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Abstract: This paper compares two different approaches to deriving shading coefficients (weights) for
optimal first order and second order directional sensors (that is; sonobuoys, vectors and dyadic sensors).
The first approach is an analytical or a physics-based derivation, involving computations with gradients
and linearized momentum; the second is an adaptive minimum variance distortionless response
(MVDR) derivation, which finds weights that minimize the cross spectral density (CSD) matrix.
The two approaches are shown to be equivalent. In other words, the adaptive MVDR processing
procedure does indeed converge to a physics-based solution, without any pre-existing physical
knowledge of the behavior of the acoustic field. This suggests that adaptive algorithms innately seek
physics-based solutions when these solutions are optimum. The intent of this short communication
is not to advocate for one type of adaptive processing method over another. The observation
that is presented here is important though, it confirms that at least in an idealized noise field,
adaptive processing converges on an optimal set of shading coefficients, similarly derived based on
well-established physical acoustics.
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1. Introduction

The primary intent of this communication is to illustrate that adaptive signal processing (such as
minimum variance distortionless response, or MVDR), converges, without any knowledge, or use,
of the linear, inviscid, momentum equation (relating the acoustic pressure gradient to the temporal
gradient of acoustic particle velocity), to physics-based optimal solutions (which by necessity invoke the
equation of momentum). This is interesting, and useful in that it confirms, at least in ideal spherically
isotropic acoustic noise fields with perfectly correlated incident signals, that adaptive processing
secures optimal solutions. Directional acoustic sensors, such as acoustic vector sensors and dyadic
sensors, are used here to demonstrate the equivalence between adaptive shading coefficients and
physics-based shading. This communication does not advocate for any type of adaptive processing
over another, instead it is directed at demonstrating equivalence (which requires either that the adaptive
scheme form gradients, or, conversely, that the physics-based solution forms the covariance matrix).

Amplitude shading coefficients (similar terms include, simply shading or weights) are commonly
implemented in RADAR and SONAR arrays; these coefficients provide a means to manipulate the
overall structure of an array’s angular response. Typically, they are used to lower the sidelobe levels
of the array’s beam response function in order to improve signal-to-noise ratios (SNRs). Shading
coefficients can be real, or complex-valued. Uniform, or unit, coefficients are, by default, equivalent to
an unshaded array, with the set of weights being applied to each array element, or along a continuous
array aperture, equal to unity. In the past, Dolph–Chebychev [1–3] and Taylor [4] shading was regularly
implemented as a means to improve SNRs of acoustic arrays.

Acoustics 2019, 1, 808–815; doi:10.3390/acoustics1040047 www.mdpi.com/journal/acoustics

http://www.mdpi.com/journal/acoustics
http://www.mdpi.com
http://dx.doi.org/10.3390/acoustics1040047
http://www.mdpi.com/journal/acoustics
https://www.mdpi.com/2624-599X/1/4/47?type=check_update&version=2


Acoustics 2019, 1 809

Over the past couple of decades, adaptive beamforming (ABF) algorithms [5] have emerged
as an often superior processing technique to generate near-optimal amplitude shading coefficients,
providing the right balance between reduced sidelobe levels and mainbeam width.

In this paper, a comparison between ABF-derived shading weights and optimal physics-based
weights for directional sensors is presented. If ABF techniques provide optimal solutions, then the two
weight sets should be identical.

In order to create a directional sensor, one can proceed in two different ways. The first approach is
to use pressure sensors, such as microphones or hydrophones, and combine the measurements from
multiple sensors in order to obtain information about the direction of an impinging wave. For example,
a typical approach is to take finite differences between adjacent pressure sensors in order to approximate
an acoustic dipole. Sonobuoys are often constructed to estimate direction in this manner.

A finite difference approximation to a gradient, however, involves inherent approximation errors.
Such gradient approximations are not limited to the first-order; Hines [6] and D′Spain [7], using a line
array of closely-spaced pressure sensors steered to end fire, examined first, second, and higher order
finite differences. With increasing orders of the gradients, the line array becomes more superdirective.
There is a simple relationship between the order of the finite difference and directivity [7–9]. That is,
the first order difference results in an angular response proportional to the cosine of the incident angle
(dipole), second order, cosine square, third order, cosine raised to the third, and so on. Here, in total,
the array of differenced pressure sensors, in any configuration (linear, planar, volumetric) are referred
generally to as arrays of directional sensors.

An alternative approach to creating a directional sensor is direct measurement of additional
acoustic quantities. For example, acoustic particle velocity can be directly measured; the velocity is
proportional to the gradient of acoustic pressure via the linear momentum of the acoustic pressure field.
Such a vector sensor eliminates the need to take a finite difference to estimate the pressure gradient,
a first-order quantity. Thus, a particle velocity sensor is an example of a first-order sensor.

This paper shows that, for a perfectly correlated signal in a spherically isotropic noise field,
adaptively beamforming a set of discrete pressure sensors generates shading coefficients, or weights,
equivalent to those obtained theoretically for the optimal (extrema) beamforming of an acoustic
sensor which directly measures acoustic field quantities. The result suggests that adaptive processing
algorithms innately seek physics-based solutions; the adaptive weights are equivalent to those
formed by optimizing the pressure gradients, obtained from a pre-existing and fundamental physical
understanding of the behavior of the acoustic field.

2. Physics-Based Weights for a Directional Sensor

Consider first a single-axis vector sensor, which is restricted for simplicity to measurement of
only one component of acoustic particle velocity, say aligned along the vertical z-axis. The summed
beamformed response can be written as:

b(ϕ) =
∣∣∣wpepe + wzvz

∣∣∣2 (1)

where the weight set is ŵ =
{
wpe , wz

}
, pe =

∣∣∣p∣∣∣/(ρc), where p is the acoustic pressure, and vz is an
acoustic particle velocity measured along the z-axis. The weight wpe is used to absorb the conversion
from pressure to velocity, that is, the arbitrary weight is taken to be divided by the acoustic impedance of
the fluid, ρc, so that the units are consistent in Equation (1). Figure 1 illustrates the sensor configurations.
The solid circle at the origin represents either a single acoustic pressure sensor, or a single directional
sensor which measurements additional quantities of the acoustic field, such as acoustic particle motion.
The two open circles represent adjacent pressure sensors, which can be used to measure acoustic
pressure gradients.
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The configuration along the vertical axis simplifies the derivation below of optimal directivity;
the response becomes symmetric in azimuth angle, θ, and dependent only upon elevation angle, ϕ.
In Equation (1), and mostly throughout, we assume a harmonic time dependence which is ignored.
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Figure 1. Orientation of a single directional sensor or single acoustic pressure sensor (denoted with a
solid circle) and adjacent collinear pressure sensors (denoted with open circles). End fire is defined
directly down the boresight of the z-axis, ϕ = 0.

Alternatively, for an impinging time-harmonic plane wave, the beamformed response can be
written in terms of the pressure field. In the time domain, we take the impinging harmonic acoustic
wave, measured on the z-axis, to be:

p(z, t) = P0exp
{
ik0(zγ(ϕ)) + iωt

}
(2)

where γ(ϕ) = cos(ϕ) and k0 = ω/c0. Here ϕ denotes the polar angle of incidence of a plane wave
impinging on the sensor. In the frequency domain, the first two pressure gradients are:

∂p
∂z

= ik0γ(ϕ)p (3)

∂2p
∂z2 = (ik0γ(ϕ))

2p (4)

For any order, the general formula is ∂np/∂zn = (ik0γ(ϕ))
np. Note the proportional scaling of the

directional cosine, γ, by the known constant ik0. To weight and sum (that is, beamform) these gradients
with acoustic pressure, either the acoustic pressure must be converted to a corresponding planewave
velocity amplitude (as was done above in Equation (1)). Alternatively, the velocity amplitude may be
converted to a corresponding planewave pressure amplitude. Both types of conversions are used here
for convenience and to simplify derivations.

If the goal is to rewrite the beam response solely in terms of pressure, then the pressure gradients
(Equations (3) and (4)) can simply be converted into pressure by multiplying each gradient by
(ik0)

−n and then absorbing this scaling factor into the shading coefficients. This scaling simplifies the
optimal directivity calculations. The scaling, or weight conversion, used is different than that used in
Equation (1), with wpe , because what is assumed now to be measured are pressure gradients rather
than, for example, a direct measurement of particle velocity (particle velocity would be calculated from
the approximated pressure gradients).
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In terms of acoustic pressure, the beam response for any order directional sensor aligned along
the z-axis is:

b(ϕ) =

∣∣∣∣∣∣∣
N∑

n=0

wnγ
np

∣∣∣∣∣∣∣
2

(5)

For first and second order directional sensors, Equation (5) becomes:

b1(ϕ) =
∣∣∣w0γ

0p + w1γ
1p

∣∣∣2 (6)

and
b2(ϕ) =

∣∣∣w0γ
0p + w1γ

1p + w2γ
2p

∣∣∣2 (7)

where w0, w1, and w2 have absorbed (were divided by), (ik0)
−0, (ik0)

−1 and (ik0)
−2 respectively.

The units of Equations (6) and (7) thus differ from that of Equation (1).
Optimality of weights is determined by optimality of the associated directivity of the sensor.

Directivity is defined as a ratio of signal-to-noise ratios, that is, the SNR of an omni-directional sensor,
relative to the SNR of a directional sensor (or array of sensors), in a spherically isotropic acoustic noise
field. The directivity factor, for a signal arriving directly down the boresight of the z-axis, and any
order sensor can be shown [9,10] to be:

DF(ϕ) =
2
∣∣∣∑N

n=0 wn
∣∣∣2∑N

n=0
∑M

m=0
wn wm

(
1−(−1)n+m+1

)
n+m+1

(8)

For a single omni-directional sensor, n = m = 0, and as expected, DF(ϕ) = 1. The directivity index
is defined as NDI = 10 log10[DF].

2.1. Physics-Based Optimal Weights for a First-Order Directional Vector Sensor

For a first order single axis directional sensor (6), normalized so that w0 = 1, at a given look
direction, ϕs, the directivity factor (8) is:

DF(ϕ) =
b(ϕs)

1 +
w2

1
3

(9)

where b(ϕs) is the response at steered elevation angle, ϕs. The optimal weight for the particle velocity
component, which maximizes directivity, is obtained by solving for the extrema in Equation (9). Setting
∂DF(ϕ)/∂w1 = 0 and solving, we obtain w1(ϕs) = 3cos(ϕs). Thus, when steered to endfire, the optimal
weight pair for this simple single axis directional sensor is ŵ = {w0, w1} = {1, 3}. This corresponds to a
directivity index of 6 dB.

The particle velocity shown in Equation (1) can be identically recast, via linearized momentum,
in terms of a gradient of pressure, that is:

b(ϕ) =

∣∣∣∣∣∣wpp +
wz

(ik0)

∂p
∂z

∣∣∣∣∣∣2 (10)

which is the same expression as Equation (6) with w0 = wp and w1 = wz , so as before the optimal
weights are ŵ = {1, 3} and the directivity index is 6 dB.
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Equation (10) explicitly includes the pressure gradient. Hence, the beam response, b(ϕ),
in Equation (10) can now be approximated using a two-point finite difference, [p1, p2], that is

b(ϕ) �
∣∣∣∣wp

( p2+p1
2

)
+ wz

(i k0)

( p2−p1
d

)∣∣∣∣2 =
∣∣∣∣p1

(wp
2 − αwz

)
+ p2

(wp
2 + αwz

)∣∣∣∣2
=

∣∣∣wa1p1 + wa2p2
∣∣∣2 (11)

where α = 1/(ik0d) and wa1 and wa2 are the corresponding weights multiplying the two separated
pressure sensors. Substituting the physics-based optimal weights, ŵ = {1, 3} and chosen parameter
values c0 = 1500 m/s, f = 3000 Hz and d = 3 cm, we find that:

{wa1, wa2} = {1− 6α, 1 + 6α} = {1− 15.9i, 1 + 15.9i} (12)

Below we will compare these values to those obtained using the adaptive MVDR approach.

2.2. Physics-Based Optimal Weights for a Second-Order Directional Dyadic Sensor

The beam response for a single-axis dyadic acoustic sensor, obtained in a manner similar to
Equation (10), is:

b(ϕ) =

∣∣∣∣∣∣wpp +
wz

ik0

∂p
∂z

+
wzz

(ik0)
2

∂2p
∂z2

∣∣∣∣∣∣2 (13)

The same procedure to obtain optimal directivity is employed, though now there are two
simultaneous equations to solve for directivity factor extrema (Equation (8)), that is, ∂DF(ϕ)/∂wz = 0
and ∂DF(ϕ)/∂wzz = 0. Details have been previously derived [9], and will not be reevaluated here.
The optimal physics-based weights, which produce maximum directivity, from [9], at any steered
incident angle becomes:

ŵ =
{
1, 4cos(ϕs)/

(
3− 5cos2(ϕs)

)
, 5

(
3cos2(ϕs) − 1

)
/
(
3− 5cos2(ϕs)

)}
. (14)

When again steered to end fire, the optimal weight set for this simple single axis dyadic
second-order sensor becomes ŵ =

{
wp, wz, wzz

}
= {1,−2,−5} (if Equation (13) was rewritten in terms of

acoustic particle velocity, and the gradient of velocity, or as in Equation (7), then again the optimal
weight set, ŵ = {w0, w1, w2}, would be the same). Note from Equation (14) that these weights are
angular dependent, the maximum occurs at endfire, all other signal arrival angles reduce directivity.
It is noted that comparisons between physics-based weights and adaptive weights, for general angles
of arrival are not presented. The angular dependency of analytical weights for vector and dyadic
sensors are known [9,10], though a comparison to ABF weights at oblique incident angles is beyond
the scope of this communication, and not likely change the comparison.

As previously done for a vector sensor, we use finite difference approximations to approximate
the beam response of a dyadic sensor. Now both two-point and three-point (second order) finite
difference approximations are needed. With three closely-spaced pressure sensors [p0, p1, p2], aligned
collinearly along the z-axis, and separated by distance d, and with p0 at midpoint, the beam response
(Equation (13)) is rewritten as:

b(ϕ) =
∣∣∣∣wp

( p0+p1+p2
3

)
+ α

2 wz(p2 − p1)

+α2wzz(p2 − 2p0 + p1)
∣∣∣∣2 =

∣∣∣∣(wp
3 − 2α2wzz

)
p0

+
(wp

3 −
αwz

2 + α2wzz
)
p1 +

(wp
3 + αwz

2 + α2wzz
)
p2

∣∣∣∣2 (15)
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With optimal weights ŵ =
{
wp, wz, wzz

}
= {1,−2,−5} and parameter values c0 = 1500 m/s,

f = 3000 Hz and d = 3 cm we obtain:

{wa1 , wa2, wa2 } =
{wp

3 − 2α2wzz,
wp
3 + α2wzz −

αwz
2 ,

wp
3 + α2wzz +

αwz
2

}
= {−1.97, 1− 0.074i, 1 + 0.074i }

(16)

Below we will compare these values to those obtained from the MVDR approach.

3. Adaptive (MVDR) Weights for a Sensor Array

One adaptive approach is that of the minimum variance distortionless response (MVDR) [5].
The MVDR approach is to choose the weight set to have minimal response to spherically isotropic
noise in the desired look direction ϕs, that is, to solve:

min
ŵ

ŵH
adpR ŵadp subject to ŵH

adpb(ϕs) = 1 (17)

where b(ϕ) denotes the array manifold (see examples below) and the isotropic noise cross-spectral
density matrix elements are given by [R]nm = sin(k0d |m− n|)/(k0|m− n|). Note that this expression,
for element-to-element correlations in a spherical isotropic noise field, was theoretically derived
in [11]. This approach does not impose any physics-based knowledge of the acoustic field on adaptive
weighting, other than the field is known to consist of acoustic planewaves.

Alternatively, a high resolution Monte Carlo simulation could be generated which would then
converge to identical correlations. From Equation (17), the standard adaptive MVDR beamformer
solution for the optimal shading coefficient is thus given by:

ŵadp =
R−1 b(ϕs)

b
H
(ϕs)R−1 b(ϕs)

(18)

3.1. Adaptive (MVDR) Weights for a First-Order Directional Vector Sensor

A two-element array, with the pressure sensing elements aligned along the vertical z-axis and
separated by a distance, d, (as denoted by the open circles in Figure 1), the adaptive beam weights,
ŵadp = {wa1, wa2}, would produce an adaptive beam response;

b(ϕ) =

∣∣∣∣∣∣wa2p2

(
−

d
2

)
+ wa1p1

(
d
2

)∣∣∣∣∣∣2 (19)

where the two element array manifold has the form b(ϕ) =
[
e−i d

2 k0sin(ϕ), ei d
2 k0sin(ϕ)

]T
for a monochromatic

signal with acoustic wavenumber, k0, impinging from direction ϕ. Plugging in the same parameters as
in Section 2, with some manipulation, we obtain:

ŵadp = {wa1, wa2} = {1− 15.9i, 1 + 15.9i}. (20)

This weight set identically matches the corresponding physics-based weight set (Equation (12)).
Bear in mind that the adaptive minimum variance distortionless response (MVDR) processor

essentially consists of a set of correlation measurements between a collection of pressure sensors and
known, or prescribed, signal manifold constraints. The processor has no inherent knowledge of an
acoustic field or continuity or acoustic particle momentum, it seeks only to solve for the filter weight
vector w that minimizes the output noise variance wHRw subject to the constraint that the signal is
passed through the beamformer without any distortion, that is, wHs = 1 where s is the steering vector
(here s = (cos ϕs)) and R is the noise covariance matrix for the pressure and particle velocity channels.
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Though the equivalence between the two weight sets is not unexpected, given that the solution
for optimal directivity is unique, it is interesting that the adaptive processor essentially knows to form
the gradient between the two adjacent pressure sensors.

3.2. Adaptive (MVDR) Weights for a Second-Order Directional Dyadic Sensor

Now consider the case of a three-element array, [p0, p1, p2], where the pressure sensing elements
are again aligned along the vertical z-axis and each separated by distance d (not shown in Figure 1).
Similarly, we have the adaptive beam response:

b(ϕ) =

∣∣∣∣∣∣wa2p2

(
−

d
2

)
+ wa0

d
2

p0(0) + wa1
d
2

p1

(
d
2

)∣∣∣∣∣∣2 (21)

and array manifold;

b(ϕ) =
[
e−i d

2 k0sin(ϕ) 1 ei d
2 k0sin(ϕ)

]T
(22)

where the middle sensor location has now been used as the signal arrival time reference (that is, the
center sensor is used to reference the time delays to the two outer sensors). Following the same
methodology and parameters as for the two-element array, when the look direction is steered towards
end fire, the optimum filter weights become:

ŵadp = {wa0 , wa1, wa2} = {−1.98, 1− 0.075i, 1 + 0.075i} (23)

after manipulation. The adaptive set, for the dyadic sensor, is again nearly identical to the previously
derived physics-based weight set. The slight differences are presumably due to finite difference
approximation errors. As the separation distance, d, varied, the resultant adaptive weights slightly
changed. Here, the separation distance was d ≈ c0/(16 f ). Notice, that if the adaptive weights
are further approximated as ŵadp � {−2, 1, 1}, the beam output can be rewritten simply as b(ϕ) =∣∣∣p2 − 2p0 + p1

∣∣∣2 =
∣∣∣(p1 − p0) − (p0 − p2)

∣∣∣2, which immediately is interpreted as the second order finite
difference gradient.

For reference, Table 1 below summarizes the directivity indices (at end fire), using both weight
sets, for the vector and dyadic directional sensors.

Table 1. Comparison of First and Second Order Directivity Indices for Incident Signals Arriving at
End Fire.

Directivity Index 1st Order/dB 2nd Order/dB

Directional 6 9.5

Adaptive 5.8 9.4

4. Conclusions

The linearized momentum equation, as all acousticians know, is invoked in the derivation of
the acoustic wave equation. Momentum relates, within an inviscid fluid medium, acoustic particle
velocity to the spatial gradient of acoustic pressure. As shown here, physics-based derivations explicitly
use linear momentum to obtain optimal amplitude shading coefficients. What is also illustrated
here, is that adaptive processors, such as MVDR, implicitly form these spatial pressure gradients,
as a directional sensor explicitly does, to obtain optimal shading coefficients. Equivalence between
adaptive and physics-based weight sets, for both first and second order directional sensors, has been
shown. This is a pleasing result; it confirms the merits of adaptive processors, and lends confidence
that, for non-isotropic noise fields, adaptive methods will yield optimal solutions. The intent of this



Acoustics 2019, 1 815

communication was not to propose one adaptive technique over another, instead it demonstrated
equivalence between physics-based and adaptive processing.

Comparison between adaptively derived shading weights, to those obtained theoretically, can be
made with even higher order directional sensors. However, the solution space quickly becomes
unwieldy Additional comparisons have been made where the separation distance, d, between the
pairs of pressure sensors converged. This, therefore, modified the accuracy of the finite difference
approximations, resulting in an expected improvement in the agreement between adaptive and
physics-based weights. No comparisons were made here for acoustic planewave signals arriving
at oblique angles of incidence. Given that, for a spherically isotropic noise field and a perfectly
correlated incident signal, both physic-based and MVDR weights independently generate dipole
angular responses, it is taken that oblique angle weights will again be equivalent.
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