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Abstract: In this work, we describe and simulate a wave field as a phasor field by simultaneously
propagating its real and imaginary parts. In this way, the unique phase angle is directly available,
and its time derivative determines the instantaneous frequency. We utilize the concept to describe
damping in elastic wave propagation, which is of high importance in several engineering and research
disciplines, ranging from earth science and medical diagnosis to physics.
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1. Introduction

Elastodynamic wave propagation [1] is of crucial importance on a broad spectrum
of length scales: starting in the kilometer range, from earth science including earthquake
research and geophysical exploration [2–4], going down the scale to the millimeter and
sub-millimeter range in medical diagnosis and therapy [5,6], sensors and actuators [7–9],
material science [10–12], product and process monitoring [13–15], approaching the smallest
scale, in non-destructive testing of microelectronic and nanoelectronic components [16,17]
phononic crystals and hypersound propagation [18]. In many cases, damping of elastic
waves is significant and desired; hence, it must be considered in the simulation of wave
propagation phenomena [19–21]. For this task, linear viscoelastic material behavior is
commonly assumed, which is influenced by the entire material loading time history. This
behavior corresponds to a numerically expensive convolution of the change of stress/strain,
with a creep/damping kernel, respectively. Consequently, damping was already introduced
into time-domain viscous wave simulation, usually approximatively aiming to reduce
numerical cost. This was done by direct convolutional models to intermediate Maxwell and
Zener body models [22], towards spatially coarse sampled single parameter methods [23].
Excellent literature surveys on this topic are available, and we suggest the review of
Moczo et al. [24].

Convolution in the time domain corresponds to a simple multiplication in the fre-
quency domain. In this short communication, we compactly present a combination of
three general concepts to transfer this efficiently to the time domain. The first concept is
the representation of a wave by local amplitude and phase (phasor). From the practical
perspective, one can choose an arbitrary time-domain wave propagation algorithm to
propagate the real part and the imaginary part of the phasor simultaneously. The sec-
ond concept is the instantaneous frequency, defined as the rate of change in time of the
phase [25,26]. The third concept uses the instantaneous frequency to implement an arbitrar-
ily frequency-dependent attenuation of an elastic wave packet. An arbitrary time-stepping
wave propagation algorithm can be used if for example, after every propagation time-step,
a damping time-step is included. To demonstrate the methodology, we provide a practical
example of damped elastic wave propagation using the velocity-stress formalism in the
form of the elastic finite integration technique (EFIT) [27].
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The paper is structured as follows: in Section 2 we provide the basic concepts (phasor,
instantaneous frequency, and wave attenuation); in Section 3 we introduce the use case of
elastic wave propagation in solid media; in Section 4 we provide results for damped elastic
wave packet dynamics; and in Section 5 we conclude and provide an outlook for potential
future developments.

2. Materials and Methods
2.1. The Phasor Concept

The classic wave theory assumes that a “slowly” varying function exists so that the
wave-field, which is the particle deflection u at a certain time t at a certain position x in
space, can be written as

u(x, t) = Re
[

a(x, t)ei·θ(x,t)
]

(1)

with the time-varying amplitude a(x,t), the phase-angle θ(x,t), where i is the imaginary
unit. Commonly the real part of the complex-valued function is taken because only real
values can be measured directly in nature. The complex representation using the length of
a pointer and a phase-angle called a phasor, evolving in time, is shown in Figure 1a. The
complex wave-field as represented by a phasor in each point in space is shown in Figure 2b.
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Figure 2. (a) The frequency estimator-based implementation of frequency-dependent damping shown for pressure wave
propagation in water. (b) Propagation of a 100 MHz ultrasound pressure wave packet in aluminum. The instantaneous
frequency computation reveals the numerical dispersion because a coarse spatial grid (10 grid points per wavelength) is
chosen intentionally.
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2.2. The Instantaneous Frequency Concept

The instantaneous frequency (angular speed) ω is defined as the time derivative of
the phase angle

ω =
dθ

dt
. (2)

As a remark, the angular speed is defined in a natural way by the change of the phase
angle in time, similarly to the fact that the linear speed (velocity) is the change of the spatial
coordinate in time.

In some cases, the instantaneous frequency can take on negative values and special
care has to be taken to treat such cases properly [28]. However, in the examples, shown
below, we deal with signals which are locally symmetric to the zero mean, which show
strictly positive instantaneous frequency [29].

2.3. The Wave Attenuation Concept

When a wave propagates in space, the rate of reduction in amplitude is proportional
to the amplitude itself

da(x)
dx

= −α(ω)a(x) (3)

with the damping factor α being a function of the frequency. This leads to the exponential
law for the amplitude evolution of a damped wave traveling a certain distance ∆x

a(x + ∆x) = a(x)e−α(ω) ∆x . (4)

The damping coefficient α(ω) can be an arbitrary function of frequencyω in general.
An analogous equation holds for the evolution of a wave in time

a(t + ∆t) = a(t)e−δ(ω) ∆t with δ(ω) = vpα(ω) (5)

where vp stands for the phase velocity.

3. The Use Case, Elastic Wave Propagation

We demonstrate the usage of the concept of instantaneous frequency for modeling
damping for elastic wave propagation. An arbitrary method for the propagation of the
elastic wave in space and time can be used. In this work, we apply the velocity-stress
representation of the elastodynamic equations in the form of the EFIT discretization [3].
The field variables are the particle velocity

⇀
v , being a vector in three dimensions, and the

symmetrical Cauchy stress tensor σ in 3D having up to six independent components (3
components in 2D), respectively.

The ingredients for describing elastic wave propagation are:

• The kinetics which has its origin in Newton’s second law and is also called the Cauchy

momentum equation ρ ∂
⇀
v

∂t =
⇀
∇ ·σ+

⇀
f , where

⇀
v the particle velocity field is the first

derivative of the displacement field
⇀
u with respect to time, ρ stands for the mass

density, and
⇀
f represents the body forces (like gravity, electro-magnetic forces, etc.);

• The kinematics, relating the velocities of a material point to the strain rates

dε
dt ≈

1
2 [

(
⇀
∇⊗⇀

v
)
+

(
⇀
∇⊗⇀

v
)T

;

• The material law relating stress and strain σ ≈ λ tr(ε) + 2µ ε, here shown for an
isotropic material with λ and µ being the first and second Lame constants representing
the stiffness of the material.

In this framework, a general viscoelastic response can be obtained by introducing
particle velocity proportional (dissipation, analog Maxwell body)

⇀
v (t + ∆t) = A(ω)

⇀
v (t)

damping in combination with a stress proportional (stress relaxation, Kelvin-Voigt type)
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σ(t + ∆t) = B(ω)σ(t) relaxation mechanism. The detailed equations for the velocity-stress
formalism are provided in the Appendix A. All initial waves and wave packets are ini-
tialized with a reference phase (real part of the phasor) and in parallel with a 90◦ phase
shift (imaginary part of the phasor). As a remark, if only the real part of the signal is
known, then the imaginary part is obtained by the Hilbert transform [29]. This can in
principle also be done at every timestep, but because of the non-locality of the Hilbert
transform in time, this is numerically costly. Therefore, we choose to propagate the real and
the imaginary part, avoiding the use of the Hilbert transform. At ultrasound frequencies,
velocity proportional damping, which scales with the square of the frequency is frequently
the dominating damping mechanism. Examples for this behavior are liquids (thermoelastic
relaxation, shear, and bulk viscosity) and many solid materials (thermoelastic relaxation,
phonon-phonon, and electron-phonon interaction) [10]. Therefore, the following expression
is used in all following examples:

A(ω) = e−β ω2t (6)

4. Results

First, the performance of the instantaneous frequency-based implementation of frequency-
dependent damping is validated. For this task, the damping is evaluated by investigating the
time evolution of the energy within the simulation domain (periodic boundary conditions
are chosen). The total energy is given by the kinetic energy plus the potential energy, and
each on time average is 1

2 of the total energy (remark: without implementing damping, the
EFIT scheme is strictly an energy preserving one [27,30]). Therefore, the average velocity is
proportional to the square root of total kinetic energy. Comparing the numerical results, after
400 ns with the values from the analytical formula Equation (6) with a plane wave of frequency
( f = ω/2π) 100 MHz, 200 MHz, and 400 MHz, gives a relative error for the mean velocity
[(vnum − vana)/vana] of 4 × 10−6, 16 × 10−6 and 65× 10−6, respectively. The decay of the
mean velocity amplitude is shown in Figure 2a.

The propagation of ultrasound in aluminum (the material properties are provided
in Table 1) is shown in Figure 2b The initial condition is a modulated Gaussian-shaped
pressure wave-packet with a mean frequency of f = 100 MHz and a pulse-width (two times
Gaussian sigma) of 40 ns. The pressure wave velocity is cp = [(λ + 2µ)/ρ]1/2 ≈ 6316 m/s
and the corresponding wavelength is lp = cp/ν ≈ 63 µm. We choose a coarse grid of 10 grid
points per wavelength to reveal the numerical dispersion and the possibility of resolving
this effect by computing the instantaneous frequency. As is expected, the higher frequency
components propagate slower on the grid, decreasing the mean instantaneous frequency
content at the front and increasing it on the rear of the wave packet, respectively.

Table 1. The model material properties for the elastic wave propagation examples.

Material Mass Density 1st Lame Const. 2nd Lame Const Damping 1

ρ [kg/m3] λ [GPa] µ [GPa] β [Neper/(s Hz2]
Aluminum 2700 55.5 26.1 -

Water 1000 2.08 0 3.7 × 10−11

1 The prefactor for damping coefficient scaling with frequency squared, from [31]. The value in aluminum is
much lower than water and is therefore neglected.

The Figure 3 shows a chirped signal, linearly ramped from 20 to 120 MHz (60 MHz at
the center of the Gaussian, everything outside a 2 sigmas Gaussian width is set to be equal
to zero) with a pulse width of 20 ns. A gap of 100 µm, between two aluminum bodies filled
with water is introduced to form a cavity. A “ringing” behavior is observed where the
wave packet trapped in the cavity reflects back and forth and “radiates” into the aluminum
bodies. Because this setup does not introduce a significant frequency filtering effect, the
“radiated” wave packets show a similar instantaneous frequency profile compared to the
initial wave packet.
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5. Conclusions and Outlook

In this short communication, we demonstrate that numerical propagation of the
phasor field provides the instantaneous frequency at each point in space and time. We
have demonstrated this for the case of wave packets, where a dominant center frequency
is present and was subsequently revealed as the instantaneous frequency. This enables
a conceptually simple and numerically cheap implementation of arbitrarily frequency-
dependent damping behavior. It is the topic of future studies to investigate the behavior
for cases where multiple frequencies are present simultaneously in the same point in space.
One option is to discretize the frequency space into several frequency windows, subse-
quently translate them to wave number windows using the known dispersion relation, and
extract the signal for each desired wave number window by applying a filter in space. An-
other idea is to use the concept to improve the efficiency of numerical schemes by repairing
the numerical dispersion error (=wrong phase velocity for high-frequency content/coarse
grid), by an instantaneous frequency informed tuning of the local velocity. This would
allow a lower number of grid points per wavelength for a targeted accuracy. Last but not
least, the instantaneous frequency is also defined for nonlinear wave propagation, which
could open new possibilities in this field.



Acoustics 2021, 3 490

Author Contributions: Conceptualization, R.H. and L.M.; methodology, R.H.; software, R.H.; valida-
tion, R.H.; investigation, L.M.; resources, R.B.; writing—original draft preparation, R.H.; writing—
review and editing, L.M. and R.B.; visualization, R.H.; supervision, R.B.; project administration,
R.H. and R.B.; funding acquisition, R.H. and R.B. All authors have read and agreed to the published
version of the manuscript.

Funding: The authors gratefully acknowledge the financial support under the scope of the COMET
program within the K2 Center Integrated Computational Material, Process and Product Engineering
(IC-MPPE) (Project No 859480). This program is supported by the Austrian Federal Ministries for
Climate Action, Environment, Energy, Mobility, Innovation, and Technology (BMK) and for Digital
and Economic Affairs (BMDW), represented by the Austrian research funding association (FFG), and
the federal states of Styria, Upper Austria, and Tyrol.

Data Availability Statement: Data available on request from the authors.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

For the numerical simulation of the elastic wave propagation, we use velocity-stress
formalism on a staggered grid, also known as the elastic finite integration technique
(EFIT) [1]. For compactness, the algorithm is provided briefly here, and all simulations are
performed in 2D. The numerical propagation scheme in time, with the discrete-time index
n for one unit cell in time, is illustrated in Figure A1a. As a remark, the velocity is shifted
by (∆t/2, ∆x/2) relative to the stress values within the unit cell. The reason for this is to
allow a central finite difference approximation for the time and spatial derivatives. As a
general initial condition (index n = 0), the stress and the particle velocity in the t0 time cell
are given. In a leap-frog manner in the first partial step, the new stress (at tn+1) is computed
from the old stress and velocity values (at tn). The new velocity values are computed by
the now known new stress (at tn+1) and old velocity values (at tn). The discretization of
the field variables on the staggered spatial grid is shown in Figure A1. This, together with
the time staggering, has the purpose of significantly reducing the numerical dispersion
errors [30]. The material parameters, mass density ρ, and the stiffness Lame constants λ, µ
have to be averaged on the integration cells, as shown in Figure A1b [27].
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General damping behavior is implemented, introducing frequency-dependent mul-
tiplicative factors, including the stress relaxation (via the 3 matrix components γxx(ω) ,
γxx(ω) , γxx(ω), and velocity proportional to the damping:

σ
i,j,n+1
xx = e−γxx(ω) ∆t σ

i,j,n
xx +

(
λi,j + 2 µi,j

)vi+1,j,n
x − vi,j,n

x
∆x

· ∆t + λi,j vi,j+1,n
y − vi,j,n

y

∆y
· ∆t
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σ
i,j,n+1
xx = e−γxx(ω) ∆t σ

i,j,n
xx +

(
λi,j + 2 µi,j

)vi+1,j,n
x − vi,j,n

x
∆x

· ∆t + λi,j vi,j+1,n
y − vi,j,n

y

∆y
· ∆t

σ
i,j,n+1
yy = e−γyy(ω) ∆t σ

i,j,n
yy +

(
λi,j + 2 µi,j

)vi,j+1,n
y − vi,j,n

y

∆x
· ∆t + λi,j vi+1,j,n

x − vi,j,n
x

∆y
· ∆t

σ
i,j,n+1
xy = e−γxy(ω) ∆t σ

i,j,n
xy +

4∆t
1

µi−1,j−1 +
1

µi−1,j +
1

µi,j−1 +
1

µi,j

[
vi,j,n

y − vi−1,j,n
y

∆x
+

vi,j,n
x − vi,j−1,n

x
∆y

]

vi,j,n+1
x = e−β(ω) ∆t vi,j,n

x +
2∆t(

ρi−1,j + ρi,j
)[σ

i,j,n+1
xx − σ

i−1,j,n+1
xx

∆x
+

σ
i,j+1,n+1
xy − σ

i,j,n+1
xy

∆y

]

vi,j,n+1
y = e−β(ω) ∆t vi,j,n

y +
2∆t(

ρi,j−1 + ρi,j
)[σ

i,j,n+1
yy − σ

i,j−1,n+1
yy

∆y
+

σ
i+1,j,n+1
xy − σ

i,j,n+1
xy

∆x

]
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