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Abstract: A nonlinear Rayleigh–Plesset equation for describing the behavior of a gas bubble in
an acoustic field written in terms of bubble-volume variation is solved through a linear iterative
procedure. The model is validated, and its accuracy and fast convergence are shown through the
analysis of several examples of different physical meanings. The simplicity and usefulness of the
presented method here in relation to the direct resolution of the whole nonlinear system, which is also
discussed, make the method very attractive to solving a problem. This iterative method allows us to
solve only linear systems instead of the nonlinear differential problem. Moreover, the implementation
of the iterative algorithm includes a tolerance-dependent stopping criterion that is also tested.
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1. Introduction

Rayleigh–Plesset (RP) equations model the behavior of gas bubbles impinged by
an acoustic wave under the consideration of some physical approximations [1,2]. Two
frameworks exist in this context. On the one hand, the radius model uses time-dependent
bubble radius R(t) in the derivation of an ordinary differential equation. On the other hand,
the volume model uses bubble volume variation v(t) as a time-dependent variable for
deriving an ordinary differential equation (RPv). In this work, we consider the latest. Such
nonlinear differential model is of second-order. Two initial conditions on primary variable
v and its first time derivative v′ are required at the onset of the physical phenomenon
(t = 0). This model equation was derived in 1973 by Zabolotskaya et al. [3]. It was used in
conjunction with the wave equation to analyze effects caused by a population of gas bubbles
in a liquid, which parameter of nonlinearity increases by several orders of magnitude, on
an ultrasonic field through the development of second-order perturbation methods [3,4]
and numerical models [5–8].

The iterative procedure applied in this work to solve the RPv equation follows the iter-
ative method developed for solving problems defined by nonlinear second-order ordinary
differential equations [9]. This method relies on an iterative procedure that considers the
differential equation at each iteration by assuming its nonlinear terms as known from the
previous iteration, which leads to the expression of a modified reformulated linear problem
at each iteration, so that only linear differential equations must be solved throughout the
entire process (no nonlinear ordinary differential equations have to be explicitly solved).
This latter point is an advantage regarding other techniques that need to solve nonlinear
systems at each iteration step. When integrals at each iteration step can be analytically eval-
uated or by means of symbolic computations, it allows for the solution to be expressed in
polynomial form. When these integrals cannot be analytically or symbolically solved (such
as in this work, see Section 2), an alternative method consists of numerically calculating
the integrals.

In this paper, we develop an iterative procedure to solve the initial-value Rayleigh–
Plesset problem defined by the RPv equation to track in time the oscillations of a single
bubble in an ultrasonic field. Section 2 describes the application of the technique. To
this end, the system obtained at each iteration is numerically solved. Analysis of several
physical examples and a comparison to the reference data are presented in Section 3, thus
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showing its fast convergence and accuracy. The simplicity and usefulness of the method
are also discussed through these examples. A stopping criterion is also developed in the
implemented algorithm. Lastly, Section 4 concludes this work.

2. Materials and Methods

We consider a tiny air bubble placed in liquid and impinged by an ultrasonic field.
To describe the response of the bubble to the acoustic field, we work within the Rayleigh–
Plesset framework. In this context, some approximations are applied to model the behavior
of bubble oscillations, and several physical assumptions are made:

• bubble content is gas without vapor;
• the bubble is spherical (spherically symmetric pulsation);
• the gas contained in the bubble has adiabatic behavior;
• surface tension at the gas–liquid boundary is neglected;
• a quadratic Taylor expansion of the adiabatic gas law limits bubble oscillations to

moderate values;
• the bubble does not itself radiate sound.

Moreover, in this work, we neglect buoyancy, Bjerknes, and viscous drag forces. The
evolution with time t of the volume variation of the bubble v(t) = Vb(t)−Vb0, a smooth
real-value function of t, where Vb and Vb0 = 4πR3

b0/3 are the current and initial volumes
of the bubble, respectively, and Rb0 is the initial radius, is modeled by the Rayleigh–Plesset
equation (RPv) [3,4],

v′′ + δωbv′ + ω2
bv− av2 − b (2vv′′ + v′2 ) = −ηp, 0 < t < T, (1)

in which v′ and v′′ are the first- and second-order derivatives of v(t), ωb =
√

3γpb/ρl R2
b0

is the resonance frequency of the bubble, where ρl is the density of the liquid at the
equilibrium state, γ is the specific heat ratio of the gas, pb = ρbc2

b/γ is its atmospheric
pressure, ρb and cb are the density and sound speed at the equilibrium state of the gas,
and δ = 4νl/ωbR2

b0 is the viscous damping coefficient, for which νl is the kinematic
viscosity of the liquid. a = (γ + 1)ω2

b/2Vb0 is the second-order nonlinear parameter due
to the adiabatic law used to model the gas pressure inside the bubble. b = 1/6Vb0 is the
nonlinear coefficient associated to the bubble dynamics. The parameter η = 4πRb0/ρl is a
constant that affects the source term p(t), which is the time-dependent acoustic pressure
perturbation that impinges the bubble (a known source function). Several source functions
are considered in Section 3. t = T is the upper limit of the time interval. The derivation of
this ordinary differential equation, Equation (1), can be found in [3,4].

The differential system is closed by imposing initial conditions expressing the rest
of the bubble at the onset of the study (nonperturbation of the bubble at the start of
the experiment),

v(0) = 0, v′(0) = 0. (2)

The iterative procedure relies on the resolution of several successive systems DSn,
which include the linear terms in the ordinary differential equation (linear operator L), the
terms in the ordinary differential equation that do not depend on the dependent variable
v (function g), and the initial conditions of the differential system (auxiliary operator A),
through an n−iterative process that starts at n = 0 without considering nonlinear terms in
the ordinary differential equation (nonlinear operator N), giving the solution v0(t), and
follows for n = 1, . . . , N by taking into account the nonlinear operator N evaluated at the
preceding iteration, giving the solution vn(t):
DS0 (n = 0);

L(v0(t)) + g(t) = 0, A(v0, v′0) = [v0(0) = 0; v′0(0) = 0], (3)
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DSn (n = 1, . . . , N);

L(vn(t)) + g(t) + N(vn−1(t)) = 0, A(vn, v′n) = [vn(0) = 0; v′n(0) = 0]. (4)

Its application to Equations (1) and (2) requires the definition of linear operator L (lin-
ear terms of the differential equation), nonlinear operator N (nonlinear terms), known func-
tion g (independent terms on v), and auxiliary operator A (initial conditions), respectively:

L(v(t)) = v′′ + δωbv′ + ω2
bv, (5)

N(v(t)) = −av2 − b (2vv′′ + v′2 ), (6)

g(t) = ηp(t), (7)

A(v, v′) = [v(0) = 0; v′(0) = 0], (8)

In this case, successive iterations are, for DS0,{
L(v0(t)) + g(t) = v′′0 + δωbv′0 + ω2

bv0 + ηp = 0,

A(v0, v′0) = [v0(0) = 0; v′0(0) = 0],
(9)

and for DSn,
L(vn(t)) + g(t) + N(vn−1(t)) = v′′n + δωbv′n + ω2

bvn + ηp

− av2
n−1 − b (2vn−1v′′n−1 + v′2n−1 ) = 0,

A(vn, v′n) = [vn(0) = 0; v′n(0) = 0].

(10)

Each differential system obtained at each iteration n, Equations (9) and (10), is defined
by a linear (in terms of v0 and vn, respectively) inhomogeneous second-order ordinary
differential equation of time-dependent variable v0 and vn, respectively, and Cauchy
conditions. Finding the analytical solution of Equation (10) is not straightforward. Symbolic
calculus was used to obtain this solution at each iteration of the progression, but it failed in
giving vn from n = 2 due to the complexity of the second-hand side of Equation (10).

Thus, we chose to apply a numerical scheme at each iteration n, namely, the second-
order explicit vector Euler approximation method [10], which is more efficient than solving
the whole problem directly, Equations (1) and (2), numerically. A fourth-order vector
Runge–Kutta algorithm was also developed, but the obtained results in the following sec-
tion were not affected by the choice of numerical method. To this purpose, we reduce DS0
and DSn to a nonlinear first-order system of two coupled ordinary differential equations
by setting the new variable v′(t) = V(t), which yields

v′0(t) = V0(t) = fv0(t, v0, V0),

v0(0) = 0,

V′0(t) = −δωbV0(t)−ω2
bv0(t)− ηp(t) = fV0(t, v0, V0),

V0(0) = 0,

(11)



v′n(t) = Vn(t) = fvn(t, vn, Vn),

vn(0) = 0,

V′n(t) = −δωbVn(t)−ω2
bvn(t)− ηp(t)

+ av2
n−1(t) + b (2vn−1(t)V′n−1(t) + V2

n−1(t) ) = fVn(t, vn, Vn),

Vn(0) = 0.

(12)
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These differential systems are written in the following vector form, after defining
Vn(t) = (vn(t), Vn(t))t, Fn(t, Vn) = ( fvn(t, vn, Vn), fVn(t, vn, Vn))t, 0 = (0, 0)t,{

V ′0(t) = F0(t, V0),

V0(0) = 0,
(13)

{
V ′n(t) = Fn(t, V n),

V n(0) = 0.
(14)

The application of the above-mentioned numerical algorithm to Equations (13) and
(14) requires the discretization of the continuous time domain by means of the time dis-
cretization step h, giving the set {ti }I

i=1, where I = (T − 0)/h + 1. The approximate
solution of Systems (13) and (14) is sought at all points ti of that set (subindex i indicates
the approximate value of the corresponding variable at point ti). This process leads to the
following formulation:{

V0,i+1 = V0,i + hF0(ti, V0,i), 1 ≤ i ≤ I − 1,

V0,1 = 0,
(15)

{
V n,i+1 = V n,i + hFn(ti, V n,i), 1 ≤ i ≤ I − 1,

Vn,1 = 0.
(16)

The derivative V′n−1,i in Equation (16), V′0,i when n = 1, is evaluated at each point ti
through a first-order finite-difference formula [10].

Since no exact solution of our differential problem is known, we evaluate the error
produced during the iterative process through the discrete L2-norm of the difference
between two consecutive approximate solutions, V n(i, 1) and V n−1(i, 1) on the one hand,
i.e., vn,i and vn−1,i, and between V n(i, 2) and V n−1(i, 2) on the other hand, i.e., v′n,i and
v′n−1,i, at each point i of the discretization set ti for i = 1, . . . , I, and for all values n =

1, . . . , N, which is the EL2
Vn

-vector of components:

EL2
vn =

√√√√ I

∑
i=1

(vn,i − vn−1,i)2,

EL2
v′n

=

√√√√ I

∑
i=1

(v′n,i − v′n−1,i)
2.

(17)

The objective of this paper is to propose a very useful tool for solving the problem
described above. In this context, a stopping criterion is set from the value of the tolerance,
ε, as follows. Iterations stop as soon as both inequalities stand:

EL2
vn ≤ ε, EL2

v′n
≤ ε, (18)

for which tolerance could be defined as, for instance, ε = vb0 × 10−10. An example of using
the stopping criterion is given in Section 3.

The ad hoc implementation of the scheme is performed in a MATLABr R2017a
environment. The schematic workflow for the successive steps of the entire algorithm is
represented in Figure 1. CPU times required to obtain the solution of the bubble problems
from the resolution process, indicated by tcpu in the following paragraphs, are obtained by
running the code on a 128 GB RAM computer with a 64 bit Windows 10 operative system
working with an Intelr Core™ i7-6800 K CPU @ 3.40 GHz.
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Figure 1. Schematic algorithm workflow for the entire resolution process.

3. Results and Discussion

In this section, the method developed in Section 2 is applied to solve the following
physical problem: in water (ρl = 1000 kg/m3, νl = 1.43× 10−6 m2/s), an air bubble of
initial radius Rb0 = 4.5 µm (ρb = 1.29 kg/m3, cb = 340 m/s, γ = 1.4, pb = 0.11 MPa,
ωb = 4.7 MHz) is impinged by a continuous (monochromatic) sine ultrasonic wave,
p(t) = p0sin(ωt), of frequency f = ω/2π = fb = ωb/2π = 748.07 kHz and high finite
amplitude p0 = 1.25 kPa, studied during T = 30/ f (see Figure 2a), and for the number of
iterations N = 14, Case 1. δ = 0.06, η = 5.66× 10−8 m4/kg, and time step h = 1× 10−9 s
are used in the entire section. tcpu = 406 s in Case 1. Figure 2 represents (a) the pressure
source signal; the solution at the last iteration n = N, i.e., (b) the bubble volume variation
vN and (c) the speed of bubble volume variation v′N . The L2-norm error at each iteration
of the calculation is shown in Figure 2d,e, respectively, for vn and v′n. The convergence of
the method is fast (Figure 2d,e). Figure 3 displays the comparison of the obtained results
here to the obtained data by a simulation carried out with the Snow-Bl code considering
one single bubble with the same parameters [5]. This code relies on the approximation
of the solution of Equation (1), coupled to the linear wave equation, by finite-difference
approximations. It can track both pressure and bubble oscillation fields in time. The
concordance of both bubble-volume variation results validates the method developed in
this paper. The CPU time needed by the Snow-Bl code is 4893 s, which is 12 times the time
required here.

Figure 2. Case 1. f = fb, high finite amplitude with nonlinear terms. (a) Pressure source signal,
(b) bubble-volume variation, (c) speed of bubble-volume variation; last iteration n = N. L2-norm
error at each iteration n of the calculation; (d) vn, (e) v′n.
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Figure 3. Case 1. f = fb, high finite amplitude with nonlinear terms. Bubble-volume variation;
current results at last iteration n = N compared to Snow-Bl results.

Figure 4 shows the corresponding results for the infinitesimal source amplitude
p0 = 1× 10−3 Pa, Case 1′, which implies a linear behavior of the bubble response since
the nonlinear parameters a and b are multiplied by very small values. Convergence is
thus immediate, after one iteration. Figure 5 shows the corresponding results for the
same finite source amplitude as that in Case 1, p0 = 1.25 kPa, but after setting nonlinear
parameters a and b to zero, Case 1′′. This imposition implies a linear response of the bubble
even at this high source amplitude since ordinary differential Equation (1) is linear. The
solution is reached at the first calculation for v0 and v′0, and no iterations are needed. The
comparison of the solution, especially v, for Cases 1′ and 1′′ reveals that both curves are
identical (proportionally to their amplitude) in Figures 4 and 5, i.e., the result is similar
in both cases. However, in Figure 2 for Case 1, the nonlinearity due to finite amplitude
and nonlinear parameters a and b affects the system and modifies the solution iteration by
iteration, which leads to a different signal, showing distortion and a slight nonsymmetrical
response between positive and negative volume variations around axis v = 0.

Figure 4. Case 1′. f = fb, infinitesimal amplitude with nonlinear terms. (a) Pressure source signal,
(b) bubble-volume variation, (c) speed of bubble-volume variation; last iteration n = N. L2-norm
error at each iteration n of the calculation; (d) vn, (e) v′n.
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Figure 5. Case 1′′. f = fb, high finite amplitude without nonlinear terms (a = 0, b = 0). (a) Pressure
source signal, (b) bubble-volume variation, (c) speed of bubble-volume variation; last iteration n = N.
L2-norm error at each iteration n of the calculation; (d) vn, (e) v′n.

To illustrate the possibilities and usefulness of the method implemented in this paper,
we consider two other forcing terms in Equation (1): a one-cycle burst ultrasonic signal of
frequency f = 200 kHz and high finite amplitude p0 = 1.25 kPa, studied during T = 30/ f
(see Figure 6a), and for the number of iterations N = 4, Case 2; an ultrasonic pulse of
frequency f = 200 kHz and finite amplitude p0 = 1 Pa, studied during T = 100/ f
(see Figure 7a), and for a number of iterations N = 4, Case 3. tcpu = 40 s for Case 2,
and tcpu = 542 s for Case 3. For each case, we represent the response of the system by
displaying (a) the pressure source signal, (b) the bubble-volume variation vN , (c) the speed
of bubble-volume variation v′N at the last iteration n = N, and the L2-norm at each iteration
of the calculation in Figures 6d,e and 7d,e respectively, for vn and v′n. These diagrams
correspond to Figure 6 for Case 2 and Figure 7 for Case 3, respectively. The physically
coherent response of the system (Figures 6b,c and 7b,c) is obtained after very few iterations
(Figures 6d,e and 7d,e), which illustrates the good behavior of the method developed in
this work.

Figure 6. Case 2. f = fb, high finite amplitude with nonlinear terms. (a) Pressure source signal,
(b) bubble-volume variation, (c) speed of bubble-volume variation; last iteration n = N. L2-norm
error at each iteration n of the calculation; (d) vn, (e) v′n.
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Figure 7. Case 3. f = fb, finite amplitude with nonlinear terms. (a) Pressure source signal, (b) bubble-
volume variation, (c) speed of bubble-volume variation; last iteration n = N. L2-norm error at each
iteration n of the calculation; (d) vn, (e) v′n.

For Case 1, we test the stopping criterion given by (18) with ε = vb0 × 10−1, ε =
vb0× 10−10, and ε = vb0× 10−20. Results are shown in Figure 8. N = 7 with tcpu = 105 s,
N = 26 with tcpu = 1424 s, and N = 63 with tcpu = 8450 s are respectively required for
satisfying the tolerance. Figure 8c shows an extremely exigent case since it takes many
iterations to slightly decrease error and improve results vn and v′n .

Figure 8. Case 1. f = fb, high finite amplitude with nonlinear terms. L2-norm error in logarithmic
scale at each iteration n of the calculation; (left) vn, (right) v′n. (a) ε = vb0 × 10−1, (b) ε = vb0 × 10−10,
(c) ε = vb0 × 10−20.

In the three cases presented in this section, even though the parameters of the problem
set two very high nonlinear coefficients, a = 6.95× 10+28 Hz2/m3 and b = 4.37× 10+14/m3,
the convergence of the presented method is fast, indicating the good behavior of the
method. Regarding the benefits obtained here to solve the RPv in relation to other potential
or existing resolution methods, the following arguments are given. (i) First, the direct
treatment of the complete nonlinear differential system by reducing its order to 1 would
end up requiring a numerical resolution (vector Newton–Raphson or similar algorithm) of
a nonlinear coupled system of two discretized equations (for which the nonlinear operator
N would depend on the unknown variable N(vn) instead of the known solution at the
previous iteration N(vn−1) in Equation (10) of the current procedure) at each step of the
numerical process (vector Runge–Kutta or vector explicit Euler method), of which the time
cost is elevated, and accuracy depends on the choice of the required vector estimation
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to start the system resolution. A clear advantage of the presented model is that it does
not need such intermediate solution to nonlinear systems since the nonlinear terms used
are known from the previous iteration. (ii) On the other hand, the direct treatment of the
complete nonlinear differential system of second order, Equations (1) and (2), is much
likely to be more delicate and time-consuming. The direct substitution of derivatives
by finite-difference formulas in Equations (1) and (2) would lead to an implicit scheme
requiring the resolution of a nonlinear system of equations at each time step of the process,
which is usually highly time-consuming. The treatment of differential system Equations (1)
and (2) by finite-volume time approximations would end up to a quite similar resolution of
nonlinear systems of equations at the time steps. The use of finite-element approximations
through the application of a variational formulation to obtain a weighted-integral form
equivalent to Equations (1) and (2) would also require the solution of a nonlinear system
of equations at each step of the time discretization process (finite differences). Thus, the
simplicity of the procedure presented in this paper makes it very useful and attractive.

4. Conclusions

A nonlinear Rayleigh–Plesset equation written in the bubble variation volume frame-
work was solved through a linear iterative procedure. The presented results showed fast
convergence and accuracy of the technique developed in this paper. The simplicity and
usefulness of the method presented here in relation to the direct resolution of the whole
nonlinear system was also discussed. This iterative method allowed us to solve only linear
systems instead of a nonlinear differential problem. Moreover, the implementation of the
iterative algorithm includes a tolerance-dependent stopping criterion that was also tested.
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