% 0.092%

Table A2. Calculated mean error for 3D model at 80 kHz.

A0 A0 S0 S0
in-Plane Out-of-Plane in-Plane Out-of-Plane

In fiber direction 0.33% 0.004% 0.008% 0.055%
Perpendicular 1.06% 0.006% 0.036% 0.19%
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