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Abstract

Animal studies show that sleep regulation depends on subcortical networks, but whether
the connectivity between subcortical areas contributes to human sleep variability remains
unclear. We investigated whether the effective connectivity between the LC and hypothala-
mic subparts during wakefulness relates to sleep electrophysiology. Thirty-three younger
(~22 y, 27 women) and 18 late middle-aged (~61 y, 14 women) healthy individuals un-
derwent 7-Tesla functional MRI during wakefulness to assess LC–hypothalamus effective
connectivity. Additionally, sleep EEG was recorded at night in the lab to examine the
relationships between effective connectivity measures and REM sleep theta energy as
well as sigma power prior to REM. Connectivity analyses revealed strong mutual positive
influences between the LC and both the anterior–superior and posterior hypothalamus, con-
sistent with animal studies. Aging was negatively associated with the connectivity from the
anterior–superior hypothalamus (including the preoptic area) to the LC. In late middle-aged
adults, but not younger adults, stronger effective connectivity from the anterior–superior
hypothalamus to the LC was associated with lower REM theta energy. This association
extended to other low-frequency bands during REM and NREM sleep. These findings
highlight the age-dependent modulation of LC–hypothalamus interactions and their poten-
tial roles in sleep regulation, providing new insights into neural mechanisms underlying
age-related sleep changes.

Keywords: locus coeruleus; hypothalamus; sleep; 7 Tesla functional magnetic resonance
imaging; aging

1. Introduction
Sleep and wakefulness regulation and the fine-tuning of vigilance state are mostly

regulated by a circuit of subcortical nuclei located in the basal forebrain, thalamus, hy-
pothalamus and brainstem as part of the ascending activating system [1–3]. The locus
coeruleus (LC), located in the brainstem, is the main source of norepinephrine (NE) in
the brain and sends widespread monosynaptic projections to nearly all brain regions [4,5].
Research in animal models showed that its activity must decrease for transitioning from
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wakefulness to sleep. During sleep, the LC further shapes the switch between slow wave
sleep (SWS) and rapid eye movement sleep (REMS) as well as some of the microstructure
elements of sleep [6]. Investigations in humans indicated that the degeneration of the
LC is likely driving part of the alteration in sleep–wake regulation commonly found in
healthy and pathological aging [7]. Although indirect measures of the activity of the LC
did not differ between healthy participants and insomnia patients [8], LC hyperactivity
could contribute to a state of hyper arousal during wakefulness while it would either
reduce REMS occurrence or REM bout stability during sleep, two phenomena associated
with insomnia disorder [9]. In line with the latter hypothesis, we recently reported that a
balanced activity of the LC during wakefulness is associated with a more intense REMS, as
indexed by the overnight energy over the most typical oscillatory mode of REMS (theta
oscillations) [10,11]. The activity of the LC during wakefulness was further associated with
the sigma power immediately preceding REM sleep episode [11], a sleep feature that has
been causally linked with the activity of the LC in animal models [12].

Research in animal models also established that several nuclei of the hypothalamus
are key elements of the circuit regulating sleep and wakefulness. The posterior part of the
hypothalamus includes the lateral hypothalamus (LH) and the tuberomammillary nucleus
(TMN) which produce orexin and histamine, respectively, which are two neuromodulators
stimulating wakefulness, while the LH further produces melanin-concentrating hormone
(MCH) which is considered to stabilize sleep and REMS in particular [3]. The LH is further
known to exert an excitatory influence over the LC through glutamatergic afferents [13].
The superior part of the anterior hypothalamus includes preoptic nuclei inhibiting the
nuclei of the ascending activating system, including the LC, notably through the production
of gamma-aminobutyric acid (GABA) and favor sleep initiation [2]. The inferior part of the
anterior hypothalamus further includes the main circadian clock—in the suprachiasmatic
nucleus—which organizes sleep and wakefulness in time of the 24 h light–dark cycle
mostly through vasoactive intestinal peptide (VIP) and GABA [14], and notably through
indirect projection to the LC [15]. Similarly to the LC, the nuclei of the hypothalamus
undergo age-related changes, which can disrupt their regulatory role in sleep, potentially
contributing to alterations of sleep patterns in healthy and pathological aging [16].

As for the LC, most of our understanding of the roles of the hypothalamus nuclei
in sleep and wakefulness regulation arises from animal studies such that translations to
human beings are needed if one wants to develop efficient interventions geared toward the
neuromodulator systems underlying vigilance state in healthy individuals and patients.
Whether the crosstalk between the LC and the nuclei of the hypothalamus underlies vari-
ability in sleep electrophysiology and its age-related changes has not yet been investigated.

Similarly to our initial reports of an association between LC activity and REM sleep, we
hypothesized that the crosstalk between the LC and the hypothalamus during wakefulness
would reflect a trait that would also be present during sleep [10,11]. By using high-field
7 Tesla functional magnetic resonance imaging (7T fMRI) and stochastic Dynamic Causal
Modeling (DCM) during wakefulness, we aimed to capture biologically plausible con-
nectivity patterns that reflect enduring functional relationships between sleep-regulatory
regions. These interactions may not be tied to task-specific modulation but could represent
stable neuromodulatory dynamics relevant to sleep physiology. We used the same 7T
fMRI dataset as our initial studies [10,11] to test whether the effective connectivity between
the LC and subparts of the hypothalamus would be related to REM theta energy and
sigma power prior to REM episodes (i.e., the sleep parameters related to wakefulness LC
activity in our previous reports [10,11]). Based on functional and anatomical studies in
animals, we anticipated that the connectivity between the LC and the anterior–superior,
anterior–inferior or the posterior–lateral subpart of the hypothalamus would be associated
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with the quality of REMS. We further anticipated that the associations would be affected
by aging.

2. Results
Fifty-one healthy individuals participated in the study, including 33 young adults

(18–30 y) and 18 late middle-aged adults (50–70 y) (Table 1). Participants first underwent an
in-lab polysomnography night to rule out sleep disorders, followed by a baseline night of
EEG sleep recording, out of which we computed our sleep metrics of interest, i.e., REM theta
energy and sigma power prior REM sleep. Approximately three hours after waking from
the baseline night (or following a comparable regular sleep period for late middle-aged
participants), they completed a 7T fMRI session (Figure 1A) including a visual–perceptual
rivalry task (Figure 1B) and an auditory salience detection task (Figure 1C). These tasks were
chosen because they were expected to engage the LC [17,18], and, as shown in our earlier
work, both indeed elicited robust LC responses [10,11] (Figure 1D,E). In the present work,
we extended our focus to the hypothalamus using DCM which can estimate directional
influences between regions (effective connectivity).

Table 1. Characteristics of the study sample.

Young Individuals
(n = 33)

Late Middle-Aged Individuals
(n = 18) p-Value

Mean SD Mean SD

Age (years) 22.20 3.20 60.88 5.41 <0.0001

BMI (kg/m2) 21.90 2.74 24.75 3.40 0.0047

Education (years) 14.46 2.31 14.61 2.70 0.85

Depression level (BDI) 6.64 4.17 5.33 4.01 0.27

Anxiety level (BAI) 4.00 2.92 3.05 3.18 0.30

TIV (cm3) 1402.1 136.6 1420.5 125.5 0.627

Daytime sleepiness (ESS) 6.93 3.90 5.77 3.76 0.30

Sex (F–M) 28 F–6 M 12 F–6 M 0.20

Habitual Subjective sleep quality (PSQI) 4.79 2.18 3.83 2.22 0.14

Chronotype
(Horne–Ostberg’s

Morningness–Eveningness)
43.41 7.22 50.50 7.78 0.001

TST (min) 454.80 30.97 394.63 48.16 <0.0001

REMS duration 120.3 21.49 82.46 29.06 <0.0001

Theta energy in REMS (µV2) 7281.5 5061.7 4789.5 3508.2 0.0449

Sigma power prior to REMS (µV2) 15.7615 8.8957 16.0544 6.795 0.896

The p-values shown in the table correspond to two-sample t-tests except for sex that were compared using a
Chi-square test. BMI: Body mass index; BDI: Beck depression inventory; BAI: Beck anxiety inventory; TIV: total
intracranial volume; PSQI: Pittsburgh sleep quality index; ESS: Epworth sleepiness scale; TST: total sleep time;
REMS: rapid eye movement sleep. See Materials and Methods for references for the questionnaires.

We applied an automated segmentation algorithm to divide the hypothalamus into
five subparts—anterior–inferior, anterior–superior, posterior, inferior tubular, and superior
tubular—each comprising several nuclei [19]. We selected the hypothalamus subpart to
include in our connectivity analyses in each task (see Materials and Methods). Specifically,
we ran two GLMMs for each task, using REM theta energy and sigma power prior to REM
episodes as dependent variables and hypothalamus subpart activity as the predictor. Only
subparts showing at least a statistical trend (p < 0.1) with one of these sleep metrics were
retained for the subsequent DCM analyses, ensuring that connectivity analyses focused
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on hypothalamic regions most likely to be functionally relevant to our sleep measures
of interest.

 

Figure 1. Overview of the study protocol. (A) After screening, participants completed an in-lab
screening (i.e., habituation night) under polysomnography to minimize the effect of the novel environ-
ment for the subsequent baseline night and to exclude volunteers with sleep disorders. They further
completed a structural 7T MRI session including a whole-brain structural MRI and a LC-specific sequence.



Clocks&Sleep 2025, 7, 53 5 of 22

After 7 nights of regular sleep–wake time at home, which was confirmed by actigraphy data and/or
sleep–wake diary, participants came to the lab three hours before their sleep time and were maintained
in dim light (<10 lux) until sleep time. Participants’ habitual baseline sleep was recorded overnight
in-lab under EEG to extract our main sleep features of interest. All participants underwent an fMRI
session approximately 3 h after wake-up time (following ≥45 min in dim light—<10 lux), during
which they completed the visual–perceptual rivalry task. * In late middle-aged participants, sMRI
and fMRI sessions were completed about 1.25 y later than the habituation and baseline nights (mean
± SD: 15.5 ± 5.3 months). Prior to the fMRI session, late middle-aged participants slept regularly
for 1 week (verified with a sleep diary). Late middle-aged participants were maintained in dim light
(<10 lux) for 45 min before the fMRI scanning. The sleep recording procedure was the same for
both younger and late middle-aged participants. (B) The visual–perceptual rivalry task consisted
of watching a 3D Necker cube, which can be perceived in two different orientations (blue arrow),
for 10 blocks of 1 min separated by 10 s of screen-center cross fixation (total duration ~12 min).
Participants reported switches in perception through a button press. (C) The auditory salience
detection task consisted of an oddball paradigm requiring button-press reports on the perception of
rare deviant target tones (20% occurrence) within a stream of frequent tones (total duration ~10 min).
(D) Whole-brain and LC responses to the perceptual switches during the visual–perceptual rivalry
task. [MNI coordinates: (−4, −37, −21 mm)]. The image at the top shows the whole-brain results
using significance for a threshold of p < 0.05 FDR-corrected (t > 2.16) over the group average brain
structural image coregistered to the MNI space. The inset at the bottom shows the LC probabilistic
template (blue) created based on individual LC masks and the significant activation detected within
this mask (red). The legend shows the t-values associated with color maps. (E) Whole-brain and LC
responses to the target sound during the auditory salience detection task [MNI coordinates: (−4, −34,
−21 mm)]. The image at the top shows the whole-brain results using significance for a threshold of
p < 0.05 FDR-corrected (t > 2.33) over the group average brain structural image coregistered to the
MNI space. The inset at the bottom shows the LC probabilistic template (blue) and the significant
activation detected within this mask (red). The legend shows the t-values associated with color maps.
This figure is adapted from [11].

Considering the perceptual rivalry task, we found a statistical trend for an associa-
tion between REM theta energy and the interaction between hypothalamus activity and
hypothalamus subparts (f = 2.05; p = 0.08; Table 2). Post hoc contrasts revealed that REM
theta energy shows a negative statistical trend with the response of the anterior–superior
hypothalamus (t = −1.81; p = 0.07) and a positive nominally significant association with
the response of the posterior hypothalamus (t = 1.90; p = 0.05; Figure 2A,B). The other
subparts did not yield statistical association with REM theta energy (t < −0.02; p > 0.18)
(Figure S1, Table S1). The GLMM seeking potential associations between sigma power
prior to REM and the activity of the different hypothalamus subparts during the percep-
tual rivalry task did not reveal any statistical meaningful associations (Figure S2, Table 2,
p = 0.86). Considering the auditory salience detection task, the GLMMs including REMS
theta energy or sigma power prior to REMS as dependent variable did not reveal any
statistically significant association with hypothalamus subpart activity (Figures S3 and S4,
Table 2).

Therefore, the DCM analysis concentrated on the connectivity between the LC and
the anterior–superior or the posterior subparts of the hypothalamus during the perceptual
rivalry task and sought relationship with REM theta energy, as it was the sole sleep metric
that yielded a statistical trend with the activity of these hypothalamus subparts (Figure 3A
illustrates the nuclei included in each subpart). As the task did not elicit a strong activation
in the anterior–superior or the posterior subparts of the hypothalamus, we used stochastic
DCM [20], which can estimate directional influences between regions even without robust
task-evoked responses. This method enables the detection of latent network dynamics and
meaningful connectivity patterns that do not depend on pronounced BOLD activation in
every region.
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Table 2. Associations between the two sleep metrics of interest and the 5 hypothalamus subparts
activity during the perceptual rivalry task and the salience detection task.

Task
Sleep Metric
(Dependent

Variable)
Hypothalamus

Activity
Hypothalamus

Subpart

Hypothalamus
Activity

*Hypothalamus
Subpart

Age Group Sex TIV Total Sleep
Time

perceptual
rivalry task

REM Theta
energy

(N = 51)

F(1,239) = 0.62
p = 0.432

F(4,239) = 0.05
p = 0.994

F(4,239) = 2.05
p = 0.088

R2* = 0.033

F(1,239) = 0.44
p = 0.507

F(1,239) = 0.94
p = 0.334

F(1,239) = 0.53
p = 0.466

F(1,239) = 28.5
p < 0.0001

R2* = 0.106

perceptual
rivalry task

Sigma power
prior to REMS

(N = 51)

F(1,239) = 0.58
p = 0.446

F(4,239) = 0.00
p = 1.00

F(4,239) = 0.32
p = 0.864

F(1,239) = 2.74
p = 0.098

F(1,239) = 20.19
p < 0.0001

R2* = 0.077

F(1,239) = 15.03
p = 0.0001

R2* = 0.059

F(1,239) = 1.52
p = 0.218

salience
detection task

REM Theta
energy

(N = 51)

F(1,239) = 0.00
p = 0.950

F(4,239) = 0.01
p = 0.999

F(4,239) = 0.22
p = 0.927

F(1,239) = 1.28
p = 0.258

F(1,239) = 1.70
p = 0.193

F(1,239) = 3.79
p = 0.052

F(1,239) =
33.00

p < 0.0001
R2* = 0.121

salience
detection task

Sigma power
prior to REMS

(N = 51)

F(1,234) = 5.00
p = 0.026

R2* = 0.020

F(4,234) = 0.01
p = 0.999

F(4,234) = 0.65
p = 0.628

F(1,234) = 3.74
p = 0.054

F(1,234) = 24.94
p < 0.0001

R2* = 0.096

F(1,234) = 14.62
p = 0.0002

R2* = 0.058

F(1,234) = 2.28
p = 0.132

Prior to the analysis, we removed the outliers among connectivity and sleep metrics by excluding the samples
lying beyond four times the standard deviation (the final number of individuals included in each analysis is
reported below each dependent variable). REM: Rapid eye movement; REMS: rapid eye movement sleep.

Figure 2. Association between REM theta energy and the anterior–superior and posterior hypotha-
lamus activity during the perceptual rivalry task. The GLMM yielded a statistical trend for the
hypothalamus activity by hypothalamus subpart interaction (p = 0.08), and post hoc analyses led to a
statistical trend for a negative association with the anterior–superior hypothalamus activity (p = 0.07)
(A) and a nominal significance for a positive association with the posterior hypothalamus activity
(p = 0.05) (B) Simple regression lines are used for a visual display and do not substitute the GLMM
outputs (Table 2). The black line represents the regression irrespective of age groups (young + late
middle-aged adults). The red line represents the regression in young individuals, and the blue line
represents the regression in late–middle aged individuals. Non-meaningful associations (i.e., no
statistical significance or trend) between REM theta energy or sigma power prior to REMS and the
activity of all the subparts of hypothalamus during the perceptual rivalry task and salience detection
task are displayed on Figures S1–S4.
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Figure 3. (A) Segmentation of the hypothalamus in five subparts in a representative participant.
The nuclei encompassed by the different subparts are indicated in the right inset—according to [19].
ARC: Arcuate nucleus; DM: dorsomedial nucleus; LH: lateral hypothalamus; LTN: lateral tubular nu-
cleus; MB: mamillary body; POA: preoptic area; PVN: paraventricular nucleus; SCN: suprachiasmatic
nucleus; SON: supraoptic nucleus; TMN: tuberomammillary nucleus; VMN: ventromedial nucleus.
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(B) The DCM model, which included intrinsic connections between anterior–superior hypothalamus
(ASH) and locus coeruleus (LC), along with self-feedback gain control connections for both regions.
Task inputs were further considered to reach both regions. The DCM analysis showed that there
was very strong evidence (Pp = 1.0) for reciprocal positive influence between LC and ASH as well
as self-inhibition in both LC and ASH. (C) The DCM model, which included intrinsic connections
between posterior hypothalamus (PH) and locus coeruleus (LC), along with self-feedback gain
control connections for both regions. Task inputs were further considered to reach both regions.
The DCM analysis showed that there was very strong evidence (Pp = 1.0) for reciprocal positive
influence between LC and PH as well as self-inhibition in both LC and PH. (D) Anterior–superior
hypothalamus to LC connectivity in young and late middle-aged groups. Younger individuals had
significantly higher connectivity than late middle-aged individuals (t = −2.27; p = 0.027). (E) LC to
anterior–superior hypothalamus connectivity in young and late middle-aged groups. Connectivity
strengths were not significantly different between two age groups (t = −1.32; p = 0.193). (F) Posterior
hypothalamus to LC connectivity in young and late middle-aged groups. Connectivity strengths
were not significantly different between two age groups (t = −1.49; p = 0.142). (G) LC to posterior
hypothalamus connectivity in young and late middle-aged groups. Connectivity strengths were not
significantly different between two age groups (t = −0.72; p = 0473). **: p < 0.05.

The DCM analyses first showed that there was strong evidence for reciprocal positive
influence between LC and both subparts of hypothalamus (Pp = 1.0), confirming that the
connectivity anticipated based on animal model [2], can be detected in humans using a
stochastic DCM approach (Figure 3B,C). We computed separate GLMMs to determine
whether each of the four connectivity parameters between the LC and hypothalamus nuclei
(as dependent variable) varied between age groups, controlling for sex and TIV. The models
yielded a significant difference between age groups only for the connectivity from the
anterior–superior hypothalamus to the LC (t = −2.27; p = 0.027), with late middle-aged
individuals showing a reduced excitatory connectivity parameters compared with the
younger individuals (Figure 3D–G, Supplementary Table S2 for full statistical output of the
GLMMs including each connectivity parameters).

To address our primary aim to test for potential associations between each connectivity
parameter and REMS theta energy, we computed four separate GLMMs with REMS theta
energy as dependent variable and the interaction between connectivity parameters and
age group as independent variable, controlling for sex, total intracranial volume (TIV) and
total sleep time. The model including the connectivity from anterior–superior subpart of
hypothalamus to LC yielded a significant connectivity-by-age-group interaction (t = 2.30;
p = 0.026), on top of a main effect of TST, while the other covariates were not significant
(Table 3). Post hoc contrasts highlighted that in the late middle-aged individuals, higher
excitatory connectivity (i.e., positive connectivity values) was associated with lower REM
theta energy, while stronger inhibitory connectivity (i.e., negative connectivity values) was
associated with higher REM theta energy (t = −2.09; p = 0.042). No such association was
detected in the younger group (t = 1.06; p = 0.294) (Figure 4A). In addition, after removing
a participant, who had an outlier TIV value (SD = 4.078), the connectivity-by-age-group
interaction became more robust (t = 2.37; p = 0.022; i.e., below the multiple comparison
correction p < 0.025 threshold) with post hoc contrasts identically showing the association
between higher connectivity and lower REM theta energy in the late middle-aged group
(t = −2.12, p = 0.039), but not in the younger group (t = 1.15, p = 0.255). We then considered
the connectivity from LC to anterior–superior subpart of hypothalamus, but GLMM did not
yield significant association with REM theta energy (Table 3; Figure 4B). Likewise, when
we considered the connectivity between the posterior hypothalamus subpart and the LC
(i.e., both to and from the LC), GLMMs did not lead to any significant association with
REM theta energy (Table 3; Figure 4C,D). In summary, the only connectivity parameters
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showing age-related difference is also the only one showing an age-dependent association
with REMS theta energy.

Table 3. Associations between REM theta energy and the connectivity between the anterior–superior
hypothalamus and the LC and between the posterior hypothalamus and the LC.

Type of Connectivity
Sleep Metric
(Dependent

Variable)
Connectivity Age Group Connectivity*Age

Group Sex TIV Total Sleep Time

From
anterior–superior

hypothalamus to LC

REM Theta
energy

(N = 50)

F(1,43) = 1.09
p = 0.302

F(1,43) = 0.62
p = 0.436

F(1,43) = 5.29
p = 0.026 A

R2* = 0.109

F(1,43) = 0.02
p = 0.902

F(1,43) = 0.03
p = 0.854

F(1,43) = 4.74
p = 0.035

R2* = 0.099

From LC to
anterior–superior

hypothalamus

REM Theta
energy

(N = 50)

F(1,43) = 0.38
p = 0.539

F(1,43) = 0.17
p = 0.686

F(1,43) = 2.21
p = 0.144

F(1,43) = 0.05
p = 0.825

F(1,43) = 0.00
p = 0.981

F(1,43) = 4.73
p = 0.035

R2* = 0.099

From posterior
hypothalamus to LC

REM Theta
energy

(N = 50)

F(1,43) = 0.00
p = 0.994

F(1,43) = 0.09
p = 0.765

F(1,43) = 0.98
p = 0.326

F(1,43) = 0.58
p = 0.451 F(1,43) = 0.12

p = 0.726

F(1,43) = 4.77
p = 0.034

R2* = 0.099

From LC to posterior
hypothalamus

REM Theta
energy

(N = 50)

F(1,43) = 0.14
p = 0.710

F(1,43) = 0.01
p = 0.911

F(1,43) = 0.61
p = 0.439

F(1,43) = 0.49
p = 0.488

F(1,43) = 0.08
p = 0.776

F(1,43) = 4.40
p = 0.041

R2* = 0.092

Prior to the analysis, we removed the outliers among connectivity and sleep metrics by excluding the samples
lying beyond four times the standard deviation (the final number of individuals included in each analysis is
reported below each dependent variable). A p = 0.022 and F(1,42) = 5.61 after excluding one putative outlier in
TIV (≥4 SD). LC: Locus coeruleus; TIV: total intracranial volume; REM: rapid eye movement.

Figure 4. Association between REM theta energy and the connectivity metrics between the LC and
the hypothalamus nuclei. (A) Connectivity from the anterior–superior hypothalamus to the LC. The
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GLMM yielded a significant age group by connectivity interaction (p = 0.026), and post hoc analyses
led to a significant association for the late middle-aged (p = 0.042) but not the young group (p = 0.294).
After excluding one putative outlier in TIV (≥4 SD), the connectivity-by-age-group interaction became
more robust (t = 2.37; p = 0.022). (B) Connectivity from the LC to the anterior–superior hypothalamus.
The GLMM did not yield a significant age group by connectivity interaction. (C) Connectivity from
posterior hypothalamus to the LC. The GLMM did not show a significant age group by connectivity
interaction. (D) Connectivity from the LC to the posterior hypothalamus. The GLMM did not show
a significant age group by connectivity interaction. Simple regression lines are used for a visual
display and do not substitute the GLMM outputs (Table 3). The black line represents the regression
irrespective of age groups. Solid and dashed regression lines represent significant and non-significant
outputs of the GLMM, respectively.

In the next steps, we verified the specificity of our finding for REM theta energy
and turned toward the other frequency bands of the EEG during both REM and NREM
and found that although association did not extend to all frequency bands, they were
not restricted to REM theta energy. Separate GLMMs found that connectivity from the
anterior–superior subpart of the hypothalamus to the LC by age-group interaction was
significantly associated with several lower-frequency bands of both REM and NREM:
interaction was significant for alpha energy in REMS (t = 3.21; p = 0.0025), delta energy
in NREMS (t = 2.51; p = 0.016), theta energy in NREMS (t = 2.91; p = 0.006) and alpha
energy in NREM (t = 3.17; p = 0.0028) but not for delta, sigma and beta energy in REM and
sigma and beta energy in NREM; each time we observed a significant negative association
between connectivity and frequency band energy in the late middle-aged group (REM
alpha: t = −2.79; p = 0.008; NREM delta: t = −2.04; p = 0.047; NREM theta: t = −2.34;
p = 0.024; alpha NREM: t = −2.75; p = 0.009) but not younger group (t ≤ 1.76; p ≥ 0.085
for the four frequency bands) (Figure 5A–D, Table 4; non-significant associations between
exploratory sleep metrics and the connectivity from anterior–superior hypothalamus to LC
are presented in Table S3).

Table 4. Significant associations between exploratory sleep metrics and the connectivity from anterior–
superior hypothalamus to LC.

Sleep Metric
(Dependent Variable) Connectivity Age Group Connectivity*Age

Group Sex TIV Total Sleep Time

REM alpha energy (N
= 50)

F(1,43) = 1.74
p = 0.194

F(1,43) = 2.92
p = 0.094

F(1,43) = 10.29
p = 0.002

R2* = 0.193

F(1,43) = 0.04
p = 0.851

F(1,43) = 0.10
p = 0.757

F(1,43) = 5.43
p = 0.024

R2* = 0.112

NREM delta energy
(N = 51)

F(1,44) = 0.59
p = 0.445

F(1,44) = 2.02
p = 0.162

F(1,44) = 6.31
p = 0.015

R2* = 0.125

F(1,44) = 0.13
p = 0.722

F(1,44) = 1.30
p = 0.260

F(1,44) = 0.22
p = 0.642

NREM theta energy
(N = 51)

F(1,44) = 0.73
p = 0.396

F(1,44) = 2.21
p = 0.144

F(1,44) = 8.48
p = 0.005

R2* = 0.161

F(1,44) = 0.14
p = 0.714

F(1,44) = 0.57
p = 0.452

F(1,44) = 1.33
p = 0.254

NREM alpha energy
(N = 51)

F(1,44) = 0.83
p = 0.368

F(1,44) = 4.36
p = 0.042

R2* = 0.090

F(1,44) = 10.04
p = 0.002

R2* = 0.185

F(1,44) = 0.09
p = 0.765

F(1,44) = 0.00
p = 0.973

F(1,44) = 0.37
p = 0.546

Prior to the analysis, we removed the outliers among connectivity and sleep metrics by excluding the samples
lying beyond four times the standard deviation (the final number of individuals included in each analysis is
reported below each dependent variable). The table only includes results with p < 0.05; non-significant association
are reported in Supplementary Table S3. p-values survive correction for multiple comparisons across the nine
exploratory tests using the false discovery rate (FDR). LC: Locus coeruleus; TIV: total intracranial volume; REM:
rapid eye movement; NREM: non-rapid eye movement.
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Figure 5. Exploratory association between other frequency bands of the EEG during both REM and
NREM sleep and the connectivity from the anterior–superior hypothalamus to the LC (A) REM alpha
energy; the GLMM yielded a significant age group by connectivity interaction (p = 0.002), and post
hoc analyses led to a significant association for the late middle-aged (p = 0.007) but not the younger
group (p = 0.108). (B) NREM alpha energy; the GLMM yielded a significant age group by connectivity
interaction (p = 0.002), and post hoc analyses led to a significant association for the late middle-aged
(p = 0.0008) but not the younger group (p = 0.099). (C) NREM delta energy; the GLMM yielded a
significant age group by connectivity interaction (p = 0.015), and post hoc analyses led to a significant
association for the late middle-aged (p = 0.047) but not the younger group (p = 0.142). (D) NREM
theta energy; the GLMM yielded a significant age group by connectivity interaction (p = 0.005), and
post hoc analyses led to a significant association for the late middle-aged (p = 0.023) but not the
younger group (p = 0.085). Simple regression lines are used for a visual display and do not substitute
the GLMM outputs (Table 4). The black line represents the regression irrespective of age groups.
Solid and dashed regression lines represent significant and non-significant outputs of the GLMM,
respectively. Non-significant associations between the energy of other frequency bands and the
connectivity from anterior–superior hypothalamus to the LC are displayed on Figure S5.
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3. Discussion
The interactions between subcortical structures regulating sleep are not fully estab-

lished in humans. Here, we used 7 Tesla fMRI to capture the crosstalk between the hypotha-
lamus and the LC and related it to the electrophysiology of REM sleep. We presumed that
the connectivity between subparts of the hypothalamus and the LC during wakefulness
would reflect in part their connectivity during sleep and would therefore be relevant to
sleep physiology. We provide evidence that lower REM theta energy is associated with
higher effective connectivity from the anterior–superior hypothalamus, which encompasses
the preoptic area, to LC in the late middle-aged individuals of our sample. The association
was not specific to REM theta energy and extended to other (but not all) lower-frequency
bands of both REM and NREM sleep. These findings constitute an original investigation of
how a small network of subcortical areas may take part in sleep regulation in humans and
provide novel insights into the changes in sleep taking place over the healthy lifespan.

The tasks included in the protocol were geared toward ensuring a reliable recruitment
of the LC [10,11] while they did not strongly recruit the hypothalamus. We therefore used
an effective connectivity approach that was geared to such cases (i.e., stochastic DCM).
We isolated candidate hypothalamus subparts that could be included in our connectivity
models by seeking at least weak associations with our two sleep metrics of interest. We
found weak indications that the activity of the posterior and anterior–superior subparts
of the hypothalamus during the perceptual rivalry task were associated with REM theta
energy, but not with sigma power prior to REM episodes. These indications were used to
guide our connectivity analyses and will not be interpreted further although they warrant
future investigations. We stress that the fact that we focused on specific subparts of the
hypothalamus does not preclude the connectivity between the LC and other subparts of
the hypothalamus that would be assessed in other contexts to be related to sleep electro-
physiology, e.g., the anterior–inferior subpart encompassing the SCN [15] (i.e., if activity
was assessed using different cognitive tasks, resting state fMRI, or a different vigilance
state, etc.). Likewise, the connectivity of the LC with other parts of the brain in the per-
ceptual rivalry as well as in the salience detection task may turn out to be related to sleep
physiology in other analyses. The fact that we obtained high evidence (Pp = 1) that the
posterior and anterior–superior subparts were part of a network with the LC demonstrates
that one can grasp a meaningful part of the complex interplays between the LC and nu-
clei of the hypothalamus in vivo in humans following our approach. There was indeed
no guarantee that the network we constructed would be related to the fMRI signal we
extracted for the hypothalamus and the LC. Our findings suggest that the mutual influence
of the anterior–superior and posterior subparts of hypothalamus on the LC repeatedly
demonstrated in animal [21,22] can be isolated in humans. This important proof-of-concept
paves the way for future investigations that could be built around other regions and more
complex networks.

Following the extraction of the connectivity metrics from the two networks, respec-
tively, composed of the posterior subpart of the hypothalamus and the LC and of the
anterior–superior subparts of the hypothalamus and the LC, we find only one metric of
the latter networks to be associated with REM theta energy. The anterior–superior subpart
included not only the preoptic area, key to sleep regulation, but also the paraventricular
nucleus (PVN) [19], which is typically related to food intake, energy balance [23] and
vegetative regulation [24]. Hence, we posit that the associations we observed were mostly
driven by the preoptic area, which contains the ventrolateral (VLPO), lateral (LPO) and
median (MPO) preoptic areas, which have all been involved in sleep regulation [2,25,26].
The neurons of the preoptic area promote sleep onset and sleep maintenance by inhibitory
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GABAergic modulation of multiple arousal systems such as LC [21,22]. The inhibitory
action of the VLPO exerted on LC is considered as a requirement for sleep onset [3].

Among the four connectivity parameters of the two DCM models, we find that only the
connectivity from the anterior–superior subparts of the hypothalamus to the LC decreases
in the late middle-aged compared with the younger individuals. We further find that
the stronger the excitatory connectivity from the anterior–superior hypothalamus to the
LC during wakefulness (indicated by positive connectivity values), the lower REM theta
energy in late middle-aged individuals, and the stronger the inhibitory connectivity from
the anterior–superior hypothalamus to the LC during wakefulness (indicated by negative
connectivity values), the higher REM theta energy in late middle-aged individuals. Theta
oscillations consist of the most typical oscillatory mode of REM sleep. They are considered
to be cortical correlates of the hippocampus ripple waves occurring during sleep and
related to the memory function of REM sleep [27]. We interpret these as a reflection of
REM sleep intensity. We previously reported that a larger expression of LC responses
during the same task during wakefulness was associated with a better expression of REM
sleep theta oscillations [11]. Our current finding may therefore indicate that a stronger
connection between the preoptic nuclei and the LC prevents the LC from favoring REM
sleep in late middle-aged individuals. The connectivity between the preoptic area and the
LC, at least during wakefulness and potentially also during sleep, would decrease with
aging and the extent of this decrease would contribute to REM sleep variability among
late middle-aged individuals and also, potentially, to the decreased expression of REM
associated with aging. These potential actions may be related to the overall alteration
in the balance of the neural circuits previously reported in aging [28]. They may also be
linked to recent studies in rodents reporting that the preoptic nuclei regulates LC activity
and prevent LC over reactivity that could become detrimental for the expression of REM
sleep [29,30]. We find that the larger inhibitory connectivity is associated with the larger
REMS theta expression. How our findings captured during wakefulness in the diurnal
human species fit with the reports in animals will require further investigation, including
using MRI recordings during sleep.

Interestingly, we found that the associations between anterior–superior hypothalamus
to LC connectivity and neural oscillations extend beyond the theta energy in REMS. In
late middle-aged individuals, its negative correlations with alpha energy in REMS and
NREMS as well as delta and theta energy in NREMS suggest a potential broader role
for this connectivity in influencing sleep electrophysiology. Delta energy in NREMS is
recognized as a marker of sleep need as well as sleep maintenance, quality, and restorative
processes [31]. Higher theta energy in NREMS is also linked to memory reactivation and
memory consolidation [32]. In addition, alpha energy during REMS and NREMS is related
to better cognitive performance as it is shown that individuals with cognitive impairment
have lower alpha energy in REMS and NREMS compared to healthy individuals [33].
Consistent with our main finding involving REM theta energy, the observed negative
association between the energy of these frequency bands and the strength of preoptic
hypothalamus to LC connectivity in late middle-aged adults may reduce the beneficial
effects of these oscillatory dynamics in sleep. It could also represent an adaptive mechanism
in late middle-aged individuals to prevent LC overreaction. In any case, it shows that the
connectivity from the anterior–superior subpart of the hypothalamus to the LC is associated
with neuronal synchrony over the lower range of the EEG spectral bands during sleep,
potentially affecting the mechanism related to this synchrony (e.g., memory consolidation,
sleep homeostasis). This could contribute to the previous findings on the aging brain’s
adaptive modifications in homeostatic sleep control [34].
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As noted earlier [10,11], our study bears limitations. Young participants underwent
fMRI scanning the day after their baseline night of sleep, while for the late middle-aged
group, there was an approximately one-year interval between the baseline sleep night and
the fMRI session. Although sleep changes during the lifetime [35], it tends to remain stable
over shorter periods (e.g., a few years) [36]. Therefore, we believe this significant limitation
does not fully account for our findings. Additionally, while we posit that brain activity
and connectivity in wakefulness partly reflects brain activity and connectivity relevant in
sleep, this assumption has not been directly demonstrated. Moreover, despite the extensive
data collection involved, the sample size, particularly for the late middle-aged cohort, is
relatively small. In addition, our sample was predominantly female, a factor accounted
for in our statistical analysis but still limiting the broad generalizability of the results. The
absence of middle-aged individuals aged 30 to 50 years may have also obscured more
gradual, age-related changes in LC–hypothalamus connectivity and sleep electrophysiology.
Finally, although stochastic DCM allows modeling of effective connectivity without strong
task-related activation, the observed LC–hypothalamus coupling could reflect baseline
rather than task-specific modulation. Future studies should include recording of brain
activity during wakefulness during other cognitive tasks and during sleep, they should
include large and sex-balanced samples of continuous age ranges.

4. Materials and Methods
This study was approved by the faculty–hospital ethics committee of ULiège. All

participants provided written informed consent and received financial compensation. The
study is part of a larger project that has led to previous publications [10,11,37]. Most of the
methods were described in detail in [10,11].

4.1. Participants

Fifty-two healthy participants were included in the study. Due to technical issues, one
subject was excluded, and the final sample included 51 participants, with 33 healthy young
(18–30 y, 27 women) and 18 late middle-aged (50–70 y, 14 women) individuals (Table 1).
The exclusion criteria were as follows: history of major neurologic/psychiatric diseases or
stroke; recent history of depression/anxiety; sleep disorders; medication affecting the cen-
tral nervous system; smoking, excessive alcohol (>14 units/week) or caffeine (>5 cups/day)
consumption; night shift work in the past 6 months; BMI ≤ 18 and ≥29 (for late middle-
aged individuals) and ≥25 (for younger individuals). All late middle-aged participants had
to show normal performance on the Mattis Dementia Rating Scale (score > 130/144) [38].
Due to a miscalculation at screening, one late middle-aged participant had a BMI of 30.9
and one of the younger participants had a BMI of 28.4. Since their data do not deviate
substantially from the rest of the sample, these participants were included in the analyses
(including BMI as a covariate in our statistical models did not modify our results).

4.2. Protocol

Participants’ sleep was recorded in the lab twice. During the first session, participants
completed a night of sleep under polysomnography to screen for sleep abnormalities
(apnea hourly index and periodic leg movement > 15; parasomnia or REM behavioral
disorder). All participants further underwent a whole-brain structural MRI (sMRI) and
a specific acquisition centered on the LC. Participants were then requested to sleep regu-
larly for 7 days before the baseline night during the second session (±30 min from their
sleep schedule) based on their preferred schedule (compliance was verified using sleep
diaries and wrist actigraphy—Actiwatch and AX3, AXIVITY LTD, Newcastle, UK). The
evening before the baseline night, participants first completed questionnaires including
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Beck depression inventory (BDI) [39], Beck anxiety inventory (BAI) [40], the Pittsburgh
sleep quality index (PSQI) [41], Epworth sleepiness scale (ESS) [42] and Horne–Ostberg’s
Morningness–Eveningness scale [43] for assessing depression, anxiety, sleep quality, sleepi-
ness and chronotype, respectively. They remained awake for 3 h under dim light (<10 lux)
for electrode placement and preparation to sleep prior to the recording of their habitual
sleep in darkness under EEG. Approximately 3 h after wake-up time under dim light
(<10 lux), participants completed a functional MRI (fMRI) session that included 3 tasks
(Figure 1A). This paper is centered on the analyses of the perceptual rivalry task and
auditory salience detection task.

Younger participants completed the fMRI session immediately following the baseline
night but late middle-aged participants were initially part of a different study [44,45] and
completed the sMRI and fMRI recordings in addition to their initial engagement. Late
middle-aged participants completed the habituation and baseline night EEG recordings
as part of their initial study and the sMRI and fMRI sessions were completed about 1.25 y
later as part of the current study (mean ± SD: 15.5 ± 5.3 months). Prior to the fMRI session,
late middle-aged participants slept regularly for 1 week (verified with a sleep diary; based
on our experience, actigraphy reports and sleep diaries do not deviate substantially in late
middle-aged individuals). Late middle-aged participants were maintained in dim light
(<10 lux) for 45 min before the fMRI scanning. The sleep recording procedure was the same
for both younger and late middle-aged participants. Both groups were allowed to have
breakfast before the fMRI session but were instructed to avoid caffeine intake.

4.3. Sleep EEG Metrics

Eleven channels were used for the baseline night (F3,z,4; C3,z,4; P3,z,4; O1,2) ini-
tially referenced to the left mastoid prior to re-referencing offline to the average of both
mastoids (N7000 amplifier, EMBLA, Natus, Middleton, WI, USA). Arousals and artifacts
were detected automatically [46] to provide the number of arousals during REM sleep, and
excluded from the power spectral density analyses. Only frontal electrodes were considered
in the analyses because the frontal region is commonly accepted as most sensitive to sleep
homeostasis [47]; focusing on the frontal electrodes may also facilitate interpretation of
future large-scale studies using ambulatory EEG, often restricted to frontal electrodes.

Sleep was staged in 30 s epochs using an automatic algorithm (ASEEGA, PHYSIP,
Paris) [48] to provide total sleep time (TST). Averaged energy was computed for each 30 min
bin, adjusted for the proportion of rejected data. The adjusted values were then summed
across REM sleep [49] to provide REM theta energy (overnight cumulated 4.25–8 Hz en-
ergy). Energy in the other typical bands of the sleep EEG were computed similarly during
both REM and NREM for specificity assessments (Delta band: 0.5–4 Hz; Theta: 4.25–8 Hz;
Alpha: 8.25–12 Hz; Sigma: 12.25–16 Hz; Beta: 16.25–30 Hz). Sigma power (12.25–16 Hz)
was computed during the 1 min preceding each REM episode (if sleep stage was N2 and
N3), as the weighted sum of 4 s artifact-free window (2 s overlap per 30 s epoch), prior to
averaging over the number of REM episodes.

4.4. Cognitive Tasks

Visual–perceptual rivalry task. The task (~12 min total duration) consisted of watching
a 3D Necker cube, which can be perceived in two different orientations (Figure 1B), for
10 blocks of 1 min separated by 10 s of screen-center cross fixation. Participants were
instructed to report switches between the two percepts through a button press.

Auditory salience detection task. The task (~10 min total duration) consisted of an
oddball paradigm requiring reports on the perception of rare deviant target tones (1000 Hz,
100 ms, 20% of tones) that were pseudo-randomly interleaved within a stream of standard
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stimuli (500 Hz, 100 ms) through a button press (Figure 1C). The task included 270 stimuli
(54 targets).

These tasks were selected because they were thought to activate the LC [17,18]. As
we previously reported, both tasks successfully triggered a response of the LC [10,11]
(Figure 1D,E).

4.5. MRI Data Acquisition, Preprocessing and Univariate Analyses

MRI data were acquired using a MAGNETOM Terra 7T MRI system (Siemens Healthi-
neers, Erlangen, Germany), with a single-channel transmit and 32-receiving channel head
coil (1TX/32RX, Nova Medical, Forchheim, Germany). Blood-oxygen-level-dependent
(BOLD) fMRI data were acquired using a multi-band (MB) gradient-recalled echo–echo-
planar imaging (GRE-EPI) sequence (main parameters: repetition time = 2.340 ms, flip
angle = 90◦, 86 axial 1.4 mm thick slices, no interslice gap, matrix size = 160 × 160, voxel
size = 1.4 × 1.4 × 1.4 mm3,MB acceleration factor = 2, GeneRalized Autocalibrating Partial
Parallel Acquisition (GRAPPA) acceleration factor = 3). The cardiac pulse and the respira-
tory movements were recorded concomitantly using, respectively, a pulse oximeter and
a breathing belt (Siemens Healthineers). The fMRI acquisition was followed by a dual-
echo 2D GRE field mapping sequence to assess B0 magnetic field inhomogeneities with
the following parameters: TR = 5.2 ms, TEs = 2.26 ms and 3.28 ms, flip angle (FA) = 15◦,
bandwidth = 737 Hz/pixel, matrix size = 96 × 128, 96 axial slices with 2 mm thickness,
voxel size = 2 × 2 × 2 mm 3, acquisition time = 1:38 min.

A Magnetization-Prepared with 2 RApid Gradient Echoes (MP2RAGE) sequence
was used to acquire T1 anatomical images: TR = 4300 ms, TE = 1.98 ms, FA = 5◦/6◦,
TI = 940 ms/2830 ms, bandwidth = 240 Hz/pixel, matrix size = 256 × 256, 224 axial
0.75 mm–thick slices, GeneRalized Autocalibrating Partial Parallel Acquisition (GRAPPA)
acceleration factor = 3, voxel size = 0.75 × 0.75 × 0.75 mm3, acquisition time = 9:03 min [50].

The LC-specific sequence consisted of a 3D high-resolution magnetization transfer–
weighted turbo-flash (MT-TFL) sequence with the following parameters [51]: TR = 400 ms,
TE = 2.55 ms, FA = 8◦, bandwidth = 300 Hz/pixel, matrix size = 480 × 480 × 60, number
of averages = 2, turbo factor = 54, magnetization transfer contrast (MTC) pulses = 20,
MTC FA = 260◦, MTC RF duration = 10,000 µs, MTC inter-RF delay = 4000 µs, MTC
offset = 2000 Hz, voxel size = 0.4 × 0.4 × 0.5 mm3, acquisition time = 8:13 min. Axial slices
were acquired and centered for the acquisitions perpendicularly to the rhomboid fossa (i.e.,
the floor of the fourth ventricle located on the dorsal surface of the pons) [51].

Functional and anatomical MRI data were preprocessed using SPM12, ANTs and
SynthStrip brain extraction tool [52], as fully described previously [10,11]. The prepro-
cessed data were resampled to a 1 mm3 resolution. Individual statistical analyses consisted
of a general linear model (GLM) including one regressor of interest, consisting of a switch in
perception (perceptual rivalry) or target tone (salience detection) modeled as an event (con-
volved with the canonical hemodynamic response function—HRF). Participant movement
parameters, respiration, and heart rate were used as covariates of no interest (physiological
data of 4 volunteers were not available and therefore not included in their individual
design matrices). The T1 structural whole-brain image was used to extract individual total
intracranial volume (TIV) using CAT12 toolbox [53].

Individual LC masks were manually delineated by 2 experts based on LC-specific
images (as in [10]) and activity of left LC was extracted in each subpart (as LC responses
were more prominent in the left LC in both tasks [10,11]). The different nuclei of the
hypothalamus do not offer a lot of contrast in MRI images such that they cannot be
segmented using current approaches. We therefore used an automated segmentation
algorithm to parcellate the hypothalamus into 5 subparts which encompass several nuclei—
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anterior–inferior, anterior–superior, posterior, inferior tubular and superior tubular [19]
(see Figure 3A for the nuclei deemed to be included in each subpart). We then extracted
the activity of these subparts within the left hypothalamus (i.e., mean value over each
subpart of hypothalamus) during both tasks for each participant using the REX Toolbox
(https://web.mit.edu/swg/software.htm, accessed on 10 January 2024). We selected
subparts of the left hypothalamus because we were interested in the effective connectivity
between the left hypothalamus and the left LC, where responses were more prominent.

4.6. Effective Connectivity Analysis

Our previous analysis of the fMRI data of both tasks indicated only weak hypothala-
mus activation (i.e., no responses associated with the events of interest were detected even
when applying an uncorrected threshold of p < 0.001). This does not, in principle, prohibit
effective connectivity from being computed and importantly to be associated with other
features of interest, such as sleep electrophysiology metrics. To select the hypothalamus
subpart to be considered in our connectivity analyses, we reasoned that the activity of a
given hypothalamus subpart should at least be weakly associated with our sleep metrics of
interest. We therefore determined whether the activity estimate of each subpart—separately
for each task—was associated with either REM theta energy or sigma power prior to REM
episodes. Left hypothalamus subpart activity was used in GLMM to seek correlation with
REM theta energy and sigma power prior to REM sleep episodes (one GLMM per task
and per sleep metric) (see Statistic section below). Only the hypothalamus subparts that
yielded at least a statistical trend (p < 0.1) with either sleep metrics during a given task
were considered for effective connectivity analyses.

DCM framework [54], implemented in SPM12, was used to compute the effective
connectivity between the LC and each of the selected hypothalamus subparts during the
selected task (i.e., the anterior–superior and posterior subparts during the visual–perceptual
rivalry task—see Results). BOLD signal time series associated with our event of interest
(i.e., perceptual switch) were extracted from individually defined ROIs (i.e., over the LC
and hypothalamus subparts masks), based on the individual statistical maps thresholded
at p < 0.05 uncorrected. During the extraction of the BOLD signal time series, confounding
effects such as head movement and physiological noise were regressed out, ensuring the
resulting time series better reflected neural activity related to the event. We extracted the
first principal component (eigenvariate) of the “adjusted” time series, which represents the
time series after regressing out effects of no interest, using the approach outlined by [55].

Stochastic DCM was used because no significant task-related activations were detected
in the selected hypothalamus subparts in the group-level whole-brain analysis across all
participants (cf. above) [20]. We computed two DCM models based on animal evidence of
reciprocal interaction between the LC and the anterior–superior subpart of hypothalamus
as well as LC and posterior subpart of hypothalamus [21,22] (i.e., intrinsic connections
between the two regions), along with self-feedback gain control connections for LC and
hypothalamus subpart (Figure 3B,C). Task inputs were further considered to reach both
regions. Time series extracted from individual ROIs were subjected to a first-level DCM
analysis, where the model was estimated for each subject. To isolate the connectivity
parameters that were contributing to the model and could therefore be used in a GLMM
seeking associations with sleep metrics (see below), we performed a Parametric Empir-
ical Bayes (PEB) analysis [56,57] over the first-level DCM parameter estimates. PEB is a
hierarchical Bayesian model that evaluates commonalities and differences among subjects
in the effective connectivity domain at the group level by performing Bayesian model
reduction (BMR), which explores the space of DCM models and leads to a subset of models
best explaining the data and Bayesian model averaging (BMA) of the parameters across

https://web.mit.edu/swg/software.htm
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models weighted by the evidence of each model. Subsequently, as there is no concept of
significance in Bayesian analysis, we reported and used in the GLMM, the parameters
contributed to the model evidence with a posterior probability (Pp) exceeding 0.90.

4.7. Statistics

GLMMs were performed in SAS 9.4 (SAS Institute, Cary, NC, USA) and were adjusted
for the distribution of the dependent variables. Outliers among connectivity and sleep
metrics lying beyond four times the standard deviation were removed from the analysis
(maximum one data point was removed, the final number of individuals included in
each analysis is reported in each table). The first GLMMs were meant to isolate which
hypothalamus subparts would be included in DCM. They included the 2 sleep features
of interest as dependent variables in each task separately and hypothalamus subpart,
hypothalamus activity estimates and age group, including sex, TST and TIV as covariates
(i.e., 4 models in total, 1 per sleep metric and task). Our initial models included the
three-way interaction between hypothalamus activity, hypothalamus subpart and age
group and all three simple two-way interaction terms. Non-significant three-way/two-way
interactions were removed from the models based on Bayesian Index Criterion (BIC) for
fit quality estimation such that final models only included the hypothalamus activity and
hypothalamus subpart interaction. This yielded statistical trends with the activity of the
anterior–superior and posterior subparts during the perceptual rivalry task (see Results)
for REM theta energy so that DCM included these 2 subparts during the latter task.

The next set of GLMMs tested for associations between connectivity metrics and
REM theta energy, again used as dependent variable, and including sex, TST and TIV as
covariates. Following the same procedure described in the preceding paragraph, all final
models included an interaction term between the connectivity metric and the age group.
Semi-partial R2 (R2*) values were computed to estimate the effect sizes of significant fixed
effects and statistical trends in all GLMMs [58]. Significance was determined following the
Benjamini–Hochberg procedure for false discovery rate procedure [p < 0.025 (for rank 1/2);
p < 0.05 (for rank 2/2)].

We computed a prior sensitivity analysis to obtain an indication of the minimum
detectable effect size in our main analyses given our sample size. According to G*Power 3
(version 3.1.9.4) [59]; taking into account a power of 0.8, an error rate α = 0.025, and a sample
size of 51, we could detect medium effect sizes r > 0.39 (2-sided; CI: 0.13–0.6; R2 > 0.15,
CI: 0.02–0.36) within a linear multiple-regression framework including 2 tested predictor
(connectivity, age group) and 2/3 covariates (sex, TIV, TST where relevant).

5. Conclusions
In summary, we show that the connectivity between key subcortical structures for

sleep regulation assessed during wakefulness may reflect their crosstalk during sleep and
contribute to the variability of sleep electrophysiology. Our main finding includes the
dominant oscillatory mode of REM, as a potential reflection of REM intensity and amnesic
function. The association is detected in participants aged between 50 and 70 y and beyond
REM theta rhythms, suggesting a more prominent impact in the fragile sleep found in
aging and on neuronal synchrony over lower frequencies. These results underscore the age-
dependent modulation of LC circuitry and its potential implications for sleep regulation
and the age-related increase in sleep complaints.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/clockssleep7040053/s1. Table S1: Post hoc contrast on the asso-
ciations between REMS theta energy and hypothalamus subparts activity estimated via the visual
perceptual rivalry task; Table S2: Associations between age and the connectivity between the anterior-
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superior hypothalamus and the LC as well as between the posterior hypothalamus and the LC;
Table S3: Non-significant associations between exploratory sleep metrics and the connectivity from
anterior-superior hypothalamus to LC; Figure S1: Non-significant associations between hypothala-
mus subparts activity estimates during the perceptual rivalry task and REM theta energy; Figure S2:
Non-significant associations between hypothalamus subparts activity estimates during the percep-
tual rivalry task and sigma power prior to REMS; Figure S3: Non-significant associations between
hypothalamus subparts activity estimates during the salience detection task and REM theta energy;
Figure S4: Non-significant associations between hypothalamus subparts activity estimates during
the salience detection task and sigma power prior to REMS; Figure S5: Non-significant associations
between sleep metrics of interest and the connectivity from anterior-superior hypothalamus to LC to
test the specificity.
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