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Abstract: The aim of this study was to investigate the short-chain fatty acid (SCFA) activity of the gut
microbiota of patients with metabolic-associated fatty liver disease (MAFLD). The level and spectrum
of short-chain fatty acids (SCFAs) were determined via gas–liquid chromatography. Liver fibrosis
was assessed using the FIB-4 index and elastography. Among 42 non-cirrhotic MAFLD patients,
24 had high fecal SCFA levels (group H) and 18 had low fecal SCFA levels (group L). Patients in
group H had lower serum uric acid, total cholesterol, and LDL cholesterol levels but a higher BMI
than those in group L. All patients in group L and only 37.9% of those in group H were found to
have hypercholesterolemia. In patients with hypercholesterolemia, the level of SCFAs was lower
than that in patients without hypercholesterolemia. Patients in group H had less liver fibrosis than
patients in group L. A total of 50.0% of the patients in group H and 92.3% of those in group L
had significant liver fibrosis (≥F2). Patients with significant liver fibrosis had lower levels of fecal
SCFAs—particularly acetate and butyrate. The fecal SCFA levels were positively correlated with
gamma-glutamyl transferase, total bilirubin levels, BMI, and platelet count and were negatively
correlated with FIB-4, liver stiffness, serum total, and LDL cholesterol levels.
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1. Introduction

Metabolic-associated fatty liver disease (MAFLD) is recognized as the most prevalent
form of chronic liver disease, affecting one quarter of the global population [1–3]. The
spectrum of MAFLD manifestations ranges from steatosis and steatohepatitis to MAFLD-
related cirrhosis. Despite the increasing prevalence of MAFLD, the onset and progression
of the disease remain unclear. This process probably depends on factors closely related
to metabolic disorders, such as obesity, hypertension, dyslipidemia, and type 2 diabetes
mellitus [1–8]. The main pathogenetic mechanisms of these diseases include inflammation,
oxidative stress, insulin resistance, and dyslipidemia [3–5].

Several studies have suggested that abnormalities in the composition of the gut
microbiota play an essential role in the development and progression of MAFLD. The
involvement of several mechanisms has been discussed. The first is the modulation of bile
acid synthesis, which is critical for fat absorption and affects glucose metabolism through
the farnesoid X receptor [8]. The second is the activation of the innate immune system
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due to the translocation of bacterial components [1–6]. The third is the production of
endogenous ethanol [2,8]; reduced choline metabolism alters very low-density lipoprotein
metabolism and promotes inflammation [3,4,7]. Finally, there is a change in the production
of short-chain fatty acids (SCFAs) [3–9].

It is well known that SCFAs, in addition to being the intestinal epithelium’s energy
supply, perform various biological functions, such as immunity regulation, lipogenesis,
and gluconeogenesis [3,6,9,10]. Observations of variations in the levels of SCFAs in patients
with MAFLD have been presented in the literature, but the results are highly contradictory.
Some studies have reported increased levels of SCFAs in the feces [11,12] and their positive
correlation with body mass index (BMI) [13]. Other studies demonstrated that fecal SCFAs
are decreased in patients with MAFLD and are negatively associated with body mass index
(BMI) and waist circumference [14–16]. Therefore, the function of SCFAs in the human
energy balance requires further investigation.

In this study, we analyzed the concentrations of SCFAs in the feces of MAFLD patients
to better understand the protective function of these metabolites of the gut microbiota.

2. Results

None of the patients with MAFLD that were tested had normal fecal levels of total
SCFAs: 24 were above normal and 18 were below normal. Based on these data, we divided
the patients into a group with a total SCFA level above normal (the “Elevated” group)
and a group with a total SCFA level below average (the “Decreased” group). The groups
did not differ in age and sex distribution. Although patients with elevated levels of SCFA
had a higher BMI, their serum levels of total cholesterol and LDL cholesterol and their
uric acid levels were lower than those of patients with decreased levels of SCFAs. At
the same time, there were no significant differences in the values of other biomarkers of
metabolic syndrome (serum triglycerides and glucose levels) or in the serum levels of
albumin, hemoglobin, C-reactive protein, and creatinine. The serum levels of bilirubin and
gamma-glutamyl transferase and the platelet count were higher in patients with elevated
fecal SCFA levels than in those with decreased levels. At the same time, in patients with
elevated levels of SCFAs, the level of liver fibrosis—assessed by using the FIB-4 index and
elastometry—was lower than that in patients with a decreased content of these acids in the
feces (Table 1).

Table 1. Main characteristics of patients with metabolic-associated liver disease with elevated and
decreased fecal short-chain fatty acid (SCFA) levels.

Patients with Elevated
Fecal SCFA

Levels (n = 24)

Patients with
Decreased Fecal SCFA

Levels
(n = 18)

p-Value

Age, years 49.5 [46–59.5] 54 [52–60.3] 0.073

Male/Female 13/11 4/14 0.057

Body mass index, kg/m2 33.8 [30.3–36.7] 31.4 [29.1–33.2] 0.006

Waist circumference, cm 115 [107–120] 111 [103–116] 0.181

Serum cholesterol, mmol/L 4.9 [4.3–5.2] 5.5 [5.3–5.7] <0.001

Serum HDL cholesterol, mmol/L 0.92 [0.89–0.99] 0.97 [0.82–1.04] 0.970

Serum LDL cholesterol, mmol/L 3.2 [2.8–3.5] 3.7 [3.6–3.9] <0.001

Serum triglycerides, mmol/L 1.9 [1.6–2.4] 1.9 [1.5–2.3] 0.805

Serum uric acid 323 [300–382] 370 [356–428] 0.006

Serum glucose, mmol/L 5.4 [4.7–6.0] 5.47 [5.50–5.60] 0.298

FIB-4 0.94 [0.69–1.25] 1.65 [1.36–3.16] <0.001

Liver stiffness, kPa 7.9 [6.6–9.4] 11.6 [10.4–13.3] <0.001

Serum total protein, g/L 71 [69–74] 74 [72–74] 0.034
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Table 1. Cont.

Patients with Elevated
Fecal SCFA

Levels (n = 24)

Patients with
Decreased Fecal SCFA

Levels
(n = 18)

p-Value

Serum albumin, g/L 44 [42–45] 44 [43–45] 0.746

Serum total bilirubin, µmol/L 12.5 [10.9–15.7] 9.96 [10.02–10.15] <0.001

Serum direct bilirubin, µmol/L 2.3 [1.9–2.8] 1.9 [1.7–2.0] 0.001

Serum indirect bilirubin, µmol/L 11.9 [9.4–13.3] 8.5 [8.0–8.7] <0.001

Alanine aminotransferase, U/L 49 [36–55] 48 [38–82] 0.628

Aspartate aminotransferase, U/L 31 [30–34] 38 [33–50] 0.037

Gamma glutamyl transferase, U/L 48 [33–57] 30 [26–35] 0.001

Alkaline phosphatase, U/L 74 [69–83] 83 [73–90] 0.114

C-reactive protein, mg/L 2.7 [1.2–5.3] 3.2 [2.5–3.8] 0.492

Creatinine, µmol/L 83 [77–88] 86 [78–101] 0.328

Hemoglobin, g/L 144 [136–152] 140 [137–145] 0.161

White blood cells, 109/L 6.8 [5.8–7.8] 6.8 [6.0–7.7] 0.999

Platelets, 109/L 294 [256–336] 192 [170–223] <0.001

Fecal SCFA, mg/g 15.36 [13.56–18.09] 4.67 [3.36–5.81] <0.001

Fecal acetate, mg/g 9.32 [7.90–11.02] 2.72 [2.07–3.30] <0.001

Fecal propionate, mg/g 2.76 [2.25–3.54] 0.87 [0.61–1.32] <0.001

Fecal butyrate, mg/g 2.49 [1.77–3.14] 0.66 [0.43–0.82] <0.001

Fecal isoacids, mg/g 0.57 [0.31–0.75] 0.23 [0.17–0.31] <0.001

Hypercholesterolemia, which is defined as an LDL level above 3.3 mmol/L [17], was
found in all patients with decreased fecal SCFA levels and only in 37.9% of patients with
elevated levels (p < 0.001). Patients with hypercholesterolemia had lower SCFA levels than
those of patients without this pathology (Figure 1).
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Figure 1. Fecal SCFA levels in patients with normal and elevated LDL cholesterol levels. The column
height shows the median and the bars indicate the interquartile range.

Among patients with elevated SCFA levels, patients with significant liver fibrosis
(≥F2, which corresponded to liver stiffness values of >7.6 kPa [18]) accounted for 50.0%.
In contrast, among those who had decreased SCFA levels in their feces, these patients
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accounted for 92.3% (p = 0.016). Patients with significant liver fibrosis had lower levels of
fecal SCFAs—particularly acetate and butyrate (Figure 2).
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Figure 2. Fecal SCFA levels in patients with significant liver fibrosis (≥F2, corresponding to liver
stiffness values of >7.6 kPa) and without. The column height shows medians, and the bars indicate
the interquartile range.

Fecal levels of SCFAs and their fractions were positively correlated with bilirubin levels,
BMI, gamma-glutamyl transferase levels, and platelet count and negatively correlated with
total cholesterol and LDL cholesterol levels and non-invasive indicators of liver fibrosis.
These and other significant correlations are presented in Table 2.

Table 2. Correlation matrix of fecal levels of short-chain fatty acids (SCFAs) and the main parameters
of metabolic-associated fatty liver disease.

Fecal SCFA Fecal Acetate Fecal
Propionate Fecal Butyrate

Body mass index r = 0.363;
p = 0.018 NS r = 0.496;

p = 0.001
r = 0.391;
p = 0.010

Waist circumference NS NS NS NS

Serum cholesterol r = −0.534;
p < 0.001

r = −0.578;
p < 0.001

r = −0.435;
p = 0.004

r = −0.546;
p < 0.001

Serum HDL cholesterol NS NS NS NS

Serum LDL cholesterol r = −0.561;
p < 0.001

r = −0.614;
p < 0.001

r = −0.382;
p = 0.013

r = −0.549;
p < 0.001

Serum triglycerides NS NS NS NS

Serum uric acid NS NS NS NS

Serum glucose NS NS NS NS

FIB-4
r = −0.733;
p < 0.001

r = −0.739;
p < 0.001

r = −0.590;
p < 0.001

r = −0.720;
p < 0.001

Liver stiffness r = −0.576;
p < 0.001

r = −0.622;
p < 0.001

r = −0.443;
p = 0.003

r = −0.527;
p < 0.001

Serum total protein NS NS NS NS

Serum albumin NS NS NS NS

Serum total bilirubin r = 0.513;
p = 0.001

r = 0.488;
p = 0.001

r = 0.542;
p < 0.001

r = 0.423;
p = 0.005

Alanine aminotransferase NS NS NS NS
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Table 2. Cont.

Fecal SCFA Fecal Acetate Fecal
Propionate Fecal Butyrate

Gamma glutamyl transferase r = −0.341;
p = 0.027

r = −0.305;
p = 0.050 NS r = −0.344;

p = 0.026

Gamma glutamyl transferase r = 0.403;
p = 0.008

r = 0.432;
p = 0.004

r = 0.493;
p = 0.001

r = 0.409;
p = 0.007

Alkaline phosphatase NS NS NS NS

Creatinine r = −0.438;
p = 0.004

r = −0.349;
p = 0.024

r = −0.422;
p = 0.005

r = −0.476;
p = 0.001

Hemoglobin NS NS NS NS

Platelets r = 0.782;
p < 0.001

r = 0.742;
p < 0.001

r = 0.750;
p < 0.001

r = 0.704;
p < 0.001

Note: NS—not significant.

3. Discussion

MAFLD is a global metabolic disease whose pathogenesis remains undefined, and
effective therapeutic strategies are still lacking. In light of the concept of the gut–liver axis,
gut microbiota have become an essential research topic in MAFLD. Numerous studies
have demonstrated that the microbiota influence the onset and development of the disease
(Figure 3) [19–21]. Bacterial metabolites such as SCFAs (acetate, propionate, butyrate) are
the most common bacterial products derived from commensal bacterial fermentation of
dietary fiber in the intestine. Their role in the development of MAFLD remains controversial.
On the one hand, SCFAs provide the host with additional energy and play a key role in
lipogenesis and gluconeogenesis. However, on the other hand, SCFAs increase satiety by
activating free fatty acid receptors and preventing excess weight. Previously, we published
a review in which we considered the association of SCFAs with the onset and progression
of MAFLD [22,23].
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In the current study, we found that patients with elevated levels of SCFAs had lower
serum levels of total cholesterol, LDL cholesterol, and uric acid than patients with decreased
SCFAs did. Nonetheless, these patients had a higher BMI and elevated serum levels of
bilirubin, gamma-glutamyltransferase, and platelets in comparison with those with normal
SCFAs. Hypercholesterolemia was found in all patients with normal fecal SCFAs but in only
37.9% of patients with elevated levels of these acids. In patients with hypercholesterolemia,
the level of SCFAs was lower than that in patients without this pathology.

Our data confirm the results of studies that have found increased levels of SCFAs in
obese individuals [13,24–26]. It has been reported that higher levels of SCFAs in feces are
associated with a low diversity of microbiota, high intestinal permeability, and changes in
the Firmicutes/Bacteroidetes ratio [13,24–26]. Backhed et al. discussed how changes in the
metabolic activity of the microbiota may contribute to the progression of steatosis through
inhibitory effects on regulators of peripheral lipid and glucose metabolism, such as AMP-
activated protein kinase (AMPK) and angiopoietin-related protein 4 (ANGPTL4)/fasting-
induced adipose factor (FIAF). The inhibition of FIAF results in increased lipoprotein lipase
activity and fatty acid uptake into adipose tissue and the liver, whereas the inhibition of
AMPK results in decreased peripheral fatty acid oxidation and adipose tissue accumula-
tion [27]. Clinical and experimental studies have demonstrated that SCFAs can reduce
serum levels of triglycerides, total cholesterol, and low-density lipoprotein cholesterol
while increasing levels of GLP-1, PYY, and leptin [28–30].

To the best of our knowledge, we are the first to demonstrate that the level of liver fibrosis
in patients with high SCFA levels—as measured using the FIB-4 index and elastography—was
lower than that in patients with normal levels of these acids in the feces. A total of 50.0%
of patients with elevated levels of SCFAs had significant liver fibrosis, whereas 92.3% of
patients with decreased levels of SCFAs in the feces had significant liver fibrosis. Patients with
significant liver fibrosis had lower levels of fecal SCFAs, particularly acetate.

SCFAs are quorum molecules that create dialogue between the microbiota and the host
organism. Previously, SCFAs have been shown to reduce hepatic steatosis by activating
AMP-activated protein kinase, inducing fatty acid oxidation gene expression, and inhibiting
pro-inflammatory macrophage activation [31,32]. According to researchers, SCFAs also
perform epigenetic regulation by inhibiting histone deacetylase and reducing the number
of acetyl groups associated with chromatin, thereby preventing the progression of liver
injury [33]. Another study showed that SCFAs can inhibit hepatic steatosis by activating
the AMPK and PPAR signaling pathways and downregulating genes associated with
lipid synthesis, such as sterol-regulatory-element-binding protein 1c (SREBP-1c), fatty acid
synthase (FAS), stearoyl-CoA desaturase 1 (SCD1), acetyl-CoA carboxylase-1 (ACC1), and
liver X receptor (LXR) [34].

We hypothesize that the presence of the groups of MAFLD patients with different
levels of SCFAs identified in our study may reflect different endotypes of MAFLD that can
have different pathogeneses and different approaches to therapy. Further studies in a large
patient population, including circulating and fecal SCFA studies, are needed to confirm
our hypothesis.

The limitations of our study include the small number of patients, the study of only
fecal SCFAs, and the lack of dietary analysis.

4. Materials and Methods

This study was conducted in accordance with the Declaration of Helsinki and was
approved by the ethics committee of Sechenov University (No. 01-22 of 1 December 2022).
This study was conducted from 10 December 2022 to 25 March 2023. The diagnosis of
MAFLD was established based on a complex of clinical, laboratory, and instrumental
data [35–37].

The criteria for inclusion for patients in this study were an age of 18–75 years and MAFLD.
All patients were tested for markers of viral hepatitis, autoimmune hepatitis, hemochro-

matosis (transferrin saturation with iron), and Wilson’s disease (indicators of copper
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metabolism) to rule out other causes of liver disease. MAFLD was diagnosed based
on the presence of a fatty liver as measured via elastography, the absence of hepatotoxic
alcohol consumption (<30 g/day for men and <20 g/day for women) [36], and the presence
of symptoms of metabolic disorders (hyperglycemia and/or hyperlipidemia).

This study excluded patients who took drugs that affected the composition of the gut
microbiota (probiotics, prebiotics, antibiotics, prokinetics, and PPIs) within the three months
leading up to the start of this study, as well as those with concomitant diseases in which there
was a change in the composition and metabolic function of the intestinal microbiota (except
for diabetes mellitus, hypertension, and hyperuricemia in patients with MAFLD).

Of the total of 100 patients, 58 did not meet the criteria, due to alcoholic cirrhosis
(n = 7), viral infection (n = 14), autoimmune disease (n = 9), mixed (n = 6) etiology, cancer
(n = 7), and the use of drugs that affected the composition of the gut microbiota (n = 15).

We determined normal levels of SCFA in feces based on the results of the control
group, which participated in our previously published study and was analyzed for the fecal
SCFA level using the same method [38]. The control group consisted of healthy persons
without complaints who visited our clinic for a prophylactic check-up. The control group
(n = 20; age was 56 (52–59) years; male/female ratio was 9/11) did not consume drugs that
affected the microbiota of the intestines. For the fecal SCFA level, the mean was 10.3 g/kg
and the standard deviation was 0.65 g/kg, which made it possible to estimate the normal
range, covering 95% of normal persons, to be 9.0–11.5 g/kg [38].

In all study participants, the absolute and relative content of acetic (C2), propionic
(C3), and butyric (C4) acids; the level of isoacids (SCFA isomers); and the ratio of isoacids
to unbranched acids (isoCn/Cn) were determined by using the following method. Fecal
samples were collected from all study participants and kept at−80 ◦C until further analysis.
After defrosting, a 0.1 g fecal sample was placed in a tube with a conical bottom; 2 mL of
distilled water and 1 mL of calibration solution were added before it was mixed through
shaking for 10 min. Further, 0.5 mL of 1 N HCl was added, and the mixture was then
centrifuged at 5000 rpm for 10 min. Next, one microliter of supernatant was injected
using a microsyringe into a Khromos GH-1000 gas chromatograph evaporator with a flame
ionization detector equipped with a 36 m long quartz capillary column with an inner
diameter of 0.32 mm and a stationary free fatty acid phase in the form of films that were
0.33 µm thick. The chromatograph operation mode was isothermal, with a thermostat
temperature of 150 ◦C and an evaporator and detector temperature of 230 ◦C. The carrier
gas was nitrogen, and the column inlet pressure was set to 1.8 atm. The carrier gas flow
was 2.0 mL/min and the airflow was 300 mL/min. Chromatography took about 8 min.
We determined the absolute content of individual acids in the mixture by calculating
the areas of chromatographic peaks using the “triangle” method and by processing the
chromatograms with a computer [39].

Liver stiffness and CAP measurements were determined using Fibroscan (iLivTouch
FT 100, Wuxi Hisky Company, China) by experienced operators, and all patients were
successively measured using both M and XL probes at the same measurement point. Liver
tissue imaging was performed with the participant lying supine, with the right arm in
maximum abduction. The tip of the probe transducer was placed on the skin between
the rib bones at the level of the right lobe of the liver. The CAP is an average estimate of
ultrasound attenuation at 3.5 MHz and is expressed in dB/m. The levels of CAP used to
define the presence and degree of steatosis were as follows: the corresponding optimal
cutoff values for >S0 (no steatosis), >S1 (mild steatosis), and >S2 (moderate steatosis) were
248, 268, and 280 dB/m, respectively, while a CAP score of >280 dB/m suggested S3 (severe
steatosis). Liver stiffness was expressed by the median value (in kPa) of 10 measurements
performed at depths between 25 and 65 mm. The cut-off value for defining the presence of
fibrosis was a liver stiffness of >7.6 kPa [18,40–42].

We used non-invasive fibrosis scores (fibrosis-4 (FIB-4) index) to estimate the possibility
of liver fibrosis. The FIB-4 index was calculated using the following formula: FIB-4 = (age
× AST)/[PLT(×109/L) × (

√
ALT)]. Patients with an FIB-4 value of <1.30 were classified as
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having no or moderate fibrosis, while those with an FIB-4 value of >3.25 were defined as
having extensive fibrosis or cirrhosis [37,38].

Statistical data were processed using the STATISTICA 10 software (StatSoft Inc., Tulsa
OK, USA). The data are presented as the median [interquartile range]. The significance of
differences between the two groups was assessed by using the Mann–Whitney method. Dif-
ferences in categorical variables were determined by using Fisher’s exact test. Correlation
analysis was performed by using the Spearman method. The differences were considered
significant if the probability of making a Type I error was p < 0.05.

5. Conclusions

Two profiles of the metabolic activity of microbiota (with increased and decreased
SCFA production) in patients with MAFLD were identified. These profiles were associated
with different levels of liver fibrosis and serum cholesterol levels and may be correlated with
the risk of progression of MAFLD to cirrhosis, hepatocellular carcinoma, and cardiovascular
events. Further prospective studies are required to verify this hypothesis.
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