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Abstract: In humans, the nocturnal secretion of melatonin by the pineal gland is suppressed by ocular
exposure to light. In the laboratory, melatonin suppression is a biomarker for this neuroendocrine
pathway. Recent work has found that individuals differ substantially in their melatonin-suppressive
response to light, with the most sensitive individuals being up to 60 times more sensitive than
the least sensitive individuals. Planning experiments with melatonin suppression as an outcome
needs to incorporate these individual differences, particularly in common resource-limited scenarios
where running within-subjects studies at multiple light levels is costly and resource-intensive and
may not be feasible with respect to participant compliance. Here, we present a novel framework for
virtual laboratory melatonin suppression experiments, incorporating a Bayesian statistical model.
We provide a Shiny web app for power analyses that allows users to modify various experimental
parameters (sample size, individual-level heterogeneity, statistical significance threshold, light levels),
and simulate a systematic shift in sensitivity (e.g., due to a pharmacological or other intervention).
Our framework helps experimenters to design compelling and robust studies, offering novel insights
into the underlying biological variability in melatonin suppression relevant for practical applications.

Keywords: melatonin suppression; non-visual effects of ligh; statistical analysis; power analysis;
experimental design

1. Introduction

Light exposure has a profound impact on human physiology and behaviour. In ad-
dition to enabling vision, light elicits a range of physiological and behavioural responses
including the acute suppression of nocturnal melatonin production by light and shifting of
the endogenous circadian rhythm [1,2]. These effects, often summarized under the umbrella
term ‘non-visual‘ effects of light [3], are mediated by a pathway connecting the eye to the
hypothalamus. More specifically, the suprachiasmatic nuclei (SCN) receive retinofugal
input, predominantly from a subset of retinal ganglion cells which are photosensitive in the
absence of input from the cones and rods, the canonical photoreceptors underlying visual
function. This photosensitivity is owed to the expression of the short-wavelength-sensitive
photopigment melanopsin [4–7]. There is converging and convincing evidence linking the
spectral sensitivity of melanopsin to the in vivo sensitivity of circadian and neuroendocrine
responses to light [8–13].

Most evidence for the melatonin-suppressive effects of light is generated in laboratory
experiments, in which participants are exposed to carefully controlled illumination (for
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examples, see [14–17]), while their saliva, plasma, or urine is collected for later melatonin
assay [18,19]. As these experiments can be resource-intensive in terms of participant
burden, processing costs, and staff to run a specific multi-hour (and potentially multi-
day) experimental protocols, an important consideration in designing experiments is
statistical power.

Non-visual sensitivity to light exhibits large individual differences [20,21], as demon-
strated by a recent study by Phillips et al. [22], in which participants were exposed to
overhead fluorescent illumination at different illuminance levels on different evenings
(10 lx, 100 lx, 200 lx, 400 lx, 1000 lx, 2000 lx). During this time their melatonin secretion was
measured, showed substantial individual differences, with the most sensitive individual
being up to 60 times more sensitive than the least sensitive individual in their sample.

These sizeable individual differences require special attention in designing experi-
ments to obtain compelling evidence, particularly when it is not feasible to run extensive
within-subjects experiments sampling the same individuals multiple times under multi-
ple illuminances (thereby minimising individual differences). Here, we present a novel
framework for facilitating power analyses for human melatonin suppression experiments
to optimize the choice of experimental illumination levels.

2. Results
2.1. Overview

We developed a Bayesian statistical model of a virtual laboratory melatonin sup-
pression experiment [22]. The model can be thought of as representing the melatonin
suppression versus photopic illuminance [lx] curves (henceforth termed “dose-response
curves”) across the population from which the original study participants were sampled.
The model is stochastic, meaning that each virtual individual drawn from it will likely have
a different dose-response curve. Figure 1 shows four replicates of a virtual experiment
comprising n = 41 participants in each case (the same sample size as the estimates in [22]).
There are two types of stochasticity inherent in the model: individual-level variation in
dose-response curve parameters; and measurement error when recording an individual’s
melatonin suppression level at a single discrete illuminance value. These two sources
of uncertainty are evident in Figure 1 by the variation in dose-response curves between
subjects and the variation in measurements (black points) around them.

The assumptions underpinning our model of virtual experiments are detailed in
Section 2.2. The ability to generate such virtual experiments allows us to conduct a series of
in silico experiments to estimate the statistical power for a series of different laboratory study
designs. The various study types are outlined in Section 2.3. As part of this work, we have
created an open-source R package called melluxdrc [23] that wraps the functionality required
to generate virtual experiments and to perform statistical power calculations. To facilitate
power calculations for those designing experiments, we have also conducted a series of
calculations and made those results freely available via an online R Shiny application called
the mellux-app [24], which we describe briefly in Section 5.3.

2.2. A Model of Virtual Experiments

Our model of virtual experiments comprises two elements: (a) a population model of
dose-response curves and (b) a measurement error model that statistically represents the
various noise factors that influence measurements of melatonin suppression at a particular
lux level.

The population model of dose-response curves is based on parameter estimates pre-
sented for n = 41 participants in [22]. In [22], dose-response data for n = 55 participants
were obtained in a within-subjects protocol, where participants were exposed to a dim con-
trol (<1 lux) and five other experimental light levels (10, 30, 50, 100, 200, 400, 2000 lux) for
5 h in the evening. Using these data, melatonin suppression values, s(x, i), were obtained at
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each experimental light level, x for each participant i. The series of melatonin suppression
values for each participant were then modelled using a logistic-type curve of the form:

s(x, i) = 1 − 1

1 +
(

log10 x
ai

)bi
, (1)

which has the property that melatonin suppression increases towards 100% as illuminance
increases without bound; here, bi > 0 controls the shape of each individual’s dose-response
curve, and ai = log10 ED50 for that individual. Here, ED50 is the dose corresponding to a
melatonin suppression value of 50%.
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Figure 1. Example virtual experiments. Each panel shows individual dose-response curves and
measurements (black points) of melatonin suppression at a series of illuminance values for n = 41
participants generated using the virtual_experiment (n = 41) function from the melluxdrc R
package. The assumptions underpinning each of these panels are described in Section 2.2.

The values used for our analysis were the (ai, bi) estimates for the n = 41 participants
previously reported in which a reliable estimate of the dose-response curve was obtained
(less than 1 log-unit 95% confidence interval for the estimate of ai): each set characterising
the dose-response curve as in Equation (1). From here onwards, we refer to this set of
estimates as the raw dose-response estimates. Using these values, we sought to create a
statistical population model that represented these collection of dose-response curves which,
crucially, could be sampled from to obtain a dose-response curve for a virtual individual.

To do so, we built a statistical distribution representing the raw estimates. To represent
this bivariate distribution, we used kernel density estimation using the bkde function
from the KernSmooth R package [25] to approximate the empirical distribution over ai
values. We then modelled the conditional distribution of log bi conditional on ai through a
regression equation:

log bi ∼ normal(α + βai, σ0 + σ1ai), (2)
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where the regression equation allows heteroscedasticity, represented by a standard devi-
ation that increases linearly with ai (since σ0 > 0 and σ1 > 0). This model was estimated
using a Bayesian framework, meaning that priors were set on the parameters. The priors
chosen were uninformative, allowing a wide range of possible relationships and are shown
in Table 1. The model was fitted using Markov chain Monte Carlo (MCMC) through Stan’s
NUTS algorithm [26], using 4 Markov chains with 4000 iterations per chain, with 2000 of
each chain’s iterations discarded as warm-up; finally, the post-warm-up iterations were
thinned by a factor of 2. MCMC convergence was diagnosed through R̂ < 1.01 and having
bulk- and tail-ESS values above 400 [27]. Posterior predictive checks of model fit (see,
for example, [28]) indicated that the model was a reasonable fit to the data (Figure 2).
The Stan file and all materials needed to reproduce this analysis are available at [29].
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Figure 2. (A) Posterior predictive check: regression equation. Plot shows a graphical check of the
model fit of Equation (2). The individual points show the estimates of (ai, bi) parameters provided by
the authors of [22]. The uncertainty ribbon indicates the 2.5%-97.5% posterior predictive quantiles;
the black line indicates the 50% posterior predictive quantile. (B) Posterior predictive check: σi model.
Plot shows a graphical check of the model fit of Equation (4). Each black line represents a gamma
density function corresponding to particular posterior samples of the parameters. The blue bars
indicate the values of σi estimated by the root-finding algorithm. (C) Assessing virtual individual
generation: dose-response parameters. Each orange point represents a draw of (a, b) parameters
(in Equation (1)) obtained via Algorithm 1: here, we show 25,000 such estimates; each green point
represents raw estimates from [22]. (D) Assessing virtual individual generation: EDx quantiles.
Each orange point represents the (ED25, ED75) values correspond to a draw of (a, b) parameters
(in Equation (1)) obtained via Algorithm 1: here, we show 25,000 such estimates; each green point
represents the EDx quantiles corresponding to the raw estimates from [22].
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Table 1. Priors. Shows the priors used on the parameters of the Bayesian models that were estimated.

Model Prior

Equation (1) α ∼ normal(0, 1)
Equation (1) β ∼ normal(0, 1)
Equation (1) σ0 ∼ Cauchy+(0, 1)
Equation (1) σ1 ∼ Cauchy+(0, 1)
Equation (4) a ∼ Cauchy(0, 1)
Equation (4) b ∼ Cauchy(0, 1)

To sample parameters characterising a dose-response curve for a virtual individual, we
then used the approach described in Algorithm 1. Briefly, the first section of the algorithm
draws a from the kernel density estimate of the empirical distribution. Then, Equation (2) is
used to draw a value of log b conditional on a. The final section of the algorithm calculates
the ED25 and ED75 corresponding to the sampled a and b values. If either of these are more
extreme than thresholds derived from the corresponding ED values from the estimates
from [22], those (a, b) values are rejected and the function is called again. This last step
ensures that the dose-response curves obtained for virtual individuals are not far more
extreme than those witnessed in the raw estimates. This approach is able to generate
samples of (a, b) parameters that encompass the distribution of raw estimates (Figure 3).
Accordingly, the corresponding ED25 and ED75 values generated by this process were also
a reasonable fit to those corresponding to the raw estimates (Figure 3).

Algorithm 1 Virtual individual generation. Takes as input posterior draws of α, β, σ0, σ1 in
Equation (2)

1: procedure VIRTUALINDIVIDUAL(α, β, σ0, σ1)
2: Sample a from a kernel density approximation of empirical distribution using

inverse transform sampling
3: Uniformly sample a set of random (α, β, σ0, σ1) values from posterior draw set
4: Use Equation (2) to draw a value of log b (and hence b)
5: Use ed(x) = 10a(−1+1/(1−x))1/b

to calculate ED25 (x = 0.25) and ED75 (x = 0.75) for
that individual

6: If ED25 is less than half the minimum ED25 in estimates from [22], reject (a, b) and
call VirtualIndividual

7: If ED75 is greater than 1.5 times the maximum ED75 in estimates from [22], reject
(a, b) and call VirtualIndividual

8: return (a, b) which characterise a dose-response curve
9: end procedure

As part of our virtual population, we also developed an algorithm to allow users to
simulate a reduction in individual heterogeneity in the population. To do so, we introduced
a parameter, 0 ≤ η ≤ 1 that modulates the level of individual heterogeneity in the
population: here, η = 0 indicates that virtual individuals sampled from the population all
have the same dose-response curve near the population median; η = 1 indicates that the
virtual individuals are drawn from the unrestricted population model (i.e., by the same
process described in Algorithm 1). The process used to sample virtual individuals from the
population is provided in Algorithm 2. Figure 4 shows how reducing the individual-level
heterogeneity using this approach results in a tighter spread of dose-response curves.
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Figure 3. Virtual experiment check: saturations. Panels correspond to lower (percentage of observa-
tions < 5%) and upper (percentage of observations > 95%) saturations. Each black line corresponds
to saturations generated from a single virtual experiment of sample size n = 41. Each orange point
corresponds to the real saturation.

Algorithm 2 Virtual individual generation: reduced individual variance. Takes as input
posterior draws of α, β, σ0, σ1 in Equation (2) and η

1: procedure VIRTUALINDIVIDUALREDUCEDVARIANCE(η, α, β, σ0, σ1)
2: For all αi posterior draws, shrink towards the grand mean: αi = αi + (α − αi)(1− η)

where α is the posterior mean
3: For all βi posterior draws, shrink towards the grand mean: βi = βi + (β− βi)(1− η)

where β is the posterior mean
4: Uniformly sample a set of random (α, β) values from the variance-reduced posterior

draw set
5: Uniformly sample a set of random (σ0, σ1) values from the posterior draw set
6: Sample a′ from a kernel density approximation of empirical distribution using

inverse transform sampling (see [30])
7: Calculate a = a′ + (a50 − a′)(1 − η) where a50 indicates the median value of the

empirical distribution
8: Calculate σ = η(σ0 + σ1a)
9: Draw a value of log b ∼ normal(α + βai, σ)

10: Use ed(x) = 10a(−1+1/(1−x))1/b
to calculate ED25 (x = 0.25) and ED75 (x = 0.75) for

that individual
11: If ED25 is less than half the minimum ED25 in estimates from [22], reject (a, b) and

call VirtualIndividualReducedVariance
12: If ED75 is greater than 1.5 times the maximum ED75 in estimates from [22], reject

(a, b) and call VirtualIndividualReducedVariance
13: return (a, b) which characterize a dose-response curve
14: end procedure
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Figure 4. Effect of reduction in individual variance. Panel A shows individual dose-response curves
and measurements (black points) of melatonin suppression at a series of illuminance values for
n = 41 participants generated using virtual_experiment (n = 41) function from the melluxdrc R
package. Panel B shows the same but assuming a reduction in individual variance given by η = 0.2 as
given by virtual_experiment (n = 41, individual_variation_level = 0.2). The assumptions
underpinning each of these panels are described in Section 5.

As is seen in Figure 2 in [22], the measured melatonin suppression values at discrete
illuminance values exhibited often considerable variation around the best fit lines. Using the
Root-Mean-Square-Errors (RMSEs) for each fit in for each individual, we developed an error
model representing measurement variability for each individual. To do so, we assumed
that measurement noise was additive on the logit scale to ensure that measurements could
not fall outside of the [0, 1] range. That is,

logit s̃(x, i) ∼ normal(logit s(x, i), σi), (3)

where logit(z) := log z/(1 − z), and s̃(x, i) represents the measured melatonin suppression
at illuminance x for individual i. Here, σi > 0 is an individual-specific value quantifying
measurement noise.

We aimed to determine the value of σi that generated measurement noise resulting
in a corresponding RMSE value close to that observed for individual i. To do so, we used
an approximate estimation approach where, in each iteration, we simulated data using
Equations (1) and (3), and compared the simulated RMSE value to the truth. Specifically,
we used the known (estimated) (ai, bi) values for individual i to simulate a dose-response
curve given by Equation (1); we then generated measurements at the discrete illuminance
values used in [22] using Equation (3) with a particular σi. For each such “experiment”,
we calculated an RMSE value. For a given σi value, we repeated the experiment 100 times,
and calculated an average RMSE value across all replicates. The difference between this
average simulated value and the true RMSE value was then used as the target for the one-
dimensional root-finding algorithm uniroot available in R: the output of this algorithm
was, hence, a value of σi for each individual.

In order to generate measurements for virtual individuals, we needed an approach
to generate potential σi values for unseen individuals. To do so, we assumed that the
individual σi values were drawn from the following population process:

σi ∼ gamma(c, d), (4)

where c > 0 and d > 0. We estimated the parameters in Equation (4) using the values
of σi estimated by the root-finding algorithm. The model was estimated in a Bayesian
paradigm, requiring that we set priors on the parameters. Here, we chose uninformative
priors on the parameters, which are specified in Table 1. The model was fitted using Markov
chain Monte Carlo (MCMC) through Stan’s NUTS algorithm [26] using 4 Markov chains
with 2000 iterations per chain, with 1000 of each chain’s iterations discarded as warm-up.
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The same criteria were used to diagnose model convergence as for Equation (2). Posterior
predictive checks of model fit indicated that the model was a reasonable fit to the data
(Figure 2).

With both elements of the virtual experiment model in place – the population model
of dose-response experiments and the measurement error model – we sought to assess
how well the resultant model represented the data collected in [22]. This was tested using
the minimum and maximum melatonin suppression at each measured illuminance value
(the “extrema”); and the percentage of observations which were extreme at each lux: either
below 5% lux or above 95% melatonin suppression (the lower and upper “saturation
values”). We generated 200 replicate virtual experiments, which each had the same number
of individuals (n = 41) as the estimates we were provided with. For each experiment and
illuminance value, we calculated simulated extrema and saturation values to compare with
the real measurements. In Figure 3, we compare the modelled extrema (black lines) with
the real values (orange points and line): in the left-hand plot, we compare the minima; in
the right plot, we compare the maxima. This indicates that, for moderate-high illuminance
values, the modelled and real values were in good accordance. At the lower illuminance
values, the modelled values tended to be more extreme (either closer to 0% for the minima;
or closer to 100% for the maxima) than the real data. In Figure 3, we performed the same
comparison but for the levels of simulated and actual saturations. In this case, the upper
saturation values between the modelled and real data were reasonable, apart from at the
highest illuminance value measured. The lower saturations exhibited the same pattern as
for the extrema, in that the simulated data were more extreme than the actual.

The discrepancies between the modelled and actual data could be due to (a) assump-
tions around our model for the population of dose-response curves, (b) assumptions around
our measurement process model and/or (c) issues with the original logistic models used
to model dose-response curves in [22]. Our checks for our model of dose-response curves
(Figure 3) indicate no issue with representing the original estimates. It is possible that
the logit-normal noise process we assume in Equation (3) results in greater variation than
seen in reality. Visual inspection of Figure 2 in Phillips et al. [22], however, shows that,
for a number of individuals, the logistic dose-response curve is downward-biased for low
illuminance levels, potentially indicating that a two-parameter logistic is inappropriate in
this extreme. Without the raw experimental data, however, it is not possible to determine
the exact cause of the discrepancy between modelled and real life data. Despite these
differences, the overall correspondence between the model and data is good, and, as such,
it provides a reasonable basis to determine statistical power for a variety of different
experimental settings.

2.3. Power Calculations

Having developed a virtual experiment model (see Section 2.2), we sought to use it to
help inform experimental design. In particular, we considered two classes of experiment: in
illuminance comparison experiments, the aim is to quantify whether population melatonin
suppression differs across two measured illuminance values; in intervention experiments,
the aim is to estimate the effect size for an intervention that systematically changes the
dose-response curves (i.e., changes light sensitivity). Within each experimental class, we
considered two possible experimental designs: within-subject designs, where the same
participants are measured twice; or between-subject designs, where two separate groups of
participants are measured once each. In all cases, we used our model of virtual experiments
to generate data that mimics the types of laboratory experiments described here, which
was then used to determine statistical power(Figures 5 and 6).

In two-level experiments, individual melatonin suppressions are measured at two
photopic illuminance levels: x1 and x2. In within-subject experiments, each individual is
measured twice resulting in N paired observations: D = {s̃(x1, i), s̃(x2, i)}1:N . In between-
subject experiments, there are 2N individuals, with N measured at x1 and another N at
x2, resulting in a dataset: D = {{s̃(x1, i)}1:N & {s̃(x2, i)}N+1:2N}. In these experiments,
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the aim is to determine that there is a significant difference in the suppression response
between measurements taken at x1 and x2. To do so, we use a t-test which is either paired
(for within-subject designs) or independent (for between-subject designs). We considered
all possible pairs of different illuminance values from the set {10, 30, 50, . . . , 1970, 1990}.
For each pair, we also considered a range of sample sizes from N = 10, 20, . . . , 90, 100 and
a range of possible individual heterogeneity values: η = 0, 0.2, 0.4, 0.6, 0.8, 1.0. For each
combination of these parameters, we calculated the power to detect significant differences
of the correct sign using test sizes of 1%, 5% and 10%.

We show visualisations of the outcomes for these analyses in Figures 6 and 7. Figure 6
shows the statistical power as a function of participant level hetereogeneity for between-
and within-subjects designs. The same principle of power but for different illuminances
levels is shown in Figure 7. The results are clear: within-subjects designs beat between-
subjects designs.
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Figure 5. (A) Virtual populations as a function of participant heterogeneity. Here, we are simulating
the group dose-response curves assuming different levels of participant heterogeneity. (B) Statistical
power as a function of participant heterogeneity.

In intervention experiments, we assume interventions that shift the ED50 away from
the baseline level. In within-subject study designs, individuals are assumed to have their
melatonin suppressions measured at a particular illuminance level (in lux) x once before
the intervention occurs and once afterwards, resulting in a dataset: D = {s̃(x, i), s̃′(x, i)}1:N

where unprimed variables indicate natural levels and primed indicate intervention lev-
els. For the between-subject design, two different sets of individuals were measured:
a “baseline” group and an “intervention” group whose ED50 values are shifted. This
resulted in a dataset D = {{s̃(x, i)}1:N & {s̃′(x, i)}N+1:2N}. As for the illuminance com-
parison experiments, we used t-tests to compare the natural and intervention melatonin
suppressions: again using paired-tests for the within-subject design and independent
tests for the between-subject design. We considered all illuminance values from the set
x = {10, 30, 50, . . . , 1970, 1990} across the same set of sample sizes and individual hetero-
geneities as for the comparison experiments. Additionally, we considered natural ED50
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multipliers taking values χ = {0.2, 0.4, . . . , 1.8, 2.0}, where, for example, χ = 0.2 means the
natural ED50 of individuals are reduced by a factor of 5. For each combination of these
parameters, we calculated the power to detect significant differences of the correct sign
using test sizes of 1%, 5% and 10%.

We summarize the outcomes of these analyses in Figure 8. We find clear differences
in power assuming a specific intervention effect. These analyses in Figure 8 may serve to
inform sample size calculations for planning interventions affecting the impact of light on
melatonin suppression.
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Figure 6. Statistical power for detecting a difference in melatonin suppression assuming different
samples sizes and between-subjects (left panel) and within-subjects (right panel) designs.
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750 lux.
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Figure 8. Panel (A) shows the power as a function of the intervention effect (expressed as a multiplier
of the ED50 value) and sample size. Panel (B) shows a slice of the same data as a line plot for different
discrete samples sizes.

2.4. Extension to Melanopic EDI

In the present model, we used photopic illuminance in lux as the independent vari-
able. It is well known that melatonin suppression follows the spectral sensitvity of
melanopsin [7,12]. In the experiments underlying our model [22], the spectrum did not
change substantially with different intensities. As a consequence, the results here hold
independent of the light quantification metrics, and using a simple scaling factor, can be
expressed as melanopic equivalent daylight illuminance (mEDI) [31]. Following calcula-
tions with luox [32], the melanopic EDIs were 1.58 lx (nominal10 photopic lx), 48.24 lx
(nominal100 photopic lx), 99.76 lx (nominal200 photopic lx), 206.33 lx (nominal400 photopic
lx) and 1106.21 lx (nominal200 photopic lx) in the original data set.

3. Discussion
3.1. Limitations

The presented model has notable limitations stemming from the reliance on a single
data set, posing challenges regarding the generalizability of our findings. The modelling
approach is flexible to allow for the future integration of data sets, should these become
available (see Section 2.3). The dataset was collected in a relatively homogeneous group of
participants. Indeed, given the large variability in even this rather homogeneous sample, it
is unlikely that more heterogeneous samples would lead to less variable results. Future
work include data from diverse populations.

Due to data-sharing restrictions, only individual-level logistic fits to the data were
available. This limitation raises concerns about the assumed form of the dose-response
curve and the appropriateness of the chosen noise model, both of which could be better
assessed with access to raw individual-level data. Additionally, the assumed form of the
noise model, specifically its additive nature on the logit scale, might not be the optimal fit.
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The model exhibited strengths in providing a good fit to the available data, show-
casing its reliability for the bulk of the available information. Furthermore, the approach
emphasizes transparency and openness by making the model accessible through repro-
ducible code repositories and a graphical user interface. The approach’s innovative aspect
lies in being one of the initial attempts to construct a generative model of experimental
data, allowing users to specify assumptions about individual-level variation. The use of a
Bayesian approach is statistically principled by correctly incorporating various sources of
uncertainty into the model’s characteristics, enhancing its robustness.

3.2. Future Directions

The analysis and approach presented here provides a novel approach for power anal-
ysis in human melatonin suppression experiments. It can help to inform future studies
of melatonin suppression under various manipulations, assuming individual variabil-
ity, and thereby support experimental design and a principled decision about samples
sizes. Importantly, the framework presented here can be updated when more datasets,
and more diverse data sets, collected under similar experimental paradigms become avail-
able. The approach proposed here for modelling dose-response curves can be extended
to other dose-response relationships as well. An additional consideration is the inclusion
of melanopic metrology into the modelling framework, along with more sophisticated
photoreceptor integration models.

4. Conclusions

Here, we developed a model of virtual melatonin suppression experiments under
different light levels informed by, and fitting to, actual experimental data. We expanded
our model virtual experiments by allowing the modulation of individual-level variability
and implementing a virtual intervention leading to a left- or rightward shift of the dose-
response curve. We provide a web applet for exploring the virtual model and using it in
practical applications.

5. Methods
5.1. Sample Characteristics

The study on which we base the statistical modeling is based on a sample of young
healthy adults, aged 18–30 years (mean ± SD; age of 20.8 ± 2.6 y). Data from 41 participants
were included in our analyses. The empirical sample had the following characteristics [22]:

“A total of 61 participants were enrolled, of whom 3 were excluded based on
actigraphy, and 2 did not complete the study beyond the baseline DLMO. Overall,
56 healthy young Caucasian adults (29 women, 27 men; 20.8 ± 2.6 y of age)
completed the study. Participants were free from any medical or psychological
conditions, had a BMI of 18–30 kg/m2, and were not taking any medications at
the time of the study. Participants had not recently traveled across time zones
(1 mo per time zone, up to 3 mo) or engaged in shiftwork in the previous 12 mo.
Women were naturally cycling (i.e., free from hormonal contraception) and had a
regular menstrual cycle of 21–36 d in duration. Participants were healthy sleepers,
reporting no subjective problems or previous diagnoses, and having a regular
bedtime before 1 AM. A score of 10 or greater on the Epworth Sleepiness Scale
was exclusionary, and participants were predominantly intermediate chronotypes
(MEQ score of 52.7 ± 9.2). Participants had an average bedtime and waketime of
23:04 (SD = 44 min) and 07:04 (SD = 44 min), respectively. DLMO occurred on
average at 21:05 (SD = 70 min), 2.22 h before bedtime. A total of nine participants
wore prescription glasses at each test session.”

5.2. Reproducibility of Results

The version of melluxdrc used to generate the results in this paper is v1.0.0.



Clocks&Sleep 2024, 6 126

5.3. Shiny App

We provide an app developed in the Shiny framework which allows users to gener-
ate power analyses. The app is deployed at https://tscnlab.shinyapps.io/mellux-app/
(accessed on 20 February 2024). Screenshots are shown in Figure 9.

Figure 9. Screenshots of the Shiny app for exploring sample size calculations interactively.

5.4. Code and Data Availability

All code and data underlying this work is available under the MIT License. We make
available the R package melluxdrc for generating virtual experiments [23], code to run
simulations on a cluster [33], and code to fit dose response curves [29]. The code underlying
the shiny app, deployed at https://tscnlab.shinyapps.io/mellux-app/ (accessed on 20
February 2024) is available as well [24].
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