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Abstract: Two blade curvatures representative of those found in automotive fans are compared.
Measured performances are analyzed for forward and backward curved blades, either with or without
heat-exchangers placed in front of them. The backward fan demonstrated good efficiency but poor
acoustics, whereas it is the contrary for the forward fan. Investigations are completed by a numerical
analysis of the flow in the cooling module. Different integration effects are highlighted depending
on the blade curvature, showing variation in pressure, torque and efficiency. Analyses of blade
loadings show that the flow is more homogeneous with a forward curved fan and it produces less
unsteadiness at the blade tip. Post-processing of detached eddy simulations (DES) shows density
fluctuations on the blade wall and confirms the correlation between the large vortical structures
and the acoustic sources for both fans. In addition, with the forward fan, the sound propagation is
less directed towards the axis of rotation and it yields up to −3.6 dB of sound pressure level (SPL)
measured in front of the cooling module. As a conclusion, any choice for a fan must result from
a compromise between aerodynamics and aeroacoustics, and the final performances must be carefully
checked on the module.

Keywords: fan; fan system; aeroacoustics; cooling module; blade curvature

1. Introduction

Automotive thermal management relies strongly on the cooling module that is placed
on the front-end of the car. It is composed of a set of coolers and a fan system, both designed
to maximize heat exchanges in various conditions and minimize the acoustic annoyance. Stringent
new regulations on vehicle efficiency and noise emission have more than ever yielded investigations
of the multi-physic optimization of the fan, assessing performance in the actual context, i.e., once
integrated in the cooling module.

Fan parameterization has been therefore widely used to conduct fan optimization, and the most
frequent approaches are based on the use of a design of experience (DoE) with geometrical
parameters [1,2]. Several attempts were also made to introduce a multi-physics modelling of response
surfaces, either for mechanical concern (i.e., fan deflexion and modal analysis [3]) or for acoustics [4].

It is widely recognized that the blade curvature along the blade span is among the most important
parameters to be accounted for in acoustics. Several studies have already explained some differences
in fan behavior according to their design [5–8]. All the observations show the importance of the load at
the blade tip since the flow interacts with the recirculation in the tip clearance and with the unsteady
phenomenon thus created.

Engineers who design fans face several difficulties when sizing them. First of all, they have to
make compromises of all kinds between aerodynamic performance, acoustics, packaging requirements,
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etc. The choices that must be made are all the more difficult as it is not easy to anticipate their
consequences when the fan is finally mounted into its cooling module, i.e., when the fan has to operate
behind a radiator and in the center of a very compact shroud. Due to the integration effects that vary
from one geometry to another, it is ultimately uncertain whether a fan system optimized for bench
measurement conditions is the most appropriate for the thermal cooling of a vehicle.

2. Objective

The objective of the present work is to study and understand the phenomena that occurs when
a fan is placed behind a stacking of heat exchangers. It is common to observe that the performance
in a cooling module is not equal to the sum of the pressure drop of the radiator and the pressure
increase through the fan. Discrepancy comes from additional losses in the cooling module that are due
to the integration effect.

Integration effects may vary depending on the fan type, i.e., whether it is designed with backward
or forward curved blades. This feature is frequently used either to increase aerodynamic performance
or to improve acoustics, and is a technical choice that is taken a priori when designing the fan.
A good understanding of the consequences of blade curvature on the performance of the cooling
module therefore requires knowledge of the loss mechanisms, both to minimize them and to correctly
dimension the components. The challenge is also to make informed trade-offs between aerodynamic
and aeroacoustic performance.

3. Cooling Module Description and Methods for Fan Comparison

Cooling modules must meet the requirements of modern vehicles for which compactness is
essential. This is difficult to achieve because several heat exchangers are required: they are most
frequently composed of a radiator, a condenser for air conditioning, sometimes a charge air cooler,
and oil coolers or even some supplementary heat exchangers for the electrical vehicles equipped with
a heat pump.

3.1. The Shroud

Cooling modules are subject to space constraints in the motor compartments, and this often results
in asymmetrical shapes. It is the case for the module used in this study and presented in Figure 1.
The two different fans that can be fitted into the shroud are presented in the next paragraph. The shroud
is used to hold the motor and fan unit and to ensure the aerodynamic convergence of the air passing
through the exchangers and going to the fan. It is a nearly flat surface with a maximum depth of
36 mm. Therefore it cannot be considered as a profiled convergent (like in a nozzle), but rather
as a sealing device.
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curvature (FW). Both have 7 blades equally distributed. The diameter at the blade tip is 423 mm, and 
162 mm for the hub. The chords go from 42 to 59 mm on the backward fan, and from 67 to 86 mm on 
the forward fan. It is important to note that parameters such as chord, blade thickness and stagger 
angles have been intentionally modified to have fans with comparable performances. This could not 
have been the case otherwise since reversing the curvature leads to significant performance changes. 

 
Figure 2. Backward and forward curved blades (blue arrows: rotational direction). 

It is important to note that these fans are equipped with a rotating ring which has two functions: 
on the one hand, to maintain the end of the blades because they are made of plastic and would 
otherwise undergo significant deformation; and on the other hand to limit the recirculation effects 
between the blade tip and the shroud [12]. This ring also has an L-shaped profile, which both 
increases its rigidity and allows better control of the recirculating air flow. For mechanical reasons in 
the event of shock or vibration, and also for reasons of variability in the process, the peripheral tip 
clearance is quite large (4.8 mm at the radius, i.e., ~2% of the radius) and the recirculating flow can 
reach 6% of the nominal flow rate. 

3.3. Experimental Facility 

In order to investigate the integration effect of the fan in the cooling module, the two fans are 
tested in the same shroud described above by placing or removing the radiator (comparison of the 
fan with or without the heat exchanger). In order to ensure the tightness of the device, possible micro-
leaks between the shroud and the radiator core were eliminated during tests by applying adhesive 

Figure 1. Overview of a cooling module: (a) front view, (b) rear view, and (c) radiator and fan system
(cut view).

The arms supporting the motor are arranged a few mm (16 mm) from the trailing edge of the fan.
They therefore participate by their potential effects in the tonal noise generation, mainly the blade
passage frequency (BPF) and the 1st and 2nd harmonics (H1 and H2).
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For the purposes of this study, this shroud is kept identical in the comparison of the two
different fans.

3.2. Fan Systems

In general, for the automotive fan, the blade stacking from the bottom to the top is made in such
a way that the trajectory of the trailing edges at all radii traces a flat surface. The curvature is
given by orienting the blade either forward (in the direction of rotation) or backward. It is therefore
a combination of sweep and lean changes, which are in theory a stacking change either in the direction
of the chord or perpendicular to the chord [9,10].

These curvature modifications give very different and even antagonistic characteristics.
It is frequently observed that for automotive operating points (high flow rate with a high specific speed
Ns of 3 to 4, and a low specific diameter ds of 1 to 1.5) rear curves allow reaching higher flow rates,
unfortunately at the price of a higher acoustics level [4,7,11].

For fans, specific speed and diameter are calculated from the formula

Ns =
Ω·
√

Q

∆P
3
4

(1)

ds = D·∆P
1
4 ·Q

1
2 (2)

with ∆P: pressure rise (Pa), Q: volumic flow rate (m3/s), D: diameter (m), and Ω: rotational speed
(rad/s).

Two fans are therefore considered in this study (Figure 2). They have been selected according to
their curvature characteristics, which are opposite to each other, i.e., a backward (BW) and a forward
curvature (FW). Both have 7 blades equally distributed. The diameter at the blade tip is 423 mm,
and 162 mm for the hub. The chords go from 42 to 59 mm on the backward fan, and from 67 to 86 mm
on the forward fan. It is important to note that parameters such as chord, blade thickness and stagger
angles have been intentionally modified to have fans with comparable performances. This could not
have been the case otherwise since reversing the curvature leads to significant performance changes.
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It is important to note that these fans are equipped with a rotating ring which has two functions:
on the one hand, to maintain the end of the blades because they are made of plastic and would
otherwise undergo significant deformation; and on the other hand to limit the recirculation effects
between the blade tip and the shroud [12]. This ring also has an L-shaped profile, which both increases
its rigidity and allows better control of the recirculating air flow. For mechanical reasons in the event
of shock or vibration, and also for reasons of variability in the process, the peripheral tip clearance is
quite large (4.8 mm at the radius, i.e., ~2% of the radius) and the recirculating flow can reach 6% of
the nominal flow rate.
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3.3. Experimental Facility

In order to investigate the integration effect of the fan in the cooling module, the two fans are
tested in the same shroud described above by placing or removing the radiator (comparison of the fan
with or without the heat exchanger). In order to ensure the tightness of the device, possible micro-leaks
between the shroud and the radiator core were eliminated during tests by applying adhesive tape all
around the cooling module. In addition, great attention was paid to the manufacturing quality of
the fans that have been machined from aluminum. They do not deform under the effect of rotation
(a known phenomenon on plastic fans) and they do not have imperfections due to the molding process,
which sometimes leaves burrs on the parting surfaces of the mold.

Each device (BW fan with or without exchanger, FW fan with or without exchanger) was tested
on the aerodynamic bench at the La Verrière R&D site (France). This bench meets ISO Standard
DP 5801 [13] and was presented in [14]. The static pressure is measured as the difference between
the atmospheric pressure and the static pressure in the bench plenum (see Figure 3). The performance
curve is obtained for a constant fan rotation speed by varying the flow rate on the bench using two
calibrated nozzles. The fan is driven in rotation by an electric motor whose consumption is known
by measuring voltage and amperage. Its efficiency was measured on a dynamometer device for
the electrical motor, which makes it possible to estimate the mechanical torque produced.

Acoustics 2020, 3 FOR PEER REVIEW  4 

 

tape all around the cooling module. In addition, great attention was paid to the manufacturing 
quality of the fans that have been machined from aluminum. They do not deform under the effect of 
rotation (a known phenomenon on plastic fans) and they do not have imperfections due to the 
molding process, which sometimes leaves burrs on the parting surfaces of the mold. 

Each device (BW fan with or without exchanger, FW fan with or without exchanger) was tested 
on the aerodynamic bench at the La Verrière R&D site (France). This bench meets ISO Standard DP 
5801 [13] and was presented in [14]. The static pressure is measured as the difference between the 
atmospheric pressure and the static pressure in the bench plenum (see Figure 3). The performance 
curve is obtained for a constant fan rotation speed by varying the flow rate on the bench using two 
calibrated nozzles. The fan is driven in rotation by an electric motor whose consumption is known 
by measuring voltage and amperage. Its efficiency was measured on a dynamometer device for the 
electrical motor, which makes it possible to estimate the mechanical torque produced. 

At the end of the aerodynamic tests, acoustic measurements were taken in a semi-anechoic 
chamber at the nominal rotational speed of each of the fans (Figure 4). Measurements were taken on 
the axis of rotation of the fan, at a distance of 1 m from the front face of the fan hub and at a height of 
1 m. The cooling module is suspended accordingly by flexible fasteners to filter out vibrations. 

 

Figure 3. Test facility for the fan system or module performance measurement. 

 
Figure 4. Semi-anechoic chamber, with the cooling module hanged and microphone positioning. 

3.4. Numerical Simulation 

In order to better understand the differences in fan behavior with or without radiators, 
numerical simulations of the flows were carried out. Their purpose was to compare the blade loading 
and analyze the flows. The commercial software used (CCM+) uses a polyhedral mesh and the 
simulation domain includes the cooling module and the external geometry of the test bench (see 
Figure 3). The mesh size includes 45 million polyhedra, mainly concentrated on the fan and its 

Figure 3. Test facility for the fan system or module performance measurement.

At the end of the aerodynamic tests, acoustic measurements were taken in a semi-anechoic
chamber at the nominal rotational speed of each of the fans (Figure 4). Measurements were taken
on the axis of rotation of the fan, at a distance of 1 m from the front face of the fan hub and at a height
of 1 m. The cooling module is suspended accordingly by flexible fasteners to filter out vibrations.
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3.4. Numerical Simulation

In order to better understand the differences in fan behavior with or without radiators, numerical
simulations of the flows were carried out. Their purpose was to compare the blade loading and analyze
the flows. The commercial software used (CCM+) uses a polyhedral mesh and the simulation domain
includes the cooling module and the external geometry of the test bench (see Figure 3). The mesh size
includes 45 million polyhedra, mainly concentrated on the fan and its supporting arms (about 80%).
A great deal of attention is given to taking into account the boundary layers, since the value of Y+ is
very close to 1 (less than 2 on the whole fan except the leading edges, where it is between 2 and 4).
Correlation studies give an accuracy of less than 5% error on overall performance [13] for fan cases.

The simulations were conducted according to a protocol starting with a stationary calculation
(RANS), and supplemented by an unsteady calculation (URANS), with a two equations turbulence
model (k-ω SST). Convergence was checked by monitoring residues and global flow quantities.
In general five fan rotations are required to achieve a low numerical residue level and to
obtain a stabilized solution.

The study is completed by detached eddy simulations (DES), with a time step of 5 × 10−6.
The acoustic estimates are based on an acoustic analogy with free-field propagation, using namely
the FW&H model [15]. Only dipole sources are considered when using the walls of the fan and
the shroud as emitting surfaces. This analytical model of free field propagation is valid for compact
sources, which is the case if we consider the low chord length of the blades compared to the wave
lengths (chord length ~5 cm, wave length for the BPF frequency ~1 m). On the other hand, reflection,
scattering and diffraction effects of acoustic waves and the acoustic attenuation of exchangers are
not considered. In the case of automotive fans, the low number of Mach (Mach 0.2) indicates that
the sources are purely dipole and consequently come from pressure fluctuations on the walls. Since
the sound pressure level is several orders of magnitude lower than the aerodynamic pressure level,
the DES calculations are performed with the compressible model in order to obtain the best accuracy.

4. Comparative Performance of Fans with or without Heat Exchanger

4.1. Comparative Performance of Fans with Heat Exchanger

The operating point is set according to the thermal performance of the heat exchangers that must
evacuate a fixed amount of calories. Taking into account their characteristics, the air flow rate must be
3053 m3/h. If we refer to the pressure drop curve of the cores measured with a homogeneous air flow,
the pressure to be supplied by the fan would be 140 Pa.

For the two fans considered, the aerodynamic performance is obtained in the complete
cooling module for rotational speeds of 2404 and 2615 rpm, respectively, for the fans BW and
FW (see performance curves in Figure 5). At this operating point, the pressure increase given by the fan
perfectly balances the pressure losses, and the upstream and downstream pressures are equal to zero
(zero pressure point). This should correspond to the condition for which a vehicle is at rest and does
not benefit from the dynamic effect of air when the vehicle is running. In reality, the additional pressure
drop of the air intake (grid, vehicle front end) and engine compartment is not taken into account
in this case, which is why the operating point incorporates a certain safety margin. Fortunately, this
additional pressure drop is quickly erased as soon as the vehicle moves forward, and at high speed
the cooling module generally resists air with a fan that ends up being a turbine (i.e., it is the fluid that
gives its energy).
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In order to produce a fair comparison, the effects on fan efficiency should also be considered.
It is calculated by the ratio between aerodynamic power (product of flow rate and pressure) and
mechanical power (product of torque and speed). The difficulty lies in the fact that it is not possible
to make a precise evaluation of the static pressure produced by the fan in the module, and therefore
the theoretical pressure drop is considered, neglecting additional pressures losses due to the integration
or the flow inhomogeneity.

Efficiency is therefore calculated using the formula:

E f f . (%) =
∆P·Q
T·Ω

(3)

with T: torque (Nm).
At the nominal operating point, the pressure rise is considered to be 140 Pa (the theoretical value

from the radiator characteristics).
It is then noted that these performances are obtained with different efficiencies (31% and 28.2%

in global efficiency respectively for BW and FW with a motor efficiency of ~80%, or 38.9% and 35.3%
for the mechanical efficiency) and therefore the BW fan consumes 60 Watt less electricity (−11%).

4.2. Comparative Performance of Fans without Heat Exchanger

For the purposes of the study, these two fans were tested in a configuration without a heat
exchanger for the rotational speeds with which they had been validated in the complete module. Their
performances are presented in Figure 6.
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It can be seen that the two fans exhibit different behaviors, characterized by the fact that the BW
blades produce less pressure at low flow rates, but that the maximum flow rate (zero pressure
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point) is higher. This change in the slope of the performance curve is particularly important because
it is observed that at the expected nominal operating point (3053 m3/h), the pressure delivered by
the forward curvature is in this case higher than that of the rear curvature (231 versus 206 Pa), but its
efficiency is still lower (46.7% versus 49.9%, see performance Table 1).

Table 1. Compared performances of BW and FW fans, with or without the heat exchanger.

Flow Rate
(m3/h)

∆P Module
Theoretical

(Pa)

∆P Module
Simulation

(Pa)

∆P Fan
(Pa)

Torque
in Module

(N.m)

Torque Fan
(N.m)

Efficiency
Module (%)

Efficiency
Fan (%)

BW 3053 140 174 206 1.51 1.39 38.9 49.9
FW 3053 140 169 231 1.55 1.53 35.3 46.7

This comparison highlights that it is difficult to know which fan to select for a cooling module if you
only have its performance on a bench, without any information on integration effects. If a theoretical
approach were to be followed by comparing the fan curves and the pressure drop curve of the radiator,
the adaptation points would be estimated at 3575 and 3536 m3/h respectively for the backward and
forward curvatures (in Figure 6 it is indicated by the average value of 3550 m3/h).

4.3. Integration Effect on Overall Performances

It is possible at this stage to quantify the integration effects by comparing the ideal pressure drop of
the exchangers with the true pressure variation created by the fan with or without exchangers. One can
also note that fans undergo different variations in their performances according to the type of curvature
(see Figure 7). The backward curvature shows a difference of 66 Pa (206 Pa without the exchanger
compared to the ideal pressure drop of 140 Pa of the radiator), while it is slightly higher for the forward
curvature with 91 Pa (231 Pa without the exchanger compared to the 140 Pa of the radiator).
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variations by integration in the cooling module.

It should be noted that the forward blade undergoes practically no torque variation (1.55 vs. 1.53,
respectively, with and without the exchanger, i.e., ~1%), while it is largely modified for the backward
curvature (1.51 vs. 1.39 respectively with and without the exchanger, i.e., ~9%). Regarding combined
effects of both pressure and torque variations, the static efficiency changes from fan alone to the module
configuration are about the same for the two fans, i.e., −11% and −11.4%, respectively, for the backward
and the forward curvatures (see Figure 8).
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Figure 8. Comparison of the fan system global efficiency (calculated with the fan system pressure rise)
to module efficiency (calculated with the theoretical pressure losses in the heat exchanger). Electrical
motor efficiency is ~80%.

4.4. Fan Acoustics

The choice of one fan or the other is not limited to considering its airflow performance, since
acoustics play an increasingly important role in the compromise to be found and several mechanisms
compete in the noise generation [16]. The measurements made give the spectra of Figure 9 where
the contribution of broadband noise can be observed, with more pronounced low frequencies (when
using the backward blades) and higher pre-harmonic humps before H1. The latter is weaker
on the forward curved blades. On the other hand, it is observed that the broadband noise sees a small
hump between 3000 and 4000 Hz with the forward fan. This has been investigated and presented
in [17] with a strong suspicion of a Tollmien-Schlichting wave. The phenomenon is much weaker here
and caution must be exercised in this hypothesis.
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Figure 9. Compared acoustic spectra: (a) low to high frequencies, and (b) low to medium frequencies.

The frequency of blade passage and its harmonics are visible in the tonal peaks, with a higher
level at BPF and H1 for the BW fan. The levels of the second and third harmonic are reversed between
the front and rear blades, without, at this stage, a clear explanation.

In summary and as shown in the performance table, the backward curvature produces 3.6 dB
more in the cooling module than the forward curvature (measured at the position of the microphone).
2.5 dB more was measured without exchangers: it indicates the same trend but it is however to be
qualified because the acoustic test does not allow flow control (the fans are therefore operated at their
zero pressure points).

5. Flow Analyses

The URANS numerical simulations were post-processed for the four configurations studied,
and several effects are analyzed to explain the fan integration effects.
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5.1. Pressure Losses in the Heat Exchangers

The very compact geometry of the cooling module does not allow for a homogeneous flow since
the small space between the radiator and the nozzle creates areas of low speeds, especially in the corners
and especially the two most distant corners. Velocity distribution on the inlet surface of the shroud for
both cases with or without the exchanger is presented in Figure 10. The position of the fan is clearly
visible through the circular footprint left on the speed distributions. Velocities are however smoother
in the cooling module configuration, this being explained by the fact that the radiator resistance slows
down the air in the central part and creates more suction in the corners.
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Figure 10. Axial velocity at the position of the heat exchanger. Comparison of the standard deviation
with or without the heat exchanger.

The inhomogeneity of the flow is measured by comparing the deviation to the mean for each
configuration. It is obtained by calculating the root mean square of the deviations from the average
pondered by the surface. Standard deviations are in fact rather equivalent between the two fans: without
the radiator, values are 1.63 and 1.60 m/s, respectively, for the backward and forward configurations,
and 0.9 and 0.91 m/s, respectively, with the radiator. As these values are very close from one fan to
the other, it is remarkable to note that both are showing a similar behavior in terms of flow distribution
on the heat exchanger despite their strong geometrical differences. In fact, it can be assumed that
the change of velocity given to the fluid by the fan is set by the same operating point, which explains
the same flow rate distribution. The major effect is related to the presence or not of the exchanger,
which promotes homogeneity by reducing the deviation from ~1.6 to ~0.9 m/s.

Numerical simulation allows us to evaluate the actual pressure drop in the heat exchanger using
total pressure post-processing. The pressure drop through the radiator with an inhomogeneous flow
distribution is numerically measured at 174 and 169 Pa (BW and FW, respectively), to be compared to
the 140 theoretical Pa.

5.2. Pressure Losses in the Shroud

If all tests were conducted with the same shroud, it is conceivable that its effect would be different
depending on whether or not it is equipped with radiators. Indeed, the presence of the exchanger
forces the flow in the corners as shown in Figure 10, which increases friction in the small space
between the radiator core and the shroud (separated by only ~36 mm). Post-processing of the total
pressure losses between the surface of the core and the fan inlet gives values of −20 and 32 Pa
(BW and FW, respectively), without giving any clear insight on the reasons for this small difference.
In addition, it should be considered cautiously since the values cannot be considered as accurate since
the post-processing involves surfaces close to the fan: the complexity of the flow with recirculation,
large structure, etc. can alter the quality of the scalar averaging.

A summary of the pressure variations in the cooling module is presented in Table 2. It must be
emphasized that finally the fans are producing a pressure rise which is slightly lower than the 206 and
231 Pa measured in the fan alone context.
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Table 2. Post-processing of total pressure variations (Pa) in the cooling module.

Radiator Shroud Fan

BW −174 −20 194
FW −169 −32 201

5.3. Blade Loading Distribution

Velocity components are averaged in the azimutal direction and are shown in Figure 11. Axial
velocities are relatively similar for the different cases, with, however, an acceleration of the flow velocity
at 80% of the span for the backward fan in the module configuration. It should also be noted that
the backward-curved fan produces an overall less tangential velocity and it is compensated by a largely
positive radial velocity, whereas the forward curvature tends to create negative radial velocities. Some
authors have already presented some effects of sweep or lean modifications [6–9,11,18], and it explains,
for instance, that the blade curve creates a force acting on the flow that has a direction perpendicular
to the surface of the pressure side. In the case of a forward fan, this force would be centripetal,
and centrifugal in the case of a backward curvature.
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and (c) radial velocity.

More radial flow as it exists for the backward fan tends to increase the load near the blade tip,
roughly at 80% of the span (as described above). This is accompanied by a rather disturbed flow
near the rotating ring, where more relative total pressure deficit is observed and presented with
a circumferential averaging behind the trailing edge in Figure 12. Phenomena can be further analyzed
in Figure 13, where it appears that a more important region of relative pressure loss is observed for
the backward fan, nevertheless with a different pattern whether it is in the fan system (i.e., without
the heat exchanger) or in the module configuration (i.e., with the heat exchanger). In the first case,
the low pressure area extends upstream, while it goes on the internal surface of the rotating ring for
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the second case. This is obviously the effect of the radiator resistance, which creates more suction effect
on the side of the shroud and which pulls the area of losses towards the blade heads.
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Figure 13. Cut view of the relative pressure distribution along the blade span.

If the losses at the tip of the blade are high for backward blades, a similarly disturbed area with
a smaller radius appears for the forward curve. This can be seen in Figure 13 with the comparison
of relative total pressure in cut planes selected between two consecutives blades, either in module
configuration or with the fan alone. It has led to further analysis by examining the total relative
pressure distribution around the blade profiles. The result presented in Figure 14 shows the extracted
results at 80% and 95% of the span. It is clearly visible that the loss levels are very high at 95% for
the backward fan (near the rotating ring) and a similar phenomenon is observed at 80% for the forward
one. It can be hypothesized at this stage that the centripetal forces have brought the disturbance to
a smaller radius than that of the backward curvature.Acoustics 2020, 3 FOR PEER REVIEW  12 
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These observations can be further visualized thanks to vorticity post-processing in module
configuration for both fans. Figure 15 perfectly illustrates the creation of a flow structure winding
around the periphery of the fan and more or less attached to the rotating ring. In the case of
backward-curved blades, the blade heads see a highly turbulent flow on both the upper and lower
surfaces, extending between 80% and 100% of the span. Blade heads are much less impacted by
the presence of vorticity in the case of the forward curvature. However, there is confirmation of
the existence of a structure passing over the pressure side and pushed towards the center of the fan,
probably in connection with the centripetal flow. This turbulent winding interacts only with the inner
face of the blade which is opposite to the position of the microphone used to acoustically characterize
the module. It is at this stage rather difficult to determine if the blades can mask this acoustic source
from the microphone: if the chord length can be considered acoustically compact (~5 cm), this is no
longer the case if we consider the size of the fan (~400 mm). Further investigation to determine whether
or not it can explain the acoustic difference between forward and backward curves is still needed.
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6. Acoustic Effects

6.1. Source Detection

As previously mentioned, the sound pressure level measured on the microphone is 3.6 dB smaller
for the forward curve than for the backward curve. The previous vorticity post-treatments are the first
elements making it possible to differentiate the noise generation mechanisms for the two fans, even
if it is neither an acoustic prediction nor an identification of the sources.

However the effects of turbulence and the creation of structures in the flow contribute to generate
pressure and density fluctuations on the rotating surfaces, and this is why it was considered useful
to complete the study with DES-type numerical simulations. These calculations aim to record
the pressure and density fluctuations on the walls in order to identify the dipoles, and possibly confirm
the existing correlation between the source location and the presence of strongly disturbed flow.
However, since the flow can create pressure fluctuations without effects on acoustics (a phenomenon
called pseudo-sound), the post-processing was performed on density fluctuations to isolate sources
more accurately.

A post-processing of the density on the walls at each time-step during the fan rotation highlights
the spatial and temporal variations. It can be illustrated by a rate of change (here in kg/m3/s) as
in Figure 16, for a given time. It indicates qualitatively the main location of the sources at the top of
the blade, and to a lesser extent at the blade bottom for the backward fan. The latter generally produces



Acoustics 2020, 2 788

more intense fluctuations, partially extending over the rotating ring. These observations are consistent
with the hypothesis that flow disturbances and acoustic sources are related.
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Figure 16. Comparison of density fluctuations on the fans.

6.2. Propagation Effects

After comparing the sources, attention can also be paid to the acoustic propagation. According to
Amiet’s theory [19] with dipolar sources, the main acoustic direction for a blade profile is perpendicular
to the chord. In the case of a fan with complex blade shapes, this represents many directions depending
on the geometry and the direction of propagation, which is more complex to define. It addition,
the blade profile seen by the flow passing through a blade is no longer the geometric chord length
and the various flow characteristics can lead to acoustic changes. It is therefore difficult to predict all
the propagation phenomena, however the numerical simulation gives access to the FW&H analogy
which allows measuring directivity effects. The comparison between the two fans in the module is
presented both in Table 3 for the experimental-numerical comparison at the microphone position,
and in Figure 17 for the directivity.

Table 3. Sound pressure level (dBA) at the position of the microphone.

Experimental Numerical

BW 80.3 83.1
FW 76.7 78.4
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The simulations slightly over-predict acoustic levels. No explanation can be given to fully 
explain these differences, but it should be remembered that the numerical model does not take into 
account the acoustic attenuation that may exist through the exchangers. However, it is observed that 
the trends are respected and that the calculation correctly predicts a lower acoustic level for the 
forward curvature. 

The backward fan tends to emit more strongly on the axis, with 4.7 dB more than predicted 
numerically. The same calculations show that on the other hand, the propagation is weaker on the 
sides, since the difference is 1.4 dB in favor of the backward curved fan, which is the less noisy at this 
location. 

7. Conclusions 

A comparative study was undertaken between a forward and a backward curved fan. Tests and 
simulations confirm that the use of backward blades optimizes aerodynamic efficiency at the 
operating point at the expense of acoustics. It might be the effect of the blade loading which creates 
more radial velocity and then more change in momentum for the same torque. 

From an acoustic point of view, the study confirms that the forward curvature has better acoustic 
properties, which can be explained by the smaller surface with intense dipolar sources at the blade 
tip and a lower propagation intensity in the direction of the axis of rotation (on which the 
measurement is made). 

The difficulty for a correct design and dimensioning of an adapted fan lies in the fact that 
integration into the cooling module produces unpredictable effects. In particular, the adaptation of 
the operating point yields to flow rate and pressure clearly lower than those theoretically expected 
by considering the characteristic curves of exchangers and fans. Furthermore, unfortunately the 
variations are not necessarily of the same order of magnitude depending on whether one chooses a 
backward or a forward curved blade. 

A fan optimization must therefore result from several considerations related to the physics of 
aerodynamics and aeroacoustics, but also related to the thermal and geometric constraints when 
integrated into a cooling module. The fan cannot therefore be designed alone, and a system approach 
is required. 
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Figure 17. Directivity of the sound pressure level (dBA).

The simulations slightly over-predict acoustic levels. No explanation can be given to fully explain
these differences, but it should be remembered that the numerical model does not take into account
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the acoustic attenuation that may exist through the exchangers. However, it is observed that the trends
are respected and that the calculation correctly predicts a lower acoustic level for the forward curvature.

The backward fan tends to emit more strongly on the axis, with 4.7 dB more than predicted
numerically. The same calculations show that on the other hand, the propagation is weaker on the sides,
since the difference is 1.4 dB in favor of the backward curved fan, which is the less noisy at this location.

7. Conclusions

A comparative study was undertaken between a forward and a backward curved fan. Tests and
simulations confirm that the use of backward blades optimizes aerodynamic efficiency at the operating
point at the expense of acoustics. It might be the effect of the blade loading which creates more radial
velocity and then more change in momentum for the same torque.

From an acoustic point of view, the study confirms that the forward curvature has better acoustic
properties, which can be explained by the smaller surface with intense dipolar sources at the blade tip
and a lower propagation intensity in the direction of the axis of rotation (on which the measurement is
made).

The difficulty for a correct design and dimensioning of an adapted fan lies in the fact that
integration into the cooling module produces unpredictable effects. In particular, the adaptation of
the operating point yields to flow rate and pressure clearly lower than those theoretically expected by
considering the characteristic curves of exchangers and fans. Furthermore, unfortunately the variations
are not necessarily of the same order of magnitude depending on whether one chooses a backward or
a forward curved blade.

A fan optimization must therefore result from several considerations related to the physics of
aerodynamics and aeroacoustics, but also related to the thermal and geometric constraints when
integrated into a cooling module. The fan cannot therefore be designed alone, and a system approach
is required.
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