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Abstract: The method used to factorize the longitudinal wave equation has been known for many
decades. Using this knowledge, the classical 2nd-order partial differential Equation (PDE) established
by Cauchy has been split into two 1st-order PDEs, in alignment with D’Alemberts’s theory, to create
forward- and backward-traveling wave results. Therefore, the Cauchy equation has to be regarded as
a two-way wave equation, whose inherent directional ambiguity leads to irregular phantom effects
in the numerical finite element (FE) and finite difference (FD) calculations. For seismic applications,
a huge number of methods have been developed to reduce these disturbances, but none of these
attempts have prevailed to date. However, a priori factorization of the longitudinal wave equation
for inhomogeneous media eliminates the above-mentioned ambiguity, and the resulting one-way
equations provide the definition of the wave propagation direction by the geometric position of the
transmitter and receiver.

Keywords: one-way wave equation; two-way wave equation; factorization; 1st-order partial differential
equation; impulse flow equilibrium; inhomogeneous medium; bending wave; Moens–Korteweg
wave; electromagnetic wave; Cauchy’s first equation of motion

1. Introduction

Wave propagation in all three states of aggregation—solid, fluid and gas—is calculated
according to Cauchy’s equation of motion. For this 2nd-order partial differential Equation
(PDE), two independent solutions exist and result in-according D’Alembert’s separation
approach-two wave equations representing two opposite traveling waves.

Unfortunately, D’Alembert’s approach cannot be used to pre-select the task-relevant
wave to identify the irrelevant wave. For analytical calculations, both solutions can be
distinguished by their sign. However, in numerical finite element (FE) and finite difference
(FD) calculations, the ambiguity causes irregular phantom effects known as “one-way/two-
way wave” problem. Further related information with comprehensive lists of references is
given in [1,2]. Several recently published patent applications [3–5] confirm that the problem
still persists.

Factorization is a well-known method to solve reducible PDEs [6–10]. Specifically
for homogeneous media, the second-order PDE wave equation can be factorized into two
first-order PDEs, resulting in opposite traveling waves according to D´Alembert’s solution.
Generally, for wave propagation in homogeneous media, analytical solutions exist and
calculation efforts for seconnd or first-order PDE do not differ significantly. However,
in inhomogeneous media, waves can only be numerically calculated [11]. Seismic FE and
FD calculations of geological structures require nodes in a Giga to Tera range and CPU
computing times of days to weeks [12].

Thus, the primary task is the factorization of the wave equation for longitudinal
waves in inhomogeneous media. Additionally, the factorization method for waves in
homogeneous media is expanded to other wave types.
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2. Method of PDE Factorization

The homogeneous, isotropic and loss-free solid with a constant wave velocity c [m/s]
serves as the starting point. Elastic deflection s = s(x, t) [m] (t = time [seconds]) is defined
by Equation (1) and has two solutions (2), with waves traveling in −x and +x directions
(angular frequency ω [rad/s], wave number k = ω/c [rad/m])[

∂2

∂t2 − c2 ∂2

∂x2

]
s = 0 (1) −→ s = s0 sin(ωt± kx) (2)

The ambiguity of the two solutions is problematic in the context of FE and FD calcula-
tions. Therefore, the well-known 2nd-order wave Equation (1) was repeatedly separated
according to the expression (a2 − b2) = (a− b)(a + b) into two PDEs of the 1st order [13]:[

∂2

∂t2 − c2 ∂2

∂x2

]
s =

[
∂

∂t
− c

∂

∂x

][
∂

∂t
+ c

∂

∂x

]
s = 0 (3)

In contrast with Equation (1), the resulting partial Equations (4) and (6) have the
solutions (5) and (7) with the defined wave propagation direction +c and −c, respectively.[

∂

∂t
− c

∂

∂x

]
s = 0 (4) −→ s = s0 sin(ωt− kx) (5)

[
∂

∂t
+ c

∂

∂x

]
s = 0 (6) −→ s = s0 sin(ωt + kx) (7)

The factorization of a 2nd-order PDE into two independent first-order PDEs corre-
sponds to the separation of a standing wave Equation (1) into two oppositely traveling
wave Equations (4) and (6) and a change from force equilibrium to impulse equilibrium.
Table 1 shows the solutions of Equation (1) and both first-order wave Equations (4) and (6).

Table 1. The 2nd-order (two-way) wave equation has two solutions. There are two standing
waves, sin(ωt) cos(kx) and cos(ωt) sin(kx). According to 2 sin(α) cos(β) = sin(α−β)+sin(α+β),
two propagating waves sin(ωt ± kx) in opposite directions are the result, i.e., the solutions are
ambiguous, and, after calculation, the appropriate solution has to be chosen. In contrast, the first-
order (one-way) wave equation has one propagating wave as the solution, with a pre-defined
direction depending on the choice of the wave velocity c={+c,−c}.

2nd Order Wave Equation 1st Order Wave Equation 1st Order Wave Equation[
∂2

∂t2 − c2 ∂2

∂x2

]
s = 0

[
∂
∂t − c ∂

∂x

]
s= 0

[
∂
∂t + c ∂

∂x

]
s= 0

Two Solutions: Unique Solution: Unique Solution:

Standing Waves Propagating Wave +x-dir. Propagating Wave −x-dir.
s = s1 sin(ωt) cos(kx) s = s5 sin(ωt− kx) s = s6 sin(ωt + kx)

s = s2 cos(ωt) sin(kx)

Propagating Wave +x-dir.
s = s3 sin(ωt− kx)

Propagating Wave −x-dir.
s = s4 sin(ωt + kx)
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3. Results
3.1. PDE Factorization - Waves in Inhomogeneous Media

An inhomogeneous, isotropic medium with coordinates x = {xi, yj, zk} has a local
density ρ = ρ(x) [kg/m3], a longitudinal elasticity modulus E = E(x) [Pa], and the wave
velocity c = c(x) =

√
E/ρ [m/s]. The elastic displacement s = s(x, t) [m] is governed by

the First Cauchy Equation of Motion:

ρ
∂2

∂t2 s−∇2Es = 0 (8)

To factorize this second-order PDE, s is replaced by a new field variable Es. With the
material law ρ = E/c2 and E ∂2s/∂t2 = ∂2Es/∂t2 (possible due to the time-invariant E),
it follows that

∂2

∂t2 (Es)− c2∇2(Es) = 0 (9)

Analogously to Equations (3), (4) and (6), this second-order wave equation for inho-
mogeneous media can be factorized into two first-order PDEs:

∂

∂t
(Es)− c · ∇(Es) = 0 (10)

∂

∂t
(Es) + c · ∇(Es) = 0 (11)

Longitudinal wave displacement s and wave velocity c have the same direction and
can be turned in the direction of the xi-axis (s = si, c = ci). Hence, the scalar form results:

∂

∂t
(Es)− c

∂

∂x
(Es) = 0 with c = {+c,−c} (12)

The Helmholtz approach ∂(Es)/∂t= iω(Es) and settlement (Es)′=∂(Es)/∂x lead to

iω(Es)− c(Es)′ = 0 (13) −→ (lnEs)′ = ω/c (14)

As can be controlled by insertion, the analytical solution (15) follows. Particle velocity
v [m/s] (16) and pressure p [Pa] (17) confirm impedance z = |p/v| = ρc.

Es = E0 s0 exp
[

iω(t−
∫ x

0

dx
c
)

]
(15)

v =
∂s
∂t

= (iω/E)E0 s0 exp
[

iω(t−
∫ x

0

dx
c
)

]
(16)

p =
∂

∂x
(Es) = −(iω/c)E0 s0 exp

[
iω(t−

∫ x

0

dx
c
)

]
(17)

3.2. PDE Factorization - Transversal Waves

In case of homogeneity, a transversal wave with vectorial deflection s and wave
velocity c is given by tensorial Equation (18). The insertion of ∆=∇·∇=∇2 and successive
factorization analogously to Equations (3), (4) and (6) yields one-way Equation (19)

s̈− c2∆s = 0 (18) −→ ṡ− c · ∇s = 0 (19)

A transversal wave consists of equal parts rotary and deviatoric portion, i.e.,

∇s = (∇s)Rot + (∇s)Dev = 2(∇s)Rot = U × rot s (20)

Inserting this expression into Equation (19) and with c ·U = c, the transversal one-way
wave Equation (21) follows as [14] (unit tensor U = ii+jj+kk)

ṡ− c× rot s = 0 (21)
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3.3. PDE Factorization - Further Mechanical and Electromagnetic Waves

According to PDE factorization (3) with the solutions for homogeneous media (4) and (6)
further physical second- and fourth-order PDEs with the same structure as Equation (1)
can also be factorized into first-order one-way wave equations in full analogy.

Table 2 lists classical equations for longitudinal, transversal, and string, Moens/
Korteweg, bending, and electromagnetic wave equations and their factorized pendants
with the respective solutions. Additionally, governing formulas for wave velocity c are
given. The exclusion of asymmetrical tensor parts for mechanical waves and symmetrical
tensor parts for electromagnetic waves are not carried over.

Table 2. Formal mathematical factorization of 2nd and 4th order partial differential wave equations into 1st order PDEs for
homogeneous media. Wave-mechanically this corresponds to the separation of a standing wave into two complementary, in
opposite directions travelling waves (here the wave propagating in +xi-direction is given). The electromagnetic longitudinal
wave is an expansion of the longitudinal telegraph wave. Note: Wave propagation direction of the scalar factorized wave
equations has to be defined by selection of the wave velocity c = {+c,−c}.

Wave Type Conventional Factorized Factorized Wave Wave Velocity
Wave Equation Wave Equation Wave Direction +xi
=2nd Order PDE =1st Order PDE Transversal dir. j,k

Longitudinal Wave s̈− c2∆s = 0 ṡ− c · ∇s = 0 s = is0 sin(ωt− kx) c =
√

E/ρ

Transversal Wave s̈− c2∆ s = 0 ṡ− c× rot s = 0 s = js0 sin(ωt− kx) c =
√

G/ρ

Torsional Wave φ̈− c2φ′′ = 0 φ̇− c φ′ = 0 φ = φ0 sin(ωt− kx) c =
√

G/ρ

String Wave s̈− c2∆ s = 0 ṡ− c× rot s = 0 s = js0 sin(ωt− kx) c =
√

T/m

Moens/Korteweg Wave s̈− c2s′′ = 0 ṡ− c s′ = 0 s = is0 sin(ωt− kx) c =
√

Eh/Dρ

Bending Wave ms̈− (EJs′′)′′ = 0 mcṡ− (EJs′′)′ = 0 s = js0 sin(ωt− kx) c = 4
√

ω2EJ/m

Electromagnetic Ë − c2∆ E = 0 Ė− c× rot E = 0 E = jEs0 sin(ωt− kx) c =
√

1/µε

Transversal Wave Ḧ − c2∆ H = 0 Ḣ − c× rot H = 0 H = kH0 cos(ωt− kx) c =
√

1/µε

Longitudinal LCÜ −U′′ = 0 U̇ − cU′ = 0 U = iU0 sin(ωt− kx) c =
√

1/LC

Telegraph Wave LCÏ − I′′ = 0 İ − cI′ = 0 I = iI0 cos(ωt− kx) c =
√

1/LC

Electromagnetic Ë − c2∆E = 0 Ė − c · ∇E = 0 E = iE0 sin(ωt− kx) c =
√

1/µε

Longitudinal Wave Ḧ − c2∆H = 0 Ḣ − c · ∇H = 0 H = iH0 cos(ωt− kx) c =
√

1/µε

Designation: xi, yj, zk = cartesian coordinates; s, s[m] = vectorial, scalar elastical displacement; ṡ = ∂s/∂t[m/s] = particle velocity;
s̈ = ∂2s/∂t2[m/s2] = acceleration; ()′ = ∂()/∂x; c = {+c;−c} [m/s] = wave velocity; ω[rad/s] = angular frequency; k[rad/m] = wave
number; ()0 = amplitude; E[Pa] = elasticity module; G[Pa] = shear module; ρ[kg/m3] = density; φ[°] = angle; T[N] = tensile stress;
h[m] = duct wall thickness; D[m] = duct diameter; m[kg/m] = mass distribution per meter; EJ[Pa m4] = bending stiffness; U[V] = electrical
voltage; I[A] = electric current; E[V/m] = electric field strength; H[A/m] = magnetic field strength; C[As/Vm] = capacity per unit length;
L[Vs/Am] = inductivity per unit length; ε[As/Vm] = dielectricity constant; µ[Vs/Am] = permeability constant.
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4. Discussion

The main result is the factorization of the longitudinal wave equation for inhomo-
geneous media. Hereby, the elastic displacement s = s(x, t) was replaced by the new field
variable Es. Table 3 compares Cauchy’s first Equation of Motion with the field variable s
and the factorized wave Equation (11) with the new field variable Es.

Table 3. Cauchy’s 1st Equation of Motion (field variable: displacement s [m]) is based on force equilibrium, as can be seen
from specific D’Alembert inertia force ρs̈ [N/m3] = force per unit volume. In contrast, the one-way wave Equation (11)
(new field variable: Es) resulting from the factorization of Cauchy’s 1st Equation of Motion represents an impulse equilibrium
and has the analytical solution (15).

Equation Concept SI Units PDE Type Variable Solutions for Inhomogeneity

Cauchy’s 1st Eq. of Motion:
ρ ∂2

∂t2 s− ∆Es = 0 (8) Force Equilibrium N/m3 2nd order s Analytical solutions given for
Force Unit: N kgm/s2 (Two-way) some simple functions E(x)

Factorization:
∂
∂t (Es)− c · ∇(Es) = 0 (11) Impulse Equilibrium N/ms 1st order Es General analytical solution:

Impulse Unit: Ns kgm/s (One-way) Es=E0 so exp[iω(t−
∫ x

0
dx
c )] (15)

When inserting a constant elasticity module (E =const.) into factorized Equation (11),
the one-way wave equation for homogeneous media results: ṡ− c∇s = 0, with the scalar
form ṡ− cs′ = 0. This wave equation obtained by (a) PDE factorization can also be derived
from (b) the impedance theorem [15] and (c) the tensorial impulse flow equilibrium [16]
of kinetic impulse flow ρcṡ and potential impulse flow E∇s (Table 4).

Table 4. Comparison of three different derivations of the one-way wave equation: (a) factorization of Cauchy’s 1st
Equation of Motion leads to longitudinal one-way wave equation in homogenous media and the travelling wave solution
s = so sin(ωt− kx). This result is confirmed by two further approaches: conversion of the (b) impedance theorem and
(c) tensorial impulse flow equilibrium of kinetic impulse flow ρcṡ and potential impulse flow E∇s. Analogous results
follow for transversal waves in homogeneous media. The derivation of the one-way wave equation for longitudinal waves
in inhomogenous media is achieved by PDE factorization and use of new field variable Es.

Mathematical/Physical Starting Conversion/ Scalar One-Way Traveling Wave
Approach Equation Insertion Wave Equation Solution

(a) PDE Factorization s̈− c2∆s = 0 (ṡ− c · ∇s)(ṡ + c · ∇s) = 0 ṡ− cs′ = 0 s = so sin(ωt− kx)
(b) Impedance Theorem z = ρc = p/v p = Es′; v = ṡ; E = ρc2 ṡ− cs′ = 0 s = so sin(ωt− kx)
(c) Impulse Equilibrium ρcṡ− E∇s = 0 c·c= c2;E=ρc2;ṡ→ ṡ;∇s→ s′ ṡ− cs′ = 0 s = so sin(ωt− kx)

5. Conclusions

The classical approach of calculating wave propagation via 2nd order PDE or “Two-
way wave equation” is standardely used, although it primarily describes a standing wave
field and ambiguous solutions result. If the calculation of wave propagation only in a given
direction is of interest, such in seismics, the 1st order PDE or “One-way wave equation” is
necessary. Because there exists no analytical solution for the one-way wave equation in
inhomogeneous media approximations have to be used. However, this gap has been closed
by the analytical solution presented in this article. Moreover, the method of factorization
can be analogously tranferred to other standard wave forms and electromagnetic waves.
This creates opportunities for simpler and faster wave propagation calculations in this field
of research and also in other technical areas.
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