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Abstract: Neutrophils are short-lived cells that play a crucial role in inflammation. As in other
tissues, these polymorphonuclear phagocytes are involved in the intestinal inflammatory response,
on the one hand, contributing to the activation and recruitment of other immune cells, but on the
other hand, facilitating intestinal mucosa repair by releasing mediators that aid in the resolution
of inflammation. Even though these responses are helpful in physiological conditions, excessive
recruitment of activated neutrophils in the gut correlates with increased mucosal damage and severe
symptoms in patients with inflammatory bowel disease (IBD) and pre-clinical models of colitis.
Thus, there is growing interest in controlling their biology to generate novel therapeutic approaches
capable of reducing exacerbated intestinal inflammation. However, the beneficial and harmful effects
of neutrophils on intestinal inflammation are still controversial. With this review, we summarise
and discuss the most updated literature showing how neutrophils (and neutrophil extracellular
traps) contribute to developing and resolving intestinal inflammation and their putative use as
therapeutic targets.
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1. Introduction

Neutrophils are effective antimicrobial cells and the first leukocytes recruited to the site
of injury or infection, followed by monocytes, natural killer cells, T cells, B cells, and mast
cells [1]. These polymorphonuclear (PMN) phagocytes are the most abundant immune
cells in peripheral blood, constituting between 50 and 70% of circulating leukocytes under
normal conditions (although this percentage can increase during acute or chronic inflam-
mation) [2]. The bone marrow produces more than 1011 neutrophils daily [3], and these
cells circulate in the bloodstream only for a few hours due to their relatively short half-life,
which is thought to be 6–20 h. However, once neutrophils become activated, their lifespan
increases considerably [4], allowing their accumulation in inflamed or wounded tissues.

Classically, neutrophils are characterised by a potent phagocytic activity and a battery
of functions (degranulation, reactive oxygen production (ROS), and neutrophil extracellular
traps (NETs) formation) directed towards destroying infectious threats. However, that
prevailing simplistic view of this cell type has changed over the years due to the advances
in in vivo tracking systems and sequencing technologies, among others [5]. Those technolo-
gies revealed more complex neutrophil biology that even banned part of well-established
dogmas such as their unidirectional migration to peripheral tissues and apoptosis [6].
Nowadays, it is recognised that neutrophils play sophisticated roles during inflammation
by releasing cytokines and proteases able to regulate adaptive immune responses. Yet,
this cell type is also pivotal for the appropriate resolution of inflammation and tissue re-
pair [4,7,8]. Therefore, prolonged neutrophil activation is damaging and promotes chronic
inflammation, and simultaneously, their presence is crucial for precise tissue healing. That
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duality must be finely regulated to maintain homeostasis and avoid the occurrence of
non-resolving inflammatory responses.

As for many other inflammatory conditions, neutrophils participate in the develop-
ment and progression of intestinal inflammation. The precise contribution of this cell type
to the dysregulation of intestinal homeostasis is still a matter of study. However, as a
vital component of the innate immune system, neutrophils are essential for maintaining
the balance between immune response and tolerance at the intestinal level. Therefore, in
this review, we summarise and discuss the most relevant knowledge related to the role
played by neutrophils in the promotion and resolution of inflammation, the participa-
tion of NETS in IBD pathophysiology, and the current therapeutic approaches based on
neutrophil products.

2. Inflammatory Bowel Disease and a Lack of Treatment Options

IBD, mainly including Crohn’s disease (CD) and ulcerative colitis (UC), is a group
of immune-mediated disorders of the gastrointestinal tract, defined by a chronic and
recurring inflammatory response in the intestinal mucosa. While UC is limited to the
colon and presents a continuous inflammation confined to the mucosal layer, CD shows a
discontinuous and transmural inflammation that can occur anywhere in the gastrointestinal
tract. This disease cannot be cured, and despite the current therapies, a proportion of
patients experience relapses and continuous inflammation, which occasionally requires
surgical removal of parts of the intestine. Moreover, IBD’s young age of onset and the
need for long-term treatment result in substantial costs for healthcare systems and society,
making this disease an enormous socioeconomic problem worldwide.

The use of biological agents has transformed the treatment of IBD. These drugs dra-
matically reduced the use of steroids, hospitalisation, and the need for surgery. Despite
the great success of these therapeutic approaches, many patients with IBD do not respond
adequately to these drugs. For instance, 10–30% of patients with IBD do not respond
to anti-TNF therapy, and 20–40% lose effectiveness over time [9]. Moreover, these im-
munomodulators can blunt physiological immune responses, leading to serious side effects
such as infections. As a result, a substantial percentage of patients are treated with expen-
sive compounds and exposed to undesirable side effects without obtaining any therapeutic
benefit. Notably, there is room for improvement in the ability of the current IBD therapies
to achieve a complete resolution of the inflammation and mucosal healing and therefore,
decrease the risk of relapse. Thus, we cannot be content with the current IBD therapeutic
armamentarium, and the need for finding new treatments able to boost therapeutic efficacy
and diminish the probabilities of adverse events is still a challenge.

3. Neutrophils in IBD Pathophysiology

The involvement of the immune system in the aetiology of IBD has been extensively
recognised and demonstrated. Impaired immunity, with the environment, the genetic
background, and gut microbiota, is responsible for developing CD and UC [10,11]. Chronic
inflammation, by definition, is a dysregulation of the immune response. Consequently,
much of the IBD-related research has focused on elucidating the immune mechanisms
underlying intestinal inflammation pathogenesis [11,12].

The adaptive immune system is considered to play the most important role in the
development of intestinal inflammation. However, at present, it is accepted that the
innate immune system is equally necessary for maintaining gut homeostasis [12–14]. The
intestine is constantly exposed to foreign antigens, and mononuclear phagocytes such as
macrophages and dendritic cells (DCs) are essential for discriminating between harmful
and harmless antigens. Therefore, these cells are central in mounting the appropriate
immune response to pathogens or tissue damage, but also in favouring tolerance for
innocuous dietary products and commensal microbiome. Another critical phagocytic
immune cell is the neutrophil. This innate immune system effector is the first line of
defence against infection or wounding, being the most rapid leukocyte recruited to the
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site of inflammation after these insults. Therefore, neutrophils are vital in protecting
intestinal epithelial barrier integrity and the contention of pathogens. Once their tasks are
completed, neutrophils undergo apoptosis, and macrophages remove them in a process
termed efferocytosis. This process is vital for the resolution of inflammation and recovery
of tissue function. However, persistent neutrophil activation, exacerbated infiltration, and
low apoptosis rates are commonly observed in IBD, contributing to the chronification of
intestinal inflammation.

The role played by neutrophils in IBD is relatively unknown and less studied than for
other immune cells. However, the number of studies relating to that topic has increased
recently. To date, we know that impaired neutrophil function is pivotal in the induction of
gut inflammation. These cells produce high levels of reactive oxygen species (ROS), which
cause intestinal epithelial tissue damage [15–17]. Neutrophils can secrete a plethora of
cytokines and chemokines that amplify their activation and recruitment (i.e., CXCL1) [18,19]
and other innate and adaptive immune responses (i.e., CCL3, CCL4, CCL25) [19,20] within
the mucosa. Moreover, these granulocytes can secrete proteases and extracellular traps,
which further impair intestinal tissue homeostasis by disrupting the epithelial barrier
integrity and by hyperactivating other immune cells [14,15]. In line with this, we cannot
deny the enormous contribution of neutrophils and neutrophil-derived products, such
as faecal calprotectin (S100A8/S100A9), to IBD clinical practise. This protein is routinely
used as an indicator of disease activity in substitution of the classic pro-inflammatory
marker C-reactive protein (CRP) [21] (although the utility of more neutrophil-associated
biomarkers is being explored [22–25]. Plus, neutrophil infiltration and NETs correlate with
disease severity and intestinal damage in patients with IBD [26–29], further corroborating
the clinical relevance of this cell type. Functional experiments in CD patients revealed
that defective neutrophil activity could be associated with a reduction in the clearance
of mucosal bacteria, which would result in an increased immunological response and
leukocyte infiltration into the intestine [30]. Altogether, these data highlight the relevance of
neutrophils in the development and perpetuation of non-resolving intestinal inflammation.

4. Neutrophils in Intestinal Inflammation

Neutrophils, as essential effectors of the innate immune system, play a role in the
pathogenesis of IBD [2,31]. Although the implication of these cells in the control of intestinal
inflammation is not entirely known, many studies have demonstrated the participation of
neutrophils in the onset and progression of intestinal mucosa damage (Figure 1).

4.1. Neutrophils Participate in the Initiation of Intestinal Inflammation

Although the inflammatory response differs based on the original stimulus and body
location, the inflammation induction phase shows common mechanisms that allow for a
fast and robust immune response. These universal processes entail a series of modifications,
such as enhanced vascular permeability, leukocyte recruitment, and pro-inflammatory
cytokine release, directed towards eliminating harmful stimuli [32]. The migration of neu-
trophils to the intestinal tissue is not entirely understood, but generally involves chemokines
(CXCL8, CXCL1) [18,33], complement proteins (C5a) [34], and eicosanoids [35,36]. These
polymorphonuclear phagocytes respond to a range of stimuli by releasing factors that
regulate the activity and recruitment of other immune cells to inflamed tissues [8,37], which
is a hallmark of IBD. Plus, because of their high antibacterial activities and tissue debris
clearance capabilities, neutrophils exert collateral tissue damage by releasing ROS, pro-
teases, and the formation of NETs [14,38]. Indeed, the protease inhibition showed positive
effects on colitis severity in vivo, reducing neutrophil and macrophage infiltration and the
production of pro-inflammatory cytokines [39,40]. Plus, NETs are detected in high amounts
in the colons of mice subjected to experimental colitis. NETs promote the impairment of the
intestinal barrier integrity and the apoptosis of intestinal epithelial cells [41], favouring the
bacterial translocation from the lumen to the mucosa and the initiation of an exacerbated
inflammatory response.
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Figure 1. Schematic representation of the functions developed by neutrophils during inflammation.
1. Neutrophils secrete pro-inflammatory mediators during the acute inflammatory response. 1.1.
Neutrophil apoptosis and efferocytosis, with the production of pro-resolutive factors, lead to the
resolution of inflammation. 1.2. Persistent neutrophil infiltration and low apoptotic rates contribute
to the chronification of intestinal inflammation.

Neutrophil depletion experiments have yielded contradictory results in different an-
imal models of IBD. The use of antibodies against neutrophils during dextran sodium
sulphate (DSS)-induced colitis, dinitrobenzene sulphonic acid (DNBS) colitis model, or T
cell transfer colitis exacerbates disease severity and the infiltration of other inflammatory
cells [42,43], suggesting a protective function for these cells during colitis development.
In contrast, neutrophils improved colitis symptoms in rats subjected to DSS-induced coli-
tis [44]. In line with this, the depletion of macrophages and dendritic cells (DCs) increases
granulocytic inflammation within the intestinal mucosa and presents more severe signs
of colitis [45]. However, simultaneous neutrophil elimination using anti-Gr1 antibodies
did not aggravate the intestinal inflammation elicited by the lack of both mononuclear
phagocytes [45]. The different species, experimental colitis models, and antibodies used
might explain the heterogenicity of the outcomes. Moreover, the work of Qualls et al. [45]
highlights that the interplay among immune cells in the intestinal mucosa should be con-
sidered, adding an extra level of complexity to the study of neutrophil biology during IBD
pathogenesis. Plus, it is noteworthy that complete neutrophil depletion might not be the
most acceptable strategy to investigate the functions of this cell type during colitis, due
to the concomitant impairment of its pro-resolutive and bacterial contention actions. In
contrast, approaches aiming to reduce neutrophil hyperactivation and over-accumulation
could be more appropriate. In fact, the blockade of CXCR2 alleviates DSS-acute colitis
symptoms, and this is thought to be mediated by the reduction in excessive neutrophil
recruitment to the colonic lamina propria [46]. Similarly, anti-GM-CSF antibodies caused
a significant decrease in neutrophil colonic infiltration (close to control animals) and the
restoration of the mucosal integrity during DSS-induced colitis [47]. Collectively, these
studies clearly reveal the participation of neutrophils in the development of an aberrant
intestinal inflammatory response. Nonetheless, the existence of discrepancies and the
relatively unknown role played by neutrophils in the gut urge additional research to fully
understand their contribution to the pathogenesis of intestinal inflammation.

4.2. Neutrophils Participate in the Resolution of Intestinal Inflammation

Resolution of inflammation is an active and highly regulated process aiming to restrain
excessive inflammation and recover tissue homeostasis. In patients with IBD, relapses
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have been linked to defects in this process [48–50]. Therefore, it is crucial to understand
the mechanisms underlying the resolution of intestinal inflammation to develop new
therapeutic strategies.

Neutrophils are central elements in the resolution of inflammation. The initiation
of this process requires the cessation of neutrophil influx and the engulfment of apop-
totic neutrophils by macrophages. The efferocytosis of dying granulocytes avoids the
amplification of pro-inflammatory signals and induces a macrophage phenotype shift from
M1 (pro-inflammatory) to M2 (anti-inflammatory) [51,52]. Apart from that, neutrophils
actively participate in tissue repair by releasing factors capable of inducing intestinal tissue
healing [7].

4.3. Targeting Neutrophils to Resolve Intestinal Inflammation
4.3.1. Neutrophil Chemotaxis Blockade

Chemokine gradients, among other factors, mediate neutrophil migration to the
intestinal tissue. Therefore, the induction of a resolutive phase needs to revert those
gradients to block the continuous supply of neutrophils to the inflamed tissue.

Apart from their role in remodelling the extracellular matrix (ECM), matrix metallopro-
teinases (MMPs) are currently known for regulating the availability of certain chemokines.
MMP3-treated Caco-2 intestinal epithelial cells present higher CXCL7-dependent neu-
trophil chemotaxis capacity [53]. Moreover, MMP7−/− mice show accumulation of neu-
trophils in the submucosa and an impaired transepithelial migration during DSS-induced
colitis, which is parallel to a defect in the transmucosal chemokine gradient, suggesting
that MMP7 controls the activity or localization of different chemokines [54].

Additional functional experiments using MMP inhibitors or transgenic mice demon-
strated the participation of these proteolytic enzymes during intestinal inflammation.
However, the specific action of each MMP varies across the numerous members of this
protein family. For instance, Mmp-9-deficient mice showed a reduction in the severity
of DSS experimental colitis and a reduction in the inflammatory cell infiltrate (including
neutrophils) in the colon [55]. In contrast, mice lacking Mmp-2, Mmp-10, or Mmp-19
exhibited the opposite behaviour, showing increased neutrophil infiltration in the colon
and aggravated colitis symptoms [56–58]. Moreover, the analysis of the recovery phase,
following DSS removal, revealed that Mmp2−/−, Mmp10−/−, and Mmp19−/− mice were
unable to resolve colon inflammation adequately [56–58]. Interestingly, that effect was
associated with dysregulated neutrophil infiltration during the recovery phase, which in
the case of Mmp-19-deficient mice was caused by abnormalities in the cleavage of the
chemokine Cx3cl1 [58].

4.3.2. Neutrophil Apoptosis

The apoptosis of accumulated neutrophils in inflamed tissues is essential for restoring
tissue homeostasis. Defects in neutrophil apoptosis are commonly associated with immune-
mediated diseases [59,60]. Actually, patients with IBD show increased neutrophil survival
and delayed apoptosis [61,62]. Neutrophils isolated from an equine model of colitis also
presented delayed LPS-induced apoptosis [63], suggesting that the observed increase in
neutrophil lifespan may affect the proper resolution of intestinal inflammation. Along with
that, different studies involving transgenic mice with altered apoptotic components were
performed. Mice deficient in the apoptotic signal trail subjected to DSS-induced colitis
display aggravated disease severity and leukocyte infiltration [64]. Plus, mice lacking the
apoptotic agonist BH3 interacting domain death agonist (Bid) showed higher persistent
weight loss than their wild-type counterparts in the same colitis model [65].

4.3.3. Neutrophil and Specialised Resolving Lipid Mediators

Maresins (MaRs), protectins (PDs), lipoxins (LXs), and resolvins (Rvs) are specialised
pro-resolving lipid mediators (SPMs) generated from the metabolism of the arachidonic
acid or omega-3 polyunsaturated fatty acids (omega-3-PUFA). These molecules play a
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critical role in achieving resolution by decreasing leukocyte activity and promoting tissue
repair. PMNs synthesise lipoxin A4, and other SPMs [66–68] that benefit from intestinal
inflammation, as was demonstrated in different experimental models of colitis [69–71].

Several studies have linked the activity of SPMs to neutrophils in the context of IBD.
MaR1, RvE1, and PD1 reduce PMN infiltration to colon tissue in DSS- and TNBS-treated
mice [72–74]. In line with this, the administration of an agonistic monoclonal antibody of
the RvE1 receptor (ChemR23) decreases neutrophil infiltration to intestinal tissue during
the non-resolutive T cell transfer mouse model [75]. Interestingly, high expression levels of
ChemR23 are associated with increased neutrophil infiltration in colon biopsies of patients
with IBD [75], suggesting a strong relationship between the activity of the RvE1 receptor
and excessive accumulation of neutrophils in the inflamed colon mucosa. Moreover, PD1n-
3DPA and RVD5n-3DPA prevent the intestinal damage caused by DSS, and this effect
is attributed to the regulation of neutrophil recruitment [76]. A series of in vitro and
in vivo experiments demonstrated that both SPMs impaired the adhesion of neutrophils to
the endothelium, while other relevant processes in leukocyte trafficking, such as rolling,
remained unaffected [76].

5. NETs Overview

In 2004, NETs appeared as a novel innate response of neutrophils to kill bacteria [77].
Extracellular traps are an ancient and conserved defence mechanism [78,79] composed of
chromatin fibres, histones, and granular proteins such as calprotectin, neutrophil elastase
(NE), myeloperoxidase (MPO), and cathepsin G, among others [80]. Initially, NETs were
known for their participation in eradicating pathogens through microbial toxicity or by
their immobilisation and subsequent phagocytosis by other immune cells [81], contributing
to host protection against infections. However, NET content causes indiscriminate tissue
damage and an excessive pro-inflammatory response, which may lead to the develop-
ment of numerous autoimmune/inflammatory pathologies [82]. Indeed, many studies
indicate that the imbalance in the NET production contributes to the activation of different
pathogenic pathways in rheumatoid arthritis (RA) [83], systemic lupus erythematosus
(SLE) [84], and IBD [29].

5.1. NETs and IBD

The existing literature demonstrates the participation of NETs in the development of
inflammatory bowel disease. Circulating levels of NET formation markers such as MPO-
DNA complexes are elevated in patients with IBD as compared to healthy volunteers [29].
Additionally, the same group of patients presented with impaired NET degradation ability
as controls when exposed to DNase [29]. Similarly, faecal samples from patients with
CD and UC showed increased levels of NET-associated proteins [85]. In line with this,
preclinical experiments have demonstrated that NETs play a critical role in the pathogenesis
of intestinal inflammation. Actually, the degradation of NETs by administrating DNase to
mice subjected to DSS- or TNBS-induced colitis suppresses the progression of the disease
and improves the mucosal damage [29,41].

5.1.1. NET Components and IBD

Myeloperoxidase
Myeloperoxidase is a cationic heme-containing enzyme, mainly found in the azurophil

granules of neutrophils, and in the lysosomes of monocytes to a lesser extent. The presence
of halides and hydrogen peroxide allows MPO to catalyse the formation of ROS, such as
hypochlorous acid (HOCl) [86]. The processes leading to NET formation are not entirely
understood and differ considerably depending on the initial stimulant. However, it is
generally accepted that MPO and ROS play a critical role in NET formation since patients
with MPO-deficient neutrophils fail to form extracellular traps [87]. Furthermore, impaired
NET formation in neutrophils from chronic granulomatous disease patients (due to the
lack of functional NAPDH) reverts after the exogenous administration of HOCl [88].
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The involvement of MPO-HOCl in the context of IBD has been extensively studied.
MPO levels are increased in both biopsies and stools of patients with IBD [89,90]. MPO
levels positively correlate with disease severity [91]. Similarly, preclinical studies have
shown that MPO inhibition in mice causes amelioration of clinical and biochemical param-
eters during DSS-induced colitis, highlighting the importance of MPO activity during the
development of intestinal inflammation [92,93].

Protein arginine deiminase-4
Protein arginine deiminase-4 (PAD4) is a hydrolase responsible for catalysing the

citrullination or deamination of proteins. PAD4-mediated histone citrullination is critical
for NET formation due to that post-translational modification allows chromatin deconden-
sation [94], which could explain why PAD4-deficient neutrophils present impaired NET
formation [95].

Several studies have shown a connection between PAD4 activity and the progression
of intestinal inflammation. PAD4−/− mice showed abnormal NET formation, and that
observation correlated with an improvement in intestinal barrier function during DSS
colitis [96]. However, contradictory results revealed worse colitis symptoms and rectal
bleeding in PAD4-deficient mice subjected to DSS-induced colitis [97]. Therefore, further
studies are required to determine the specific contribution of PAD4 to the maintenance of
intestinal mucosa homeostasis.

Neutrophil elastase
Neutrophil elastase is a serine protease stored in neutrophil granules and is one of

the most abundant proteins in NETs [98]. During NET formation, NE translocates to the
nucleus and along with MPO, degrades specific histones, facilitating the decondensation of
chromatin [99].

NE expression is upregulated in UC intestinal tissue [100] and their levels increase
with the histopathological score in CD patients [101]. Plus, NE expression can be used
as an indicator of the severity of colitis in murine DSS-induced colitis [23]. Additionally,
NE hyperactivity caused by the lack of the serine protease inhibitor secretory leukocyte
protease inhibitor (SLPI) promotes exacerbated colon inflammation in the same mouse
model [39]. Noteworthy, this serine protease may act on the effectiveness of different
IBD frontline therapeutic monoclonal antibodies. It has recently been reported that the
proteolytic activity of NE degrades, to a different extent, several biological agents currently
used for treating patients with IBD [102].

DNA
In addition to the release of different proteins, neutrophils can expel DNA molecules

(essentially mitochondrial DNA) during NET formation. This DNA acts as a scaffold for
the protein components of the NET, allowing for the proper NET release by neutrophils to
combat an infection or tissue damage [103].

As for other components of the NETs, circulating DNA-MPO complexes have in-
creased in UC and CD patients [29,104]. Similarly, extracellular DNA levels in plasma were
higher in mice subjected to DSS-induced colitis compared to controls [105], suggesting the
participation of this NET component during intestinal inflammation.

5.1.2. Targeting NET’ Components in IBD

MPO inhibitors
Targeting the NET component MPO has been explored as a therapeutic approach for

alleviating intestinal inflammation symptoms. AZD3241 is a specific inhibitor of extra-
cellular MPO activity. The administration of this compound to DSS-induced colitic mice
decreased weight loss and improved both clinical and histological scores [93]. Additionally,
the MPO inhibitor 4-methoxy-TEMPO (MetT) demonstrated efficacy in the same animal
model. Chami B et al. observed a significant improvement in the histopathological damage
after the treatment with MetT in DSS experimental colitis [92]. A disadvantage of using
MPO inhibitors is the putative inhibition of the physiological phagocytic capacity of neu-
trophils and its implications for the host defence against pathogens and tissue damage.



Gastrointest. Disord. 2022, 4 270

Therefore, theoretically, developing inhibitors that target extracellular MPO appears to be a
more suitable approach for translating these results to the human setting.

PAD4 inhibitors
In the context of intestinal inflammation, two PAD4 inhibitors, Cl-amidine and strep-

tonigrin, have been tested. Cl-amidine administration to mice subjected to TNBS-induced
colitis reduced the disease activity index and colonic tissue inflammation [106]. This relief
in colitis symptoms was accompanied by a decrease in the expression of relevant pro-
inflammatory mediators and NET formation [106]. Moreover, Cl-amidine reduces the
severity of DSS-induced colitis by suppressing leukocyte activation and preventing the
associated DNA damage to colon epithelial cells [107].

Similarly, streptonigrin is a selective inhibitor with high specificity for PAD4 [108]. In
mice receiving DSS, this compound reduces weight loss, rectal bleeding, diarrhoea, and
general colonic inflammation signs [28]. Furthermore, streptonigrin downregulates the
colonic mRNA expression of cytokines and inflammatory genes such as LCN2, IL-1β, and
TNF-α. Interestingly, this PAD4 inhibitor did not present any cytotoxic effects on mice
as the intestinal architecture and integrity were not affected by its administration [28].
Altogether, these data suggest that the inhibition of the citrullination activity of PAD4 may
be a promising therapeutic strategy for dysregulated colonic inflammation.

NE inhibitors
The viability of different NE inhibitors for the modulation of intestinal mucosal inflam-

mation has been tested in IBD-like animal models. That is the case of alpha-1-antitrypsin
(AAT), which attenuates colonic clinical and histological signs of inflammation in mice
exposed to DSS. This improvement in disease severity was associated with decreased
inflammatory cellular infiltration and reduced release of pro-inflammatory cytokines [109].
Moreover, AAT also accelerates intestinal mucosa repair after DSS withdrawal [109], sug-
gesting that NE inhibition, not only prevents intestinal inflammation but also regulates
the recovery of colonic tissue homeostasis. In line with this, transgenic overexpression of
elafin, an NE disruptor, protected mice from DSS- and TNBS-induced colitis [110]. Elafin
transgenic mice present reduced expression of central pro-inflammatory mediators such as
IL6, RANTES, or MIP1α and improved intestinal barrier integrity [110].

DNases
DNA is one of the principal components of NETs, so its degradation appears as one

of the main targets for NET elimination. DNase I is an enzyme responsible for dissolving
the DNA strands of NETs, and its suitability to modulate intestinal inflammation has
been recently tested. Li T et al. demonstrated that the administration of DNase I to mice
subjected to DSS colitis protected against weight loss and tissue damage [29]. Interestingly,
the inhibition of NET formation exerted by DNase I decreased macrophage activation and
the production of pro-inflammatory cytokines [29], suggesting that NETs DNA degradation
might be of particular relevance for generating new treatments for patients with IBD
(Figure 2).
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6. Conclusions

Neutrophils are one of the central figures of innate immunity, and based on recent
research, this cell type is more relevant to the onset and progression of IBD than initially pos-
tulated. Pre-clinical and clinical data unequivocally demonstrate the prominent role played
by neutrophils in different aspects of IBD pathophysiology. The complete understanding
and regulation of neutrophil biology open the door to developing new drugs for treating
IBD. Some of the putative new therapeutic targets to combat intestinal inflammation de-
scribed above show promising results, particularly in mice colitis models. However, the
translation of those approaches to the human setting must entail comprehensive knowledge
of how to blockade excessive neutrophil activation while preserving normal neutrophil
function, as their complete elimination would also impair the physiological host defence
against pathogens and the resolution of inflammation. Therefore, further studies on the
cellular and molecular mechanisms controlling neutrophil functions are still necessary.
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25. Şimşek-Onat, P.; Hizarcioglu-Gulsen, H.; Ergen, Y.M.; Gumus, E.; Özen, H.; Demir, H.; Özen, S.; Saltık-Temizel, İ.N. Neutrophil-
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