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Abstract: A perspective is presented on the evolution of damage due to environmentally assisted
cracking (EAC), from crack precursor development through to long crack growth. The variable
nature of crack precursors is highlighted with an observation that uncontrolled chemistry excursions
or fabrication defects could eliminate any significant delay associated with that step in the damage
evolution process. Specimen preparation by machining and grinding can be critical in determining
the apparent susceptibility of the metal to EAC and corrosion, and an example for 316L stainless steel
is given to show how physical defects generated by the grinding wheel can become the dominant
site for pitting attack relative to MnS inclusions. Corrosion pits are the most commonly observed
precursor to cracks in aqueous chloride environments. The loci of sites of crack initiation around a
pit are discussed and the inherent challenges in quantifying the growth of cracks smaller than the
pit depth described with implications for modelling of the pit-to-crack transition. The remarkably
enhanced stress corrosion crack growth rate data for short and small cracks in a 12Cr steam turbine
blade in a simulated condensate environment are discussed in the context of crack electrochemistry
modelling and the implications for engineering integrity.

Keywords: stress corrosion cracking; corrosion fatigue; pitting; surface finish; modelling

1. Introduction

The evolution of damage development in engineering components and structures
is often characterised schematically in diagrams such as that of Figure 1. One can find
a similar depiction by Staehle for example [1]. These diagrams are of most value for
applications where crack growth can be tolerated by virtue of accessible inspection and
relatively slow crack growth rates. In applications where inspection is not feasible, or
crack growth rate too rapid, the emphasis is on ensuring no damage development beyond
Stage 2, i.e., any crack, should it form, would be non-propagating. The approach in that
case is either to select materials resistant to cracking, design below the threshold stress or
threshold stress amplitude for sustained cracking, or to manage the operating system to
minimise the likelihood of cracking, for example, by water chemistry control.

These diagrams describing crack size evolution can be somewhat misleading in not
accounting explicitly for the distributed nature of flaw sizes (with an inherent uncertainty in
the possible evolved value of crack length at any time). Additionally, in many applications,
the relative time-domain allotted to the different stages can be markedly different from
those suggested. They also give the impression of a continuous uninterrupted crack growth
process, whereas, in many service applications, the crack growth may be intermittent,
with occasional crack arrest, and dependent on controlled or uncontrolled excursions
in environment or stress (e.g., scheduled outages or temporary loss of control of water
chemistry or temperature). Accordingly, the assumption of a significant fraction of life in
precursor development prior to crack formation may be obviated by a major excursion, in
plant water chemistry for example.
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Figure 1. Schematic depiction of the evolution of crack size as interlinked stages of development.

Despite these limitations, the virtue of such diagrams is that they highlight the stages
of damage development that require quantification if the time to the crack detection limit
and life prediction are to be estimated with any measure of confidence. They also indicate
where research and development in materials, fabrication, and system operation should
be targeted to achieve the goal of increasingly longer lives. In the latter respect, Staehle’s
focus [1] on improved characterisation of the processes determining precursor development
at the nano-to micro-scale points the way forward.

The nature of the crack precursor depends on the material-environment system. Ex-
amples from nuclear applications have been described recently by Persuad et al. [2] and by
Bruemmer et al. [3]. Here, examples from our own work in Figure 2 highlight the varied
nature of crack precursors. These include corrosion pits formed on a 12Cr martensitic stain-
less steel (MSS) in chloride environments [4]; dealloyed layer formed on a duplex stainless
steel (DSS) in evaporating seawater conditions at elevated temperature (the dealloying
attributed primarily to a nanocrystalline layer induced by surface grinding) [5]; weld
defects, in this example for a weldable 13Cr MSS in a simulated oilfield environment. [6].

Figure 2. Cont.
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Figure 2. Examples of crack precursors; (a) cracks emerging from corrosion pit in 12Cr blade steel in simulated steam turbine
condensate. Reprinted with permission from [4] Copyright @ National Physical Laboratory; (b) stress corrosion cracks
formed from dealloyed layer in DSS in evaporated seawater conditions at elevated temperature. Reprinted with permission
from [5] Copyright 2016 Crown Copyright; (c) stress corrosion crack in welded 13Cr MSS in simulated oilfield brine in
H2S/CO2 at elevated temperature [6]. Figure 2c is copyright © Institute of Materials, Minerals and Mining, reprinted
by permission of Informa UK Limited, trading as Taylor & Francis Group, on behalf of Institute of Materials, Minerals
and Mining.

The sharp triangular-shaped defects in the welded 13Cr MSS highlight an application
where the precursor development stage may be effectively eliminated as a consequence of
the fabrication process.

While there are different forms of crack precursor, depending on the application, this
brief overview/commentary will focus on corrosion pits, as perhaps the most commonly
investigated. After drawing attention to the importance of surface finish to pit development
in stainless steels, the focus is on the more generic aspects of the pit-to-crack transition
and the challenges of small crack growth rate measurement from pits. In-house data and
modelling for small, short and long stress corrosion crack growth rates in 12Cr steam
turbine blades are then used to highlight the enhanced growth rate that can be associated
with small cracks developed from pits. Finally, completing the stages represented in
Figure 1, the implication for turbine life is briefly discussed.

2. Impact of Surface Preparation

The surface preparation method and the final finish adopted for laboratory test spec-
imens represent a potential source of disparity in laboratory test results and also their
relevance to service. Standard tests for pitting and for EAC typically recommend that
specimens should be prepared to a finish that reflects that in service or specify that speci-
mens should be ground to a maximum average surface roughness, Ra. The latter approach
is the more commonly adopted but it has two limitations. Specimens may be ground to
the desired surface finish but if the grinding is not carried out in a progressive way, i.e.,
with the previous damaged layer removed during each stage, sub-surface damage from
prior machining may remain. The second limitation is that engineering workshops will
tend to grind EAC test specimens with a grinding wheel, almost inevitable for cylindrical
specimens, and this impacts on surface properties quite differently from hand-grinding. In
some cases, the latter might be followed by polishing or electrochemical polishing.

Grinding with a grinding wheel can give rise to near-surface residual stress, the intro-
duction of physical defects, plastic deformation, the formation of a nanocrystalline layer,
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and high local hardness, the extent of these being dependent on the relevant alloy [5,7–12].
The consequence is that the material actually exposed to the environment may be quite
different from the bulk alloy with respect to both microstructure and mechanical proper-
ties. Superimposed on this modified near-surface material may be an array of physical
defects formed from the grinding wheel process associated with chipping, gouging and
deep grooving.

The importance of physical defects in acting as a precursor to pitting corrosion is
exemplified for 316L stainless steel (SS) in simulated oilfield environment containing CO2
and H2S at elevated temperature in Figure 3 [9]. Here, tests were carried out with and
without heat-tinting. Prior to testing, the location of inclusions and physical defects on
the surface was mapped at high resolution using a scanning electron microscope, and,
post-test, the number of pits and their location with respect to inclusions and pre-existing
defects were assessed. Notably, there was not a simple correlation with Ra value, which
perhaps reflects the frequency of dressing of the grinding wheel. The key observation is
that for most cases there was a greater number of pits associated with physical defects
compared to inclusions. This raises the question as to the perceived role of inclusions as
the commonly assumed primary source of pitting in stainless steels. Is this observation
simply a product of the fine surface finish in most laboratory tests, with specimens usually
hand-ground or more finely polished? As such, is the adoption of an ideal surface finish
in laboratory testing producing results that are specific only to that testing and perhaps
misleading when extended to real components in service? More testing with a surface
finish representative of that adopted in service is recommended. This does not preclude the
role of chemical inhomogeneities acting as pit precursors but ensures that their significance
is appropriately weighted.

Figure 3. Comparison of number of pits associated with inclusions relative to physical defects in
316L SS in simulated oilfield environments. Reprinted with permission from [9] Copyright 2013
Crown Copyright.

3. Pits and the Pit-to-Crack Transition

Traditionally, the role of pits as effective precursors to cracks has been ascribed to a
combination of stress/strain concentration, an aggressive local environment, and a film-free
active surface. Turnbull et al. [13] proposed an additional concept impacting the evolution
of cracks from pits; specifically, dynamic straining induced by the pit growing in its local
strain field. Finite element analysis (FEA) supported that concept and predicted plastic
strain rates in the range associated with stress corrosion cracking in slow strain rate testing.
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In the FEA study, undertaken for a 3NiVrMoV steam turbine disc steel, plastic strain
was concentrated just below the pit mouth (Figure 4). This correlated with the location of
cracks emerging from pits, as shown by detailed X-ray computed tomography, XCT [14].

Figure 4. (a) FEA modelling of strain localisation in pit. Reprinted with permission from [13] Copyright 2010 Crown
Copyright; (b) 3D imaging of cracks emerging from pit near the pit mouth using XCT [14]. Figure 4b is copyright Elsevier,
2011, reproduced by permission.

The XCT observation, with the support from FEA, represented a step-change in think-
ing about the evolution of cracks from pits. Further work on fatigue crack development
from pits in a 12Cr MSS supported the idea that cracks initiated near surface rather than
at the pit base [15]. Indeed, even for shot-peened 12Cr MSS, with a compressive residual
stress gradient, fatigue cracks from pits of depth 120 µm or less all initiated away from
the base (fatigue tested in air) [16]. In the latter case, this was attributed to sub-surface
deformation rather than the stress or strain profile. These observations do not preclude the
possibility that cracks may initiate at, or very close to the pit base, as suggested for fatigue
crack development from pits in Al alloys as one example [17]. What it does highlight is
the need to abandon preconceived ideas about where a crack may evolve from a pit. The
specific location will depend on pit geometry, which determines how macro-stresses and
macro-strains are distributed, micro-topographical features, and near-surface deformation.

An interesting feature of the research of Guo et al. [16] was the observation of multiple
small fatigue cracks emerging from the pit at different depths from the surface (Figure 5).
As noted by Burns et al. [18], micro-topographical features offer a local stress/strain
condition and so multiple cracks are not unexpected. However, most will become non-
propagating, with those that survive and link up to form a fully developed crack around the
pit being most influenced by the macro-stress/strain field and favourable microstructure.

It is stating the obvious that a crack emerges from a pit with a size that is smaller than
the pit size. However, the point is stressed because of the challenge this poses in quantifying
the crack growth of such cracks and the growth rate at the pit-to-crack transition when these
cracks first emerge. Optical techniques based on microscopic viewing of the surface crack
image only the crack emerging at the surface and this may be some time after initiation.
Additionally, corrosion product formation can readily obscure the crack. Digital image
correlation, notwithstanding similar limitations associated with corrosion product, detects
that there is a change in surface strain associated with crack development, but this could
relate to a single crack or multiple cracks. The same limitation applies to the potential
drop method. A change in potential drop signifies a change in resistance but this could
be due to a single crack or two, with no distinction, and may be affected by growth of the
pit itself. The latter would apply also to digital image correlation. In the absence of any
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pit growth, both digital image correlation and potential drop would indicate that cracking
is developing, so can give some measure of the time to initiation, within the constraint of
measurement resolution, if not the actual growth rate.

Figure 5. SEM images of fatigue microcracks emerging from a pit of 209 µm depth in a 12Cr MSS.
The layer removal method was used to characterise crack development as a function of distance from
the surface; the cracks shown are after a layer removal of 51 µm. Reprinted with permission from [16]
Copyright 2017 Crown Copyright.

The upshot is that we will not know what the crack growth rate is at the pit to crack
transition, yet that features in the classic work of Kondo [19] that is often adopted in models
of pitting and cracking. Kondo proposed the phenomenological and necessary criteria that
the pit must be greater than a certain size and that the crack growth rate is greater than the
pit growth rate. It should be emphasised that the threshold pit size is related to a threshold
mechanics criterion and by implication will depend on the stress and strain distribution
around the pit; thus, pit geometry as well as depth could be factor. Predicting the threshold
pit size is challenging and experimental observation is usually required (see Reference [20]
as example). The second criterion makes sense because the crack has to “outrun” the pit to
survive and this explains why small slow growing pits above a critical size may develop
cracks but deeper pits, that were growing fast by implication at the time of inspection, do
not exhibit cracking. In the special case of high-frequency fatigue testing, the fatigue crack
growth rate, da/dt, is usually greater than the pit growth rate and the transition to a crack
occurs as soon as the threshold pit size is achieved.

In applying his concept to corrosion fatigue, Kondo used the crack growth rate from a
separate short crack growth rate test. The reality is that we do not know whether the short
crack growth rate measured in fracture mechanics testing bears a close relationship to the
actual growth rate of the small crack developing from the pit at the pit-to-crack transition.
These small cracks would be of the scale of the microstructure which has implications
not only for growth rate but also for assigning a stress intensity factor for such cracks.
By default, Kondo implicitly assumes that the crack is the same depth as the pit at the
transition and this is clearly not correct but from a modelling perspective it is a very
convenient assumption.
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Assigning a stress intensity factor, K, to cracks smaller than the pit is inherently inexact.
Murakami and Endo [21] developed the concept of a projected pit and crack area, with a
crack on either side of the pit, perpendicular to the stress axis, and used the square root of
the projected area in the definition of K for that case. However, FEA [22] has shown that a
crack on one side of a pit (relative to stress axis) is mechanically independent of a crack on
the other side until both cracks approach the depth of the pit, beyond which they form a
continuous crack front. Furthermore, in most applications, plasticity develops around the
pit. In applying linear elastic fracture mechanics there is no limit to the stress concentration
that may develop as there is no constraint associated with plasticity (Figure 6). This is well
known but tends to be overlooked.

Figure 6. Stress distribution (in MPa) around 150 µm deep pit and 140 µm deep crack calculated assuming (a) pure elastic
conditions, (b) elastic-plastic conditions. Remote stress applied is 90% σ0.2 [22].

Hence, there is inherent uncertainty in crack size measurement for cracks smaller
than the pit depth and uncertainty over applicability of K. The key conclusion is that only
when the crack is fully developed beyond the pit depth, with a continuous crack front, and
unaffected by the plastic strain profile of the pit can a reliable basis for crack growth rates
as a function of crack size and K be obtained. Such a crack is exemplified schematically
in Figure 7, extracted from the FEA [22], showing a fully developed crack that extends
beyond the pit depth and in this case beyond the plastic strain field of the pit.

Figure 7. Illustrative FEA mesh around a pit to highlight a continuous crack front extending beyond
the pit depth and in this case the crack was just outside the field of plasticity associated with the pit,
enabling assignment of K value [22].
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Clearly, if the goal is to measure crack growth rates for very small cracks growing from
pits, the pit should be as shallow in depth as possible within the constraints of the threshold
size for crack development being exceeded and the absence of other competing defects.

4. Test Methodology for Quantification of Small Crack Growth Rate from Pits

With the exception of very specific applications for which crack-front marking at differ-
ent times is feasible, as in fatigue of aluminium alloys, the most effective test methodology
for measuring crack growth from pits is based primarily on satisfying the conditions related
to the concept above and Figure 7. More guidance can be found in ISO 21153 [23]. Specif-
ically, develop a single pre-pit to the required depth using an appropriate method such
as the galvanostatic droplet method [23]; ideally, fatigue pre-crack until the crack depth
is judged to be just greater than the maximum depth of the pit. The fatigue pre-cracking
gives a crack-front position for the initial crack size before the onset of the stress corrosion
or corrosion fatigue test. Monitor the subsequent crack extension under the applied static
or dynamic loading and environmental exposure conditions by an appropriate method,
such as the direct current potential drop (DCPD) technique. The probes of the latter should
be isolated and positioned on either side of the pre-pit with the probe spacing a balance
between signal resolution and minimisation of interference of the corrosion process local to
the pre-pit.

5. Pitting and Cracking of Steam Turbine Blades
5.1. Fatigue

Steam turbine blades tend to have relatively long lives but when failure does occur,
it is most often the result of pitting followed by high-frequency fatigue, predominantly
in the low-pressure turbine stage, for which stresses are higher and condensation is more
prevalent. There are now guidelines for assessing the likelihood of blade failure by high
cycle fatigue based on the following steps [24]: determine experimentally the threshold pit
size for fatigue cracking as a function of stress amplitude and stress ratio, expressed in a
Kitigawa–Takahashi plot; undertake stress analysis of blades noting that stress amplitudes
are designed to be small and the stress ratio is large; measure the distribution of pit sizes in
service during inspection. A decision can then be made based on measured pit sizes as to
whether to remove the blades for repair or to defer until the next inspection.

This is a satisfactory approach for base-loading where the turbines are essentially in
continuous use, as in nuclear power plants. However, there has been increasing adoption of
two-shifting in fossil fuel power plants for economic reasons, or to balance out fluctuations
in renewable electricity supply in the national grid. In two-shifting, the power plant is
operational for approximately 16 h on-load per day and 8 h off-load, with shut-down often
at the weekend. Since the start-up involves a 20 min rise time (hot start), with the stress
ranging from effectively zero to 90% of σ0.2 in a cycle, this introduces the possibility of low-
frequency corrosion fatigue and this was an initial focus for research [25]. However, while
corrosion fatigue cyclic crack growth rates were high, the number of cycles per annum is
inherently low. Hence, while not negligible, the impact of low-frequency corrosion fatigue
on remanent life would be projected to be small.

5.2. Stress Corrosion Cracking

There is an incidental effect of two-shifting, which has been generally overlooked. On-
load, the turbine chamber becomes deaerated. Off-load, it is effectively aerated. It can take
a significant period for the large chamber to attain a low oxygen level on-load. In addition,
the time evolution of the electrode potential tends to lag the decreasing oxygen level. Thus,
during the 16 h period of maximum stress, the chamber in the low-pressure stage must be
treated as if it were fully aerated, with approximately 1.8 ppm oxygen at a temperature
of 90 ◦C, the temperature typical of first condensation in the low-pressure turbine stage.
With aeration, stress corrosion cracking becomes a potential failure mechanism. Under
normal water chemistry conditions, the chemistry of the liquid film formed on the blades
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can be represented typically by a solution of 300 ppb (by mass) chloride ion and 300 ppb
sulphate ions, assuming 1% wetness [26]. This anion concentration is too low to cause
stress corrosion cracking from a corrosion pit. However, excursions in water chemistry
do occur in operating plant. This leads to the question as to what stress corrosion crack
growth rates are feasible and what are the implications for existing inspection protocols.

Inspection intervals for steam turbine power plant are based on long crack growth
rate data and the detectable crack length may be as much as 3 mm (due to the complex
geometry and accessibility to inspection tools, cracks shorter than this could conceivably
go undetected). The challenge is to quantify the period between a crack developing from a
pit and the evolution to a detectable length.

To address that challenge, stress corrosion crack growth rate measurement on FV566
12Cr MSS was undertaken [25] based initially on short crack growth rate measurement
using fracture mechanics specimens (single edge notched tensile, SENT), to correlate with
the modelling described below, and small crack growth rate measurement from a pit and
pre-crack following the methodology described in Section 4. (A short crack refers to a
through-thickness crack in a fracture mechanics specimen that is initially small in two
dimensions but long in one (through thickness); a small crack refers to a crack that is
initially small in three dimensions (in particular, both length and depth) in comparison to
a relevant microstructural scale, continuum mechanics scale or physical size scale [23].)
Long crack growth rate measurements in this investigation refer to cracks in compact
tension (CT) specimens with length in excess of 6 mm. This FV566 12Cr MSS contains
approximately 1.7% Mo so has reasonable resistance to pitting at 90 ◦C, with a critical
chloride ion concentration for pitting between 500 and 1000 ppm. The observation of pitting
in service suggests that this critical concentration is exceeded at some time. However, such
a large excursion is a comparatively rare event and would be considered atypical. In the
latter context, guided by UK industry, a chloride ion concentration of 35 ppm was adopted
as being a better reference concentration for first testing the impact of chemistry excursions
on stress corrosion crack growth rates.

The measured crack growth rates are plotted in Figure 8 as a function of crack size,
rather than the usual da/dt vs. K, which does show the conventional plateau region [26]
but is less informative. Testing was carried out at 90 ◦C and the corrosion potential was
approximately −0.15 V SCE for all tests.

The threshold K value for sustained crack growth was approximately 16 MPa m1/2.
Two tests showed a significant crack growth rate for the short crack but the cracks appeared
to arrest. For these tests, fractography indicated only a couple of isolated regions of
intergranular cracking along the crack front. The K value was apparently insufficient to
activate adjacent less susceptible grain boundaries and form a continuous crack front. The
growth of the intergranular regions was then pinned by those less susceptible regions.
For the tests showing sustained crack growth, the short crack growth rate in the SENT
specimens was over 20-fold greater than that for long cracks, up to a crack length of
approximately 1.5 mm, with cracking wholly intergranular along the crack front. The
results pose the question as to when does a short crack become a long crack. The particular
SENT specimens had limitations in extending to longer cracks. Accordingly, a CT specimen,
fatigue pre-cracked to approximately 1.3 mm below the notch, was adopted to address
that question. The growth rate from the CT crack approached that for the short crack in
the SENT specimen, which is reassuring, but fell rapidly towards that associated with the
long crack.
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Figure 8. Stress corrosion crack growth rates for FV566 12Cr MSS in aerated 35 ppm Cl− at 90 ◦C [26]. Reproduced by
permission from De Gruyter Publishing.

Testing with small cracks grown from pits and a fatigue pre-crack, although limited
in the number of tests undertaken, showed even higher crack growth rates, albeit the
growth rate was more variable. In one test, the potential drop probes failed, so only a
time-averaged crack growth rate is quoted at an average crack depth.

5.3. Modelling the Electrochemical Crack Size Effect

A crack size effect on growth rate in aqueous solution, unrelated to mechanical effects,
was not unexpected. The concept of an electrochemical crack size effect on crack growth
rate was first proposed by Gangloff [27] for a high-strength steel in simulated marine
environments and supported by mass transport modelling of crack electrochemistry [28].
In that application, the combination of a change in potential drop with crack size and
critically an acidification of the short crack provided an explanation. For this steam turbine
application, the distinguishing feature is the low solution conductivity. It would be antici-
pated conceptually that significant changes in crack-tip potential between short and long
cracks would arise, simply for that reason. Predictions of electrochemical modelling [29],
assuming a short crack in a fracture mechanics specimen (modelling small crack electro-
chemistry with the extra dimension is a bigger challenge), supported that expectation
(Figure 9) with the crack-tip potential decreasing with crack length, most significantly for
the lowest solution conductivity. However, it is notable that the concentration of both
chloride ions and hydrogen ions at the crack-tip increases with increasing crack length,
suggesting that the chemistry would be more aggressive for the longer crack. In the model,
the current density on the crack walls is assumed to be associated with the passive current.
However, as noted previously in the text, pitting of this FV566 12Cr steel occurs between
500 and 1000 ppm chloride and this would render that assumption unreasonable at crack
length greater than 3 mm for the 35 ppm bulk chloride case. In testing, there was no specific
evidence of pitting attack on the fracture surface, but an oxide film was formed that was
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challenging to remove by cleaning. The author appreciates the comment from Gerald
Frankel on this issue).

The challenge is to convert this chemical and electrochemical information into crack
growth rate prediction. With very few exceptions we do not have robust models capable of
quantitative prediction of crack growth rates that incorporate crack-tip electrochemistry,
crack-tip reaction process and crack-tip strain rates, not least because of the lack of data for
the functional dependence of crack-tip reaction kinetics of a exposed grain boundary on
local chemistry and potential. The best that can be achieved is to draw inferences for the
trends in crack growth rate using modelling to guide interpretation of test data.

In that context, the test data at a bulk concentration of 35 ppm of chloride ions
show an increased growth rate for short cracks that is consistent with the more noble
potential for the short crack, despite an increased pH and reduced concentration of chloride
ion. Additionally, the crack-tip potential for all crack lengths is quite noble at this bulk
concentration of chloride ions. These two observations rule out any stress corrosion
cracking mechanism related to hydrogen and suggest a mechanism associated with anodic
reaction. A perfect correlation between the modelling predictions at constant K (as adopted
in the modelling to best highlight the crack size effect) with the test data for which K is
increasing would not be expected. An increase in K will mean greater crack opening and a
reduction in potential drop with crack length. When combined with changes in chemistry,
it should not be expected that the crack growth rate dependence on crack length will mimic
the smooth change in potential in Figure 9b. Nevertheless, the apparent dramatic decrease
in crack growth rate observed for the compact tension test is very hard to reconcile with
modelling predictions.
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Figure 9. Modelling of crack-tip electrochemistry for FV566 12Cr MSS in chloride solution of low conductivity, reprinted
with permission from [29] Copyright 2017 Crown Copyright: (a) schematic of processes involved; (b) dependence of
crack-tip potential on crack length and chloride ion concentration; (c) crack-tip chloride ion concentration; (d) crack-tip pH.

5.4. Implication of Measured Crack Growth Rates for Turbine Life

The high crack growth rates associated with the short and small crack data may seem
alarming from an engineering perspective. However, SCC activity will only occur on-load
and that means 16 h per day and 5 days per week, ignoring any crack retardation associated
with the off-load period. Assuming 35 ppm chloride ion and a growth rate of 4 × 10−10 m/s,
a crack extension of 23 µm/cycle would be expected, which is equivalent to approximately
0.46 mm per month of excursion, whether continuous or discontinuous. Of course, the
excursion in the concentration of chloride ion could be greater or smaller in magnitude and
only service data coupled with additional testing would yield insight. What the analysis
does highlight is the possible criticality of this mode of cracking, not so much that it would
ultimately lead to failure directly, but in combination with low-frequency corrosion fatigue
crack growth in normal water chemistry, the crack size could evolve to a depth where the
threshold for high cycle fatigue cracking is exceeded. Clearly, the emphasis has to be on
limiting chemistry excursions and restoring to normal water chemistry as expeditiously
as possible.

6. Concluding Remarks

Quantifying the very early stages of precursor and crack development remains a
major challenge because of the impact of surface condition and its variable nature both
in service and in laboratory testing, fabrication-induced defects, and uncertainty over
the impact of environmental excursions in operating conditions. This challenge applies
also to cracks developed from corrosion pits for which the very small crack size as the
micro-crack develops inherently limits reliable crack growth rate measurement. There is
greater confidence in quantifying the growth of cracks in the small crack regime, when the
crack front extends beyond the pit and in providing a framework for estimating time to the
crack defection limit and remanent life. To limit the range of testing, modelling is essential.
Models of crack electrochemistry provide qualitative scientific insight and can predict
trends, with many examples of successful application. However, the extension of such
models to quantitative crack growth rate prediction accounting for crack-tip mechanics,
crack-tip electrochemical kinetics on bare metal, material microstructure and varied modes
of crack advance is still a formidable challenge.
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