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Abstract: The coordinate-free one-way wave equation is transferred in spherical coordinates.
Therefore it is necessary to achieve consistency between gradient, divergence and Laplace operators
and to establish, beside the conventional radial Nabla operator ∂Φ/∂r, a new variant ∂rΦ/r∂r.
The two Nabla operator variants differ in the near field term Φ/r whereas in the far field r � 0
there is asymptotic approximation. Surprisingly, the more complicated gradient ∂rΦ/r∂r results in
unexpected simplifications for – and only for – spherical waves with the 1/r amplitude decrease.
Thus the calculation always remains elementary without the wattless imaginary near fields, and the
spherical Bessel functions are obsolete.
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1. Introduction

Seismics, sonar, sodar, room and machine acoustics, ultrasound diagnosis and
tomography depend on the calculation of sound paths in solid, liquid or gaseous media
with heterogenous physical properties and complex geometry. Calculations are based on
the well-known equations of motion listed by Augustin-Louis Cauchy 200 years ago:

In a continuum with stationary cartesian coordinates xxx = {x exexex, y eyeyey, z ezezez} and modulus
of elasticity E [Pa] a vectorial, elastic deflection sss = sss(xxx, t) [m] causes the stress tensor
TTT = E∇∇∇sss [Pa]. The local equilibrium of the tension force div TTT = div E∇∇∇sss = E∆sss [N/m3]
due to stress tensor TTT and the inertial force ρ s̈ss [N/m3] caused by the local acceleration
s̈ss = ∂2sss/∂t2 [m/s2] can be written as

ρ s̈ss− E∆sss = 000 (1)

By merging density ρ [kg/m3] and elasticity module E sound velocity c=
√

E/ρ [m/s]
results and the governing wave equation for a homogeneous medium follows:

s̈ss− c2∆sss = 000 (2)

The partial differential equation (PDE) of the 2nd order (2) delivers two mutually
independent solutions. From the quadratic velocity term c2 = (+c)2 = (−c)2 can be seen
that there are two waves travelling in opposite directions +c and −c, hence results the
designation “Two-way wave equation”. Regardless of this ambiguity, irregular phantom
effects occur in numerical seismic FE or FD wave calculations.

To eleminate these unwanted effects a great number of auxiliary equations have been
developed, but no specific approach has been able to prevail. Because of the economic
importance of the “One-Way”/“Two-Way” problem there also exist numerous patent
applications beside the scientific literature [1–3].
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Due to the above mentioned difficulties the conventionally used equilibrium of forces
was – initially hypothetically – replaced by an impulse equilibrium, i.e., more precisely by
a impulse flow equilibrium [4,5]. Force and impulse are related and differ in one level of
differentiation. Therefore, the unit of the impulse Huygens [Hy = mkg/s = mass multiplied
by velocity] was used. For a particle velocity ṡss = ∂sss/∂t [m/s] the local specific impulse
ρ ṡss [Hy/m3] follows. If the velocity ṡss propagates with the vectorial wave velocity ccc, the
dyadic product ρ ccc ṡss results in a kinetic impulse flow of the dimension [Hy/sm2], i.e.,
Huygens [Hy] per time and per area. On the other hand, an elastic deformation∇∇∇sss induces
the potential impulse flow TTT = E∇∇∇sss [Hy/sm2]. Wheras the Cauchy force equilibrium is
applied to an infinitesimal volume element dV = dx dy dz, the equilibrium of kinetic and
potential impulse flow in each field point xxx results in

ρ ccc ṡss− E∇∇∇sss = 0 (3)

This tensor equation being scalarly multiplied by the vectorial wave velocity ccc leads
together with the known relationship E = ρ c2 to a vectorial partial differential equation
(PDE) of the 1st order respectively vectorial “One-Way wave equation”

ṡss− ccc · ∇∇∇sss = 0 (4)

Representing the equivalent to the force based 2nd order PDE wave Equation (2).
Mathematically, the 1st order PDE is much easier than the 2nd order PDE with the higher
differentiation level. Also the wave propagation direction is determined. Force and impulse
concept are compared below in Table 1.

Table 1. Comparison of force based Two-Way Wave Equation and impulse based One-Way Wave
Equation in an unlimited, elastic 3D contiuum without boundary effects. For simplicity and clarifi-
cation linearity, homogeneity, isotropy and losslessness are assumed; sss[m] = elastic displacement,
ṡss = ∂sss/∂t [m/s] = particle velocity; a ba ba b, aaa× bbb, aaa · bbb = dyadic, vectorial, scalar product of the two
vectors aaa and bbb.

Two-Way Wave Equation One-Way Wave Equation

Balance Item Force F [N] = ∂I/∂t Impulse I [Hy]

Balance Unit Newton [N = kgm/s2]] Huygens [Hy = kgm/s]

Balance Equation ρ s̈ss− div E∇∇∇sss = 000 ρ ccc ṡss− E∇∇∇sss = 000

Wave Equation (3D) s̈ss− c2∆sss = 000 ṡss − ccc · ∇∇∇sss = 000

Solution sL = sL,0 exp i(ωt∓ kLx) sL = sL,0 exp i(ωt− kLx)

Because of their vector character the two wave Equations (2) and (4) are independent
from the coordinate system and have to be transcribed to the selected coordinate system
when used. Such a transcription is a mathematical formality.

While transcription to cartesian coordinates is problem-free, an unexpected conflict
occurs for transcription to spherical coordinates. However, establishing the hypothetical
radial Nabla variant ∇rΦ = ∂rΦ/r∂r beside the well-known conventional radial Nabla
operator ∇rΦ=∂Φ/∂r is a solution to the conflict. Hence, it is a further task to clarify the
conflicting transcription of the vectorial one-way wave equation to spherical coordinates
and to provide theoretical results that can be experimentally verified later. Therefore,
calculation is restricted to spherical wave propagation without the Legendre angular
functions, i.e., Φ(r, θ, φ)→Φ(r). Interestingly the rather complicated hypothetical gradient
∂rΦ/r∂r leads to unexpected simplifications for – and only for – spherical waves with
1/r amplitude decrease. Thus, calculations remain elementary and a priori, neither bulky
transcendental Bessel functions nor wattless imaginary near fields appear.
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2. Method

According to the task and the restriction to central fields with purely radial functions
Φ(r, θ, φ) → Φ(r) and sss(r, θ, φ) → sss(r), spherical coordinates rrr = r ererer are sufficient
and only the radial operators gradient ∇rΦ, the divergence divrsss = ∇r · sss and Laplace
∆rΦ = ∇r · ∇rΦ = ∇2

r Φ are relevant in this context. These Nabla operators are used in all
formulas, for the sake of certainty they are cited from [6]. In Table 2 all expressions are
listed and connected with the ∇ symbol.

Table 2. Acc. to their signature the conventional radial operators gradient, divergence and Laplace
lead to different radial Nabla variants ∇a, ∇b and ∇c. Nabla variant ∇c is taken as hypothesis.

Radial Operator Convention Signature Radial Nabla Variants

Gradient: ∇rΦ =
∂Φ
∂r

≡ ∇rΦ ∇r → ∇a =
∂

∂r

Divergence: divr sss =
∂(r2s)
r2∂r

≡ ∇r · sss ∇r → ∇b =
∂r2

r2∂r

Laplace: ∆rΦ =
∂r2

r2∂r
∂Φ
∂r

≡ ∇r
2 Φ ∇r → ∇c =

∂r
r∂r

Obviously the following three different radial Nabla variants result:

∇r = {∇a ,∇b ,∇c} =
{

∂

∂r
,

∂r2

r2∂r
,

∂r
r∂r

}
(5)

Variants ∇a and ∇b being multiplied with each other fullfill the Laplace operator
condition ∆Φ = ∇b∇aΦ = (∂r2/r2∂r) ∂Φ/∂r, but due to∇a 6= ∇b not the identity condition
∆ =∇·∇=∇2. The calculated square root of Laplace ∆1/2 =∇c = ∂r/r∂r leads to a 3rd
version fullfilling all conditions. With this justification the radial Nabla operator

∇rΦ =
∂rΦ
r∂r

(6)

is taken as hypothesis and compared with the conventional Nabla operators below in
Table 3. Control of the calculation by

∇c∇cΦ = ∆rΦ =
∂r
r∂r

∂rΦ
r∂r

=
∂

r∂r
∂rΦ
∂r

= Φ′′ +
2
r

Φ′ (7)

aligns with conventional table set ∆rΦ = Φ′′ + 2Φ′/r and can be simplified to:

∆rΦ =
∂

r∂r
∂rΦ
∂r

=
(rΦ)′′

r
= Φ′′ +

2
r

Φ′ (8)

Thereby following derivatives are used: Φ′ = ∂Φ/∂r, Φ′′ = ∂2Φ/∂r2.

Table 3. Comparison of conventional and hypothetical spherical operators ∇rΦ, divr sss and ∆rΦ.
For gradient and divergence operators the calculated results of the convention and the hypothesis
misalign. Only for the Laplace operator both concepts provide the same result ∆rΦ = Φ′′ + 2Φ′/r.

Radial Operator Convention [6] Hypothesis

Gradient: ∇rΦ =
∂Φ
∂r

= Φ′ ∇rΦ =
∂rΦ
r∂r

= Φ′+
Φ
r

Divergence: divr sss =
∂(r2s)
r2∂r

= s′ +
2
r

s divr sss =
∂rs
r∂r

= s′ +
s
r

Laplace: ∆rΦ =
∂r2

r2∂r
∂Φ
∂r

= Φ′′+
2
r

Φ′ ∆rΦ =
∂r
r∂r

∂rΦ
r∂r

= Φ′′+
2
r

Φ′



Acoustics 2021, 3 312

Punctum saliens: For the ∇r-differentiation of the special function Φ = Ψ/r with the
obligatory 1/r amplitude decrease for a spherical wave

∇r
Ψ
r
=

∂r Ψ
r

r∂r
=

1
r

∂Ψ
∂r

(9)

the 1/r property is retained, even if the ∇r differentiation is n-times repeated:

∇r∇r∇r...[n]...∇r
Ψ
r
=

1
r

∂nΨ
∂rn (10)

To demonstrate this advantageous property, Table 4 shows the specific impedance
z = p/v = ρ c on the left according to the conventional table rule ∇rΦ = ∂Φ/∂r and on
the right being calculated with the new hypothetical rule ∇rΦ = ∂rΦ/r∂r. Subsequently
the conventional calculation delivers a complex impedance, whereas the calculation with
∇rΦ = ∂rΦ/r∂r yields a consistent, purely material-dependent real impedance z = ρ c.

Table 4. Calculation of particle velocity, pressure and specific impedance z = p/v of a spherical
wave with velocity potential G using different Nabla operators. For the conventional Nabla operator
∇rΦ = ∂Φ/∂r [7] follows a complex impedance, wheras for the hypothetical Nabla operator
∇rΦ = ∂rΦ/r∂r a purely material-dependent real impedance z=ρ c results.

Spherical Conventional Hypothetical
Wave Propagation Nabla Operator Nabla Operator

∇r =
∂

∂r
∇r =

∂r
r∂r

Velocity Potential G [ m2

s ] G =
G0

r
exp i(ωt− kr) G =

G0

r
exp i(ωt− kr)

Particle Velocity v [m
s ] v =−∇rG=−∂G

∂r
=

(
1
r
+ik
)

G v =−∇rG=−∂rG
r∂r

=ikG

Pressure p [Pa= kg
ms2 ] p = ρ

∂G
∂t

= ρ iω G p = ρ
∂G
∂t

= ρ iω G

Impedance z =
p
v

[ kg
m2s ] z = ρ c

(
(kr)2

1+(kr)2 +
ikr

1+(kr)2

)
z =

p
v
=

ρ iω
ik

= ρ c

≈ ρ c for kr � 1 with c = ω/k

3. Results

An omnidirectionally unlimited three-dimensional continuum, in which solely lon-
gitudinal and transverse spatial waves but no surface waves can propagate, is taken as
basis. In case of linearity and thanks to the orthogonality there is no mutual influence and
the individual wave types can therefore be treated separately. With the labels sss→ sLsLsL and
ccc→ cLcLcL the longitudinal wave equation follows

˙sLsLsL − cLcLcL · ∇∇∇sLsLsL = 000 (11)

By definition, the deflections sLsLsL of the longitudinal wave lie in the direction of the
wave propagation given by wave velocity cLcLcL. Without loss of generality, with cLcLcL = cL exexex and
sLsLsL = sL exexex the plane wave should run in coordinate direction exexex. Thus, the vectorial wave
Equation (11) is simplified to scalar wave Equation (12) and the well-known solution (13)
of a planar wave is obtained (with ω [rad/s] = circular frequency, k [rad/m]=wave number,
sL ’= ∂sL/∂x):

ṡL − cL sL ’= 0 (12)

sL = sL,0 exp i(ωt− kLx) (13)
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For the spherical wave propagating in the radial direction r ererer, the deflections s also
have the same direction and the scalar wave equation follows with the hypothetical Nabla
operator ∇r sL = ∂rsL/r∂r

ṡL − cL∇r sL = 0 → ṡL − cL
∂rsL
r∂r

= 0 (14)

As can be verified by insertion, the solution is a spherical wave with 1/r distance
dependency of the amplitude (SL,0 =amplitude factor [m2]):

sL =
SL,0 exp i(ωt− kr)

r
(15)

In contrast, the conventional radial gradient ∇r sL = ∂sL/∂r describes a plane wave
travelling in rererer direction as shown in Table 5. This is due to the fact that ∂sL/∂r has the
analogue form as the cartesian gradient ∂sL/∂x.

In case of the transverse wave (T), deflection sTsTsT and direction of propagation cTcTcT are
perpendicular to each another, i.e., cTcTcT · sTsTsT = 0. In this case, the well-known two-way wave
equation can be factorized by means of the identity (aaa× bbb) · (aaa× bbb) = aaa · aaa bbb · bbb −2(aaa · bbb)2

and the assignments aaa→ cTcTcT und bbb→ rotrotrot[ ] = ∇× [ ] :

s̈ssTTT − c2
T rotrotrot rotrotrot sTsTsT =

(
˙[ ]˙[ ]˙[ ]− cTcTcT × rotrotrot[ ]

)(
˙[ ]˙[ ]˙[ ] + cTcTcT × rotrotrot[ ]

)
sTsTsT = 000 (16)

and the vectorial one-way wave equation follows

ṡssTTT − cTcTcT × rotrotrot sTsTsT = 000 (17)

Transversality of the Equation (17) is proven by scalar multiplication with cTcTcT :, i.e.,

cTcTcT · ṡssTTT − cTcTcT · cTcTcT × rotrotrot sTsTsT = 0 (18)

Since a spar product with two equal vectors cTcTcT is always zero follows cTcTcT · ṡssTTT = 0, i.e.,
the direction of the wave cTcTcT and the deflection ṡssTTT are transversal. It can also be shown
that sTsTsT and rotrotrot sTsTsT are perpendicular to each another. Finally, the scalar multiplication of
Equation (17) with sTsTsT result in

sTsTsT · ṡssTTT − sTsTsT · cTcTcT × rotrotrot sTsTsT = 0 (19)

i.e., the three vectors sTsTsT , cTcTcT and rotrotrot sTsTsT form an orthogonal tripod. So the vectorial transverse
one-way wave Equation (17) can be expressed in scalar format as

ṡT − cT |rotrotrot sTsTsT | = 0 (20)

Above calculations refer to the impulse related concept “one-way wave equation”.
Finally, a longitudinal spherical wave should be calculated according to the “two-way
wave equation” principle. The force related wave Equation (2) serves as the starting point
for the deflection sss = s ererer

s̈ss− c2∆sss = 0 (21)

With s̈ = −ω2s = −k2c2s and the spherical Laplace operator ∆s = s′′ + 2s′/r the
Bessel differential equation follows:

r2s′′ + 2rs′ + (kr)2s = 0 (22)

with bessel function of half-integer order n = 1/2 as solution

s = S0 r−
1
2 J1/2(kr) → j0(kr) (23)
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Bessel functions are transcendent and the solution can only be approximated by series
expansion. An exception is the elementary half-integer function J1/2(kr), therefore the
specific labelling as spherical Bessel function j0(kr).

Table 5. Spherical longitudinal wave propagation in an unlimited, elastic continuum without
boundary effects according to the spherical one-way wave equation. For reasons of simplicity and
definiteness linearity, homogeneity, isotropy and losslessness are assumed. The table compares the
wave equations and their solutions using conventional and hypothetical Nabla operators. For the
conventional Nabla operator results a plane wave with constant amplitude. For the hypothetical
Nabla operator follows a solution with the usual 1/r amplitude decrease of spherical waves.

Spherical Longitudinal Conventional Hypothetical
One-Way Wave Equation Nabla Operator Nabla Operator

∇rΦ =
∂Φ
∂r

∇rΦ =
∂rΦ
r∂r

Wave Equation (3D) ṡssLLL − cLcLcL · ∇∇∇sLsLsL = 000 ṡssLLL − cLcLcL · ∇∇∇sLsLsL = 000

Scalar Equation ṡL − cL
∂sL
∂r

= 0 ṡL − cL
∂rsL
r∂r

= 0

Helmholtz Equation
∂sL
∂r
− ikL sL = 0

∂rsL
r∂r
− ikL sL = 0

Solution sL = sL,0 exp i(ωt−kLr) sL =
SL,0

r
exp i(ωt−kLr)

4. Discussion

Following, the specific impedance z = p/v is taken to show numerical differences
between the two competing Nabla operator variants. According to Table 4 for the conven-
tional (conv) Nabla operator the complex impedance z is normalized to ρc and transferred
into polar form with the amplitude function A [-] and the phase φ [rad]:

z conv
ρc

=
(kr)2 + ikr
1 + (kr)2 = Aconv exp iφconv (24)

Aconv =
kr√

1 + (kr)2
(25)

φconv = arc tan
(

1
kr

)
= arc cot(kr) (26)

For the hypothetical (hyp) Nabla operator the impedance amplitude function Ahyp [-]
and the phase φhyp [rad] have the following values

Ahyp = 1 (27)

φhyp = 0 (28)

To illustrate the numerical differences between the conventional Nabla operator and
the hypothetical Nabla operator variant Figure 1 shows the impedance amplitude functions
and Figure 2 the phases depending on source distance r devided by wavelength λ [m];
the value r/λ [-] is taken because it is more easily comprehensible than kr = 2πr/λ.
According to both graphs, the conventional and hypothetical Nabla operator concepts
substantially differ in the near field, but show asymptotic approximation in the far field.
Because in many contexts of spherical wave propagation near field influences are neglected,
above given spherical one-way wave equations and the hypothetical Nabla operator lead
to significant simplifications of the related calculations.
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Figure 1. Comparison of the impedance amplitude functions Aconv and Ahyp for spherical wave
propagation as a function of the normalized distance r/λ [-]. At r/λ = 1 the difference is 1.2 %, for
r/λ > 3 it is less than 0.14 %. In practice, the near field influence is neglected in calculations.

Figure 2. Comparison of the impedance related phases φ conv and φ hyp as a function of r/λ [-].
For r/λ=1 the angular difference is 0.158 rad resp. 9° and for r/λ>3 less than 0.053 rad resp. 3°.

5. Conclusions

With the spherical one-way wave equation and the hypothetical Nabla operator being
presented in this paper the calculation of spherical wave propagation does not show
wattless near fields and the solutions can be derived without the need of Bessel functions.
Thereby spherical wave calculations can be significantly simplified.
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