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Abstract: State-space models have been successfully employed for model order reduction and control
purposes in acoustics in the past. However, due to the cubic complexity of the singular value
decomposition, which makes up the core of many subspace system identification (SSID) methods,
the construction of large scale state-space models from high-dimensional measurement data has
been problematic in the past. Recent advances of numerical linear algebra have brought forth
computationally efficient randomized rank-revealing matrix factorizations and it has been shown
that these factorizations can be used to enhance SSID methods such as the Eigensystem Realization
Algorithm (ERA). In this paper, we demonstrate the applicability of the so-called generalized ERA
to acoustical systems and high-dimensional input data by means of an example. Furthermore, we
introduce a new efficient method of forced response computation that relies on a state-space model
in quasi-diagonal form. Numerical experiments reveal that our proposed method is more efficient
than previous state-space methods and can even outperform frequency domain convolutions in
certain scenarios.

Keywords: state-space; convolution; randomized singular value decomposition; eigensystem realiza-
tion algorithm; subspace system identification; model order reduction

1. Introduction

A large class of acoustical systems can be classified as linear time-invariant (LTI)
processes. Commonly, these systems are described by impulse response models; however,
for certain modelling tasks, state-space descriptions of LTI systems can be advantageous
compared to classical representations via the impulse response because they provide
access to powerful model order reduction (MOR) techniques [1,2] and concepts of control
theory [3].

Reduced order models are indispensable in applications where computational re-
sources are a limiting factor, e.g., in real-time applications or in applications where models
are evaluated perpetually. MOR aims at lowering the computational complexity of models
of large-scale dynamical systems whilst conserving the system characteristics. Exemplary
acoustical applications exist in [4–7], where reduced order state-space models are derived
from a finite element method (FEM) of coupled vibro-acoustic systems with Sommerfeld
boundary conditions for the analysis of radiation characteristics in the time domain. The
reduction of the model order effectively enables transient time domain simulations of
coupled vibro-acoustical systems that would otherwise be computationally infeasible with
full order finite element models. Likewise, the MOR capabilities of state-space models
have been successfully utilized for the reduced description of large fluid pressure fields in
the areas of fluid dynamics [8,9] and thermoacoustics [10–12]. These reduced descriptions
enabled the employment of feedback control strategies, among other things.

Similarly, state-space models are used for the design of feedback controllers that
mitigate unwanted noise in the field of active noise control. In [13], a state-space model
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of structural vibrations in a vehicle is formulated from a coupled modal base that stems
from FEM. The vibrations are then actively damped by inertial shakers with a feedback
controller which is calculated on basis of the state-space model. Different modelling and
control strategies for noise reduction in an acoustic duct are studied in [14–16].

Furthermore, state-space models can be superior over impulse response models when
it comes to so-called forced response computations, i.e., the computation of the system
output under given input excitations. As is demonstrated by means of a vibrating plate
model in [17], state-space models are faster and more memory efficient than frequency
domain convolutions if the output behaviour of the system is governed by a low number of
poorly damped modes. The suitability and computational efficiency of state-space models
has been studied further in the context of auralization [18,19]. In [20,21], state-space models
are derived from head-related transfer function (HRTF) measurements. It is shown that the
cost of forced response computations is much lower compared to finite impulse response
filter arrays when combined with a model order reduction scheme. Due to the fact that the
individual HRTFs have similar structure and are jointly described by a single state-space
model, a reduction of model order is possible without compromising the reproduction
quality.

Regardless of the use-case, state-space models can be obtained in different ways,
either from physical knowledge of the system or from measurements. The former includes
the construction of state-space models by discretization of the underlying differential
equations or by associating the system modes with a dedicated states. The construction
of state-space models from measurements belongs to the category of subspace system
identification (SSID) problems. Depending on the kind of measurement data, there exist
different algorithms such as the Eigensystem Realization Algorithm (ERA) [22], also known
as Kung’s method [23], for impulse response data, as well as different SSID methods [24,25]
for input-output data.

Several SSID algorithms, including ERA, rely on a singular value decomposition
(SVD) [26] of the Hankel matrix, which makes them unfeasible for high-dimensional
measurement data because of the cubic complexity of the SVD. Unlike HRTFs, general
acoustic systems can have a much slower decay which implies longer impulse response
measurements. Therefore, a measurement-based approach to state-space modelling was
only possible for a limited set of LTI systems in the past. However, a generalized ver-
sion of ERA has recently been introduced in [27,28] that replaces the SVD by an arbitrary
orthogonal decomposition. This paves the way for the employment of highly efficient
randomized rank-revealing matrix factorizations such as the CUR decomposition [29] or
randomized SVD [30]. These low-rank approximations have a much lower memory de-
mand and computational cost at an oftentimes negligible error increase. The computational
cost can be reduced even further, when specialized matrix vector multiplication routines
are incorporated that account for the structure of the Hankel matrix [26,28,31].

In this work, we demonstrate the applicability of generalized ERA with randomized
SVD to acoustical systems by applying it to room impulse response (RIR) measurements.
Furthermore, we show that state-space descriptions of acoustic LTI systems can be benefi-
cial not only for MOR or system control but also for the computation of forced responses,
because they can constitute computational savings compared to (frequency domain) con-
volutions.

The remainder of this paper is structured as follows: The subsequent Section gives
a brief introduction into state-space descriptions and outlines the SSID method that will
be used to construct state-space models from impulse response measurements. After
that, approximations of the computational costs for different methods of forced response
calculations are derived and we introduce a new efficient method of forced response
calculation that is based on a state-space model in quasi-diagonal form. Section 3 introduces
the measurement data that is used for the exemplary validation of the method. The quality
of the identified models and the computational costs of forced response computations are
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presented in Section 4. Finally, the results are discussed in Section 5 and Section 6 concludes
the paper.

2. Methods
2.1. State-Space Descriptions

Let `2 denote the Hilbert space of square summable sequences. Any discrete-time LTI
system with m ∈ N inputs and p ∈ N outputs is fully determined by its (matrix-valued)
impulse response, i.e., the sequence

h = (· · · , h−1, h0, h1, · · · ) ∈ `
p×m
2 ,

where hi ∈ Rp×m, i ∈ Z are the so-called Markov Parameters. For any input u ∈ `m
2 , we

define the output y ∈ `
p
2 by the convolution sum

yt = ∑
k∈Z

hk−tuk, t ∈ Z . (1)

Alternatively, a system can be described by the so-called state equations, a set of first-order
linear difference equations of the form:

xt+1 = Axt + But, (2)

yt = Cxt + Dut,

where xt ∈ Rn is the so-called state of the system at time index t ∈ Z, n ∈ N is called
the (state) dimension of the system, A ∈ Rn×n the state matrix, B ∈ Rn×m the input map,
C ∈ Rp×n the output map and D ∈ Rp×m the feedthrough matrix. For causal systems, the
Markov parameters are then given by:

hi =


CAi−1B, i > 0,

D, i = 0,
0, i < 0.

(3)

An important property of state-space systems is their invariance to similarity transfor-
mations. In other words, the transfer function and, equally, the Markov parameters of
a system defined by the matrix quadruple (A, B, C, D) are identical to those of the trans-
formed system (TAT−1, TB, CT−1, D), where T ∈ Rn×n is an invertible matrix. This can be
easily seen by plugging the transformed system into (3) and it is also intuitively clear, since
the state of a system may be represented in different coordinate frames without changing
its input-to-output behaviour.

2.2. Generalized ERA

We will now introduce ERA, the SSID method that is applied in this paper. Given
measurements of the first 2s, s ∈ N Markov parameters hi ∈ Rp×m, i = 0, . . . , 2s− 1, the
so-called Hankel matrix is given by:

H =


h1 h2 · · · hs
h2 h3 · · · hs+1
...

... . . . ...
hs hs+1 · · · h2s−1

 ∈ Rps×ms . (4)
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The Hankel matrixH is of system theoretical relevance [1] and plays an important role in
SSID. By plugging (3) into (4), the Hankel matrix can be factored into

H =


CB CAB · · · CAs−1B

CAB CA2B · · · CAsB
...

... . . . ...
CAs−1B CAs · · · CA2s−2B

 =

 C
...

CAs−1


︸ ︷︷ ︸

=:Zo

[
B · · · As−1B

]︸ ︷︷ ︸
=:Zc

, (5)

the so-called observability matrix Zo and controllability matrix Zc. From this factorization,
the matrix quadruple that defines the underlying system can be derived. In ERA, the
system matrices B and C are directly read from Zo and Zc, whereas the state matrix A is
obtained by computing a least-squares solution to

Z f
o A =

 C
...

CAs−2

A =

 CA
...

CAs−1

 = Zl
o,

where the superscripts f and l denote the submatrix consisting of the first and last p(s− 1)
rows respectively. A so-called partial realization is then given by

(
A B

C D

)
=


(

Z f
o

)†
Zl

o Zc

[
Im
0

]
[
Ip 0

]
Zo h0

,

where ( · )† denotes the Moore-Penrose inverse. In the standard version of ERA [22], a
factorization of the form (5) is obtained by an SVD of the Hankel matrix, i.e.,

H = UΣVT (6)

and the diagonal entries of Σ are called the Hankel singular values of the system. The
observability and controllability matrices can then simply be chosen as

Zo = UΣ1/2 and Zc = Σ1/2VT .

It has been proven in [27] that the SVD from (6) can be replaced by an arbitrary orthog-
onal rank r < n approximation of the Hankel matrixH such that the resulting realization
approximates the system and that stability is retained under the same assumptions as
Kung’s original method [23]. This technique is called the generalized ERA. In the follow-
ing sections, we use generalized ERA in conjunction with the randomized SVD [30] as
suggested in [28].

2.3. Forced Response Computations

In certain applications it may be necessary to compute the forced response of an LTI
system. Towards that goal, let u ∈ `m

2 be an input sequence of length l ∈ N and assume
that the system has m ∈ N inputs and p ∈ N outputs and that it is fully determined by
s ∈ N Markov parameters. It then follows that any output sequence y ∈ `

p
2 has at most

s + l − 1 non-zero entries.
There exist several strategies for the computation of the output y, some of which we

will compare in regards to the computational cost in the following. The computational cost
is defined as the number of floating point operations (flops), i.e., the number floating point
additions and multiplications, that are required to compute every sample of the output y.
For the classical time domain convolution according to (1), the cost is given by

Cconv(m, p, s, l) = (2m− 1)p min {s, l}(s + l − 1). (7)



Acoustics 2021, 3 585

In certain scenarios, e.g., if s and l are both large, the cost Cconv can become relatively
high. To remedy this, the convolution is oftentimes performed in the frequency domain.
For this, the input u and the single-channel impulse responses h(i,j) ∈ `2, i = 1, . . . , p,
j = 1, . . . , m, are zero-padded to length s + l − 1 and then transformed into the frequency
domain by two real-to-complex discrete Fourier transforms (DFTs). The elementwise
product of the complex spectra is formed and the result is transformed back into the time
domain by a complex-to-real DFT. Both DFT variants need at least 5k2k−1 flops (for inputs
of length 2k, k ∈ N, this bound is exact) with the standard Radix-2 FFT algorithm [32].
Together with a cost of 6 flops per complex multiplication, this yields a minimal total cost
of

Cconv,FFT(m, p, s, l) = mp
(

21
2

log2(s + l − 1) + 6
)
(s + l − 1) (8)

for signals that are not necessarily of length 2k. A drawback of the DFT approach is that it
is not possible to pursue sample-wise stream processing schemes, because the input signals
and impulse responses have to be transformed wholly. For real time applications, there
exist block-partitioned frequency domain processing schemes that can be implemented
at additional computational costs [33]. Looking at (7) and (8), it can be seen that both
convolution methods scale superlinearly if the signal length l and measurement length s
are increased simultaneously. Furthermore, doubling both the number of inputs m and
outputs p will quadruple the cost in both cases.

An interesting alternative to convolutions is presented by a state-space approach. If
the forced response computations are carried out in state-space according to (2), the cost is
given by

Css,dense(m, p, s, l, n) =
(

2n2 + 2n(m + p− 1)− p
)
(s + l − 1) (9)

in absence of feedthrough, i.e., D = 0. The cost Css,dense now scales linearly with the signal
lengths s and l and a doubling of both m and p will also lead to double the cost. Furthermore,
the output is computed sample-wise, which inherently suits real-time applications. On the
downside, the computational cost now additionally depends on the state dimension n and
scales quadratically with it. Quite possibly, the state-space approach is computationally
cheaper than a frequency domain convolution, but for systems with slowly decaying
Hankel singular values, the congruous state dimension may be very large which implies
an increased cost and memory demand.

The computational cost of (9) can be improved upon by transformation of the state-
space model such that the state matrix A is in quasi-triangular form as suggested in [20,21].
With the Schur decomposition [26], every square matrix A ∈ Rn×n can be expressed as
A = YTYT , where Y ∈ Rn×n is orthogonal and T ∈ Rn×n is quasi-triangular. Hence,
the cost of multiplying with the state matrix of the transformed system (T, YT B, CY, D)
is reduced from a dense matrix-vector multiplication with 2n2 − n flops to a Hessenberg
matrix-vector multiplication with n2 + 2n− 3 flops such that for the overall cost it holds:

Css,Hess(m, p, s, l, n) =
(

n2 + n(2m + 2p + 1)− p− 3
)
(s + l − 1).

Compared to (9), the computations are accelerated by a factor of roughly two, but the
complexity still scales quadratically with n.

In this paper, we propose to take this conception even further and diagonalize the
state matrix by means of an eigendecomposition [26]. It states that every non-defective
matrix A ∈ Rn×n can be written as A = XΛX−1, where X ∈ Cn×n is a regular matrix
containing the eigenvectors of A and Λ = diag(λ1, . . . , λn) ∈ Cn×n is a diagonal matrix
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containing the complex eigenvalues of A. For such a decomposition, there exists a regular
matrix T ∈ Cn×n, such that for Y := XT and Λ̃ := T−1ΛT it holds

A = XΛX−1 = XTT−1ΛTT−1X−1 = YΛ̃Y−1,

Y ∈ Rn×n,

Λ̃ = diag(Λ1, . . . , Λk) ∈ Rn×n,

where Λ̃ has so-called quasi-diagonal structure, i.e., a block-diagonal matrix with real diag-
onal blocks Λi, i = 1, . . . , k of size one or two that correspond to the complex eigenvalues
λj, j = 1, . . . , n of A. For every real eigenvalue, the corresponding diagonal block is of size
one and identical to the real eigenvalue. Since the complex eigenvalues of real matrices
come in conjugated pairs, every pair of complex eigenvalues corresponds to a 2× 2 block
Λi with the real part of the eigenvalues on the diagonal and the imaginary parts on the
antidiagonal. The state transformation with Y−1 now yields a system in so-called canonical
quasi-diagonal form (Λ̃, Y−1B, CY, D) and a multiplication with the state matrix can now
be efficiently realized by a tridiagonal matrix-vector multiplication which implies that the
overall cost now scales linearly with the state dimension n:

Css,quasi-diag(m, p, s, l, n) = (2n(m + p + 2)− p− 7)(s + l − 1).

Note that although a state transformation with X−1 ∈ Cn×n would yield a diagonal
state matrix, the overall computational cost with a tridiagonal but real state matrix Λ̃ is
lower, because complex arithmetic is avoided. However, if the processor has a specialized
instruction set for complex arithmetic, a diagonal transformation may be adequate.

An overview over the computational complexities and storage costs of the previously
presented methods is given in Table 1. For minimal realizations of causal discrete-time
systems, the state-dimension n is bounded by s, which suggests that the scaling of our
method is superior in both computational and storage costs over all other presented
methods. This is especially the case if the system has a large number of inputs and outputs.
However, a transformation into (quasi-)diagonal form is only possible if the state matrix is
non-defective.

Table 1. Computational complexities and storage costs for different methods in Bachmann–Landau
(“big O”) notation.

Method Computational Cost Storage Cost

Convolution, time domain O(mp min{s, l}(s + l)) O(mps)
Convolution, frequency domain O(mp log2(s + l)(s + l)) O(mps)
State-space, dense O((n2 + n(m + p))(s + l)) O(n2 + n(m + p))
State-space, Hessenberg O((n2 + n(m + p))(s + l)) O(n2 + n(m + p))
State-space, diagonal O(n(m + p)(s + l)) O(n(m + p))

3. Example
3.1. Database

The SSID method outlined in Section 2.2 is applicable to arbitrary acoustical LTI
systems. In the following, we will use it for the identification of a room acoustical system
with measurement data from the Multichannel Impulse Response Database [34]. The
database provides RIR measurements from m = 26 sources that are distributed evenly over
two semicircles to a linear microphone array with p = 8 microphones which results in a
total of 208 measurements for different reverberation and microphone array configurations.
For the exemplary application in the following, we choose the scenario in which the
room reverberation time was set to 160 ms and the microphone spacings of the array
were configured to [3, 3, 3, 8, 3, 3, 3]cm. The geometric setup of the source and microphone
arrangement is visualized in Figure 1 [34].
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Figure 1. Schematic representation of the geometric setup of the source and microphone positions,
represented by spheres, in a room with the microphone array at the centre of the semicircles (not
to scale). The coloured spheres indicate transmission channels that are analyzed in the following
section.

3.2. Preprocessing

The RIR measurements have a duration of 10 s at a sampling rate of 48 kHz. In order
to avoid unnecessary computations, the RIR measurements are preprocessed such that only
relevant information is contained in the input data. For this, the common delay among
the measurements of approximately 13.125 ms is removed and the RIRs are truncated to a
total duration of 160 ms which equals the reverberation time of the room. As stated in [34],
the measurement speakers are only linear in the range of 80 Hz to 13 kHz. Therefore, after
truncation, the RIRs are downsampled by a factor of two, which reduces the sampling
rate to fs = 24 kHz and the Nyquist frequency to 12 kHz. As a result, we use 208 RIRs
with a length of s = 3840 samples as input to our method. Lastly, the RIRs are normalized
such that

‖h‖
`

p×m
2

:=

(
s

∑
k=1

p

∑
i=1

m

∑
j=1

(
h(i,j)k

)2
)1/2

= mp.

With this normalization, the energy of the single-channel transmissions will be ap-
proximately equal to one:∥∥∥h(i,j)

∥∥∥2

`2
≈ 1, i = 1, . . . , p, j = 1, . . . , m.
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4. Results

After constructing the matrix-valued Markov parameters from the individual pre-
processed RIRs, a rank 2000 approximation of the Hankel matrix was computed with
randomized SVD [30]. Due to the implementation of a dedicated matrix-vector multiplica-
tion routine that exploits the Hankel structure [28,31], the full construction of the Hankel
matrix was circumvented and the computations could easily be carried out on an Intel®

Core™ i5-9400F CPU @ 2.90 GHz with 16 GB of memory in under six minutes. In our
example, the Hankel matrix has a size of 30,720 × 99,840 which would already require
about 22.85 GB of memory to explicitly construct. In contrast, the storage of the Markov
parameters only required 6 MB and the randomized rank 2000 SVD required about 1.6 GB
of memory in our case.

This rank 2000 decomposition served as a basis for the construction of all subsequent
models. Firstly, a “full” realization with dimension 2000 was obtained by generalized ERA
as described in Section 2.2 and partial realizations were constructed in a similar fashion
but only taking the first 1000, 500 and 120 singular values and singular vectors as input,
respectively. Additionally, a frequency-limited partial realization was obtained by MOR of
the “full” realization with a frequency-limited Balanced Truncation along the lines of [35].
A frequency range of 100–1000 Hz was chosen for this realization together with a reduced
model order of 120.

The single-channel magnitude responses of the three largest models are depicted in
Figure 2 together with the magnitudes of the Fourier transform of the corresponding RIRs.
Since we do not have access to the frequency dependent singular values of the transfer
function of the room acoustical system, a comparison of the single-channel magnitude
responses is feasible. The reproduction quality of the models is virtually identical across all
208 channels, which is why we limit the depiction to three arbitrarily selected channels.
The magnitude responses of the order 2000 model are in very good agreement with the
measurements across all frequencies. Decreasing the model order to 1000 still yields plau-
sible approximations of the reference magnitudes, whereas the magnitudes of the model
with order 500 exhibit more drastic deviations of the reference magnitude sporadically.

Figure 3 shows the single-channel magnitude responses of the models with order 120.
Since, again, the reproduction quality is the same for all 208 channels, only one transmission
channel is depicted. It can be clearly seen that the unlimited model is not capable of
reproducing the reference magnitude response. In contrast, the frequency-limited model
does so nearly perfectly in the given frequency range. Since the frequency-limited model
stems from the “full” order 2000 realization, its model error is bounded by the “full” model.
Seeing that the remaining small deviations of the frequency-limited model are also present
in the order 2000 realization, it seems likely that the frequency-limited model could be even
further improved upon if it was based on an even larger approximate factorization of the
Hankel matrix.
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Figure 2. Magnitude responses of the reference measurement and the partial realizations with model
orders 2000, 1000 and 500 for different single-channel transmission paths. The panels show the
transmissions: (a) Source location (0◦, 1 m) to receiver number 4 (red spheres in Figure 1), (b) source
location (60◦, 1 m) to receiver number 7 (green spheres in Figure 1) and (c) source location (−45◦, 2 m)

to receiver number 2 (orange spheres in Figure 1).
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Figure 3. Magnitude responses of the reference measurement, the partial realization with model
order 120 and the frequency-limited partial realization with model order 120 and frequency range
100–1000 Hz for the single-channel transmission path from source location (0◦, 1 m) to receiver
number 4 (red spheres in Figure 1).

Table 2 contains the `2-norms of the approximation error and frequency-limited
approximation error

ε := h− ĥ and εΩ := FΩ(h)−FΩ(ĥ), (10)

where h ∈ `
p×m
2 denotes the RIR measurements, ĥ ∈ `

p×m
2 denotes the impulse response of

the realization and FΩ denotes the frequency-limited Fourier transform with frequency
interval Ω, i.e.,

FΩ(x) = (Xk)k∈Z, Xk =

∑s
n=0 xne−2πikn/s, 2πikn/s ∈ Ω

0, else

for x ∈ `
p×m
2 . As mentioned above, we do not have access to the true system realization,

hence we cannot compute the classical approximation errors in terms of norms of Hardy
spaces such as the (frequency-limited)H2 orH∞ norms. Instead, we consult the `2 norm
which is virtually identical to theH2 norm.

Table 2. The `2 norms of the approximation error ε and the frequency-limited approximation
error εΩ as defined in (10) for the different realizations. The frequency interval is chosen as
Ω = 2π/fs[100 Hz, 1000 Hz] with sampling rate fs = 24,000 Hz.

Model Order Frequency-Limited ‖ε‖
`

p×m
2

‖εΩ‖`p×m
2

2000 no 1.99 1.50
1000 no 3.46 2.59
500 no 7.45 5.16
120 no 12.74 8.52
120 yes 14.09 2.07

With these models, forced response computations were carried out with the methods
introduced in Section 2.3. A random input of 1 s duration, i.e., l = 24,000, was used
in all cases and the required flops were measured with the Performance Application
Programming Interface [36]. An overview of the theoretical costs and the required flops
for the realizations, as well as the classical convolution methods, is given in Table 3. The
computations were carried out in the Python programming language (v.3.9.4), for the
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convolutions we have made recourse to the respective SciPy (v.1.6.3) implementations [37].
The last column of the table shows the condition number of the state-space transformation
Y. In case of the Schur decomposition, Y is orthogonal and its condition is always equal to
one. For the (quasi-)diagonal transformation, the condition depends on the structure of the
eigenvectors of A.

Table 3. Theoretical costs C, as derived in Section 2.3, and actually required flops F for forced
response computations of the different methods. The last column contains the condition number of
the state transformation matrix Y (frequency-limited case in brackets).

Method n C/[Mflops] F/[Mflops] cond(Y)

Convolution, time domain 43,616 38442 -
Convolution, frequency domain 932 760 -

State-space, dense 226,387 227,223 -
State-space, Hessenberg 2000 115,197 129,121 1
State-space, quasi-diagonal 4008 4567 1838.5

State-space, dense 57,515 57,934 -
State-space, Hessenberg 1000 29,760 33,244 1
State-space, quasi-diagonal 2004 2284 855

State-space, dense 14,838 15,048 -
State-space, Hessenberg 500 7920 8794 1
State-space, quasi-diagonal 1002 1143 100

State-space, dense 1022 1074 -
State-space, Hessenberg 120 631 684 1
State-space, quasi-diagonal 240 275 (17.7) 12.5

s = 3840, l = 24,000, m = 28, p = 8

5. Discussion

The results of the previous show that the approximation error can be improved by
increasing the model order (see Table 2) and that the identification of large realizations is
possible on consumer grade computers. An example of a frequency-limited realization was
included in order to emphasize the potential of a state-space approach when the model
is truncated such that it solely captures necessary information. Similar approaches exist
which allow for time-limited MOR [35,38].

We have validated the derived cost bounds for different methods of forced response
computations with numerical experiments. For the state-space methods, the required
flops were slightly higher than the derived bounds (see Table 3). This can be explained by
additional computational overhead that is not captured in the idealized bounds. Contrarily,
the required flops for the convolutions were lower than the derived bounds which is
probably due to the highly optimized convolution routines of the SciPy package. For the
large order 2000 model, the DFT-based convolution was the fastest among all methods,
but our method was already more than 8 times faster than a classical convolution in the
time domain. In contrast, the other two state-space methods were at least 3 times slower
than the latter. In the frequency-limited case, our method outperformed the DFT-based
convolution and was faster by a factor of about 2.7.

It is difficult to achieve a meaningful juxtaposition of a state-space approach and
DFT-based convolution, because, as mentioned earlier, the output is computed sample-per-
sample with a state-space approach and DFT-based convolution relies on the transformation
of the entire signal or overlapping blocks. Therefore, even large scale state-space models
can be advantageous for forced response calculations in real-time applications where
latency is important. Oftentimes, real-time applications go hand-in-hand with limited
computational resources. This problem is also remedied by state-space models, because
the model order can be reduced to a point that fully exhausts the computational resources
available.
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As mentioned in Section 2.3, the state-matrix A can only be transformed into diagonal
form if it is non-defective. A sufficient condition for A to be non-defective is that it
possesses only distinct eigenvalues. Pragmatically speaking, it is highly unlikely that A
will have repeated eigenvalues, since it is computed from measurement data. Even if,
say, the measurement points in our example were arranged in a symmetrical fashion, the
presence of measurement noise alone would disturb the eigenvalues of A enough for A to
be non-deficient. It should be noted, that even a formally non-defective state matrix can
lead to ill-conditioned state transformations if the state matrix is close to a defective matrix
[39]. Therefore, the condition number of the state-transformation Y is provided in Table
3 as an a-posteriori measure of the “defectiveness” of A. From our observations, there
seems to be a connection to the decay of the Hankel singular values, where the condition
number of Y increases as the decay of the Hankel singular values slows down. From a
mathematical standpoint, this connection is not immediately clear and this remains an
interesting research direction for the future. However, the encountered condition numbers
are still acceptable in our example. Furthermore, if the decay of the Hankel singular value is
slow, the model order can be simply reduced further such that the condition of Y improves.

6. Conclusions

We have successfully constructed large state-space models of a room-acoustical exam-
ple system from impulse response measurements with generalized ERA [28,40]. Because
the example system does not possess a special structure and is already quite complex, the
applicability of generalized ERA also applies to general acoustical systems, not only room
acoustical systems. Additionally, we have introduced a new efficient method of forced
response computation that relies on a state-space model in (quasi-)diagonal form. In this
way, this paper extends the works of [18–21] by using a generalized version of ERA with
randomized SVD to be able to identify larger systems from high-dimensional measurement
data and by enabling the forced response computations of such large models with our new
more efficient method.
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