
Citation: Putilov, A.A.; Budkevich,

E.V.; Budkevich, R.O. A Review of

Evidence for the Involvement of the

Circadian Clock Genes into

Malignant Transformation of Thyroid

Tissue. Clocks&Sleep 2023, 5, 384–398.

https://doi.org/10.3390/

clockssleep5030029

Academic Editor: Ramin Khatam

Received: 29 March 2023

Revised: 10 July 2023

Accepted: 11 July 2023

Published: 13 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

A Review of Evidence for the Involvement of the Circadian
Clock Genes into Malignant Transformation of Thyroid Tissue
Arcady A. Putilov 1,2,* , Elena V. Budkevich 1 and Roman O. Budkevich 1

1 Laboratory of Nanobiotechnology and Biophysics, North-Caucasus Federal University,
355029 Stavropol, Russia; budkevich.ev@yandex.ru (E.V.B.); budkev@mail.ru (R.O.B.)

2 Laboratory of Sleep/Wake Neurobiology, Institute of Higher Nervous Activity and Neurophysiology of the
Russian Academy of Sciences, 117865 Moscow, Russia

* Correspondence: putilov@ngs.ru; Tel.: +7-49-30-53674643 or +7-49-30-61290031

Abstract: (1) Background: In 2013, the results of a pioneer study on abnormalities in the levels
and circadian rhythmicity of expression of circadian clock genes in cancerous thyroid nodules was
published. In the following years, new findings suggesting the involvement of circadian clock-
work dysfunction into malignant transformation of thyroid tissue were gradually accumulating.
This systematic review provides an update on existing evidence regarding the association of these
genes with thyroid tumorigenesis. (2) Methods: Two bibliographic databases (Scopus and PubMed)
were searched for articles from inception to 20 March 2023. The reference lists of previously pub-
lished (nonsystematic) reviews were also hand-searched for additional relevant studies. (3) Results:
Nine studies published between 2013 and 2022 were selected. In total, 9 of 12 tested genes were
found to be either up- or downregulated. The list of such genes includes all families of core circadian
clock genes that are the key components of three transcriptional–translational feedback loops of the
circadian clock mechanism (BMAL1, CLOCK, NPAS2, RORα, REV-ERBα, PERs, CRYs, and DECs).
(4) Conclusions: Examination of abnormalities in the levels and circadian rhythmicity of expres-
sion of circadian clock genes in thyroid tissue can help to reduce the rate of inadequate differential
preoperative diagnosis for thyroid carcinoma.

Keywords: thyroid cancer; thyroid nodules; preoperative diagnostic; circadian clockwork dysfunction;
circadian clock genes

1. Introduction

The first results pointing to the alternation of expression of circadian clock genes in
human malignant thyrocytes were published 10 years ago [1]. In the following years, further
evidence for the association of these genes with thyroid cell oncogenic transformation was
gradually accumulating [2–9].

As stressed in several (nonsystematic) reviews of such findings [10–18], the examina-
tion of the pattern of expression of circadian clock genes might be of practical importance
for the establishment of an adequate presurgical diagnosis of thyroid tumors [19]. Although
the frequency of thyroid nodules (i.e., discrete masses in the gland) is very high (they are
detected in up to 65% of general populations), most of them are benign. A relatively low
percentage of cancerous nodules (about 5%) increases the risk of unnecessary surgeries in
the case of asymptomatic benign nodules and increases the risk of delays with diagnosis
and treatment in the case of asymptomatic cancerous nodules [20,21].

Thyroid cancers (TCs) are usually divided into five main histological types: “papillary,”
“follicular,” “poorly differentiated,” “undifferentiated/anaplastic,” and “medullary” (PC,
FC, PDTC, ATC, and MTC, respectively) [22,23]. The origin from neuroendocrine C cells
distinguishes the last type (MTC) from other four types. Two of the remaining four types
(PC and FC) are classified as well differentiated. An incomplete tumor capsule with
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expansive growth is the most typical feature of PDTC, and among five histological types,
ATC is regarded as the most aggressive form. The vast majority of TCs are classified as
PC and FC types (85%), while only a small fraction of thyroid tumors (5–7%) lose features
of cell origin and are classified as either PDTC or ATC [24]. The prognosis of patients
with PC and FC is rather optimistic (e.g., they are usually curable with radioactive iodine
therapy or surgery [25–27]), while the risk of mortality for ATC is high due to its rapid
progression [28].

Until recently, fine-needle aspiration biopsy aimed at identification of thyroid malig-
nancies has served as a safe and accurate tool for clinical evaluation of nonsecreting thyroid
nodules [20]. Although surgery is not recommended without evaluating the results of such
biopsies, the rate of unnecessary surgery remains high (e.g., after surgical interventions,
70–90% of thyroid cases were found to be benign [29]). The difficulty of distinguishing
between benign and malignant thyroid nodules has been recognized as one of the most
challenging issues of diagnostic approaches in oncology of the thyroid gland [30]. The
rate of unnecessary surgeries and delays with diagnosis and treatment of thyroid cancer
can be lowered by the development of preoperative markers for thyroid malignancies [31].
In order to improve preoperative diagnosis, the molecular testing platforms have been
introduced. In efforts to reduce unnecessary surgical interventions, these platforms can
be used as an integral part of the cytological evaluation in conjunction with fine-needle
aspiration biopsy [32–36]. Therefore, it is critical to determine whether presurgical molec-
ular biomarkers for thyroid carcinoma might include indices of abnormal functioning of
circadian clocks [10–14].

The importance of the circadian clockwork for multicell organisms has become evident
from findings indicating that almost each cell in almost each tissue type of almost each
organism contains a set of genes involved in the construction and functioning of its own
circadian clocks with a near 24 h (circadian) period [37,38].

A transcriptional–translational feedback loop is a key feature of this regulating mecha-
nism [37–39]. In a mammalian cell, the circadian cycle is initiated by BMAL1 (brain and
muscle aryl hydrocarbon receptor nuclear translocator-like), CLOCK (circadian locomotor
output cycles kaput), and NPAS2 (neuronal PAS domain protein 2). Their proteins are
members of the basic helix–loop–helix/Per-Arnt-Sim (bHLH-PAS) family of transcrip-
tion factors. In the cytoplasm, they interact with each other to pro-duce heterodimers
(BMAL1/CLOCK and BMAL1/NPAS2). At the next phase, these heterodimers translocate
to the nucleus to activate the transcription of several other clock genes, including CRYs
(cryptochrome circadian regulator 1 and cryptochrome circadian regulator 2), PERs (period
circadian regulator 1, period circadian regulator 2, and period circadian regulator 3), and
DECs (differentially expressed in chondrocyte 1 and differentially expressed in chondro-
cyte 2). BMAL1/CLOCK and BMAL1/NPAS2 heterodimers act as transcription factors
and bind the E-box regions on the promoters of these target genes that in turn encode
for the repressor components of the circadian clocks. At a later phase of the cycle, the
protein products of these genes dimerize and form complexes between themselves (PERs
with CRYs and DEC1 with DEC2). At the final phase, the feedback loop is completed
by transporting these cytoplasmic dimers (PERs/CRYs and DEC1/DEC2) back into the
nucleus to suppress activity of BMAL1/CLOCK and BMAL1/NPAS2 heterodimers. When
they are suppressing activity of these heterodimers, they are also repressing their own
expression, thus giving rise to a new cycle (i.e., the next cycle is started with allowing the
transcription of BMAL1, CLOCK, and NPAS2) [38–40]. The circadian expression of BMAL1
and NPAS2 is also influenced by two nuclear receptors, REV-ERBα (or NR1D1, nuclear
receptor subfamily 1 group D member 1) and RORα (RAR related orphan receptor alpha).
Both receptors are activated by BMAL1/CLOCK, and they in turn regulate expression of
BMAL1 and NPAS2 genes by acting on their promoters [41] (Figure 1).
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Figure 1. A simplified representation of three transcriptional–translational feedback loops. A tran-
scriptional–translational feedback loop is a key feature of the circadian clock mechanism. In a mam-
malian cell, this mechanism includes several transcriptional–translational feedback loops involving 
clock genes. The circadian cycle is initiated by three circadian clock genes producing proteins 
BMAL1, CLOCK, and NPAS2 (brain and muscle aryl hydrocarbon receptor nuclear translocator-like 
1, circadian locomotor output cycles kaput, and neuronal PAS domain protein 2, respectively) that 
are the members of the basic helix–loop–helix/Per-Arnt-Sim (bHLH-PAS) family of transcription 
factors. In the cytoplasm, they start to interact with each other to produce heterodimers 
BMAL1/CLOCK and BMAL1/NPAS2. At the next phase, these heterodimers translocate into the nu-
cleus to activate the transcription of several other clock genes, including CRYs, PERs, (cryptochrome 
circadian regulator 1 and cryptochrome circadian regulator 2, period circadian regulator 1, period 
circadian regulator 2, and period circadian regulator 3), DECs (differentially expressed in chondro-
cyte 1 and differentially expressed in chondrocyte 2), and BMAL1 itself. Namely, BMAL1/CLOCK 
and BMAL1/NPAS2 heterodimers act as transcription factors by binding the E-box regions on the 
promoters of the target genes. In turn, CRYs, PERs, DECs encode for the repressor components of 
the circadian clocks. At a later phase of the cycle, the protein products of these genes dimerize and 
form complexes between themselves (PERs with CRYs and DEC1 with DEC2). At the final phase, 
the core feedback loop (PER-CRY) is completed by transporting the cytoplasmic dimers PERs/CRYs 
back into the nucleus to suppress activity of BMAL1/CLOCK and BMAL1/NPAS2 heterodimers. 
When they are suppressing activity of these heterodimers, they are also repressing their own ex-
pression, thus giving rise to a new cycle (i.e., this next cycle is started with the initiation of transcrip-
tion of BMAL1, CLOCK, and NPAS2). The cytoplasmic dimers DEC1 and DEC2 are included in an-
other feedback loop (DEC). As with PER and CRY dimers, they translocate into the nucleus to sup-
press activity of BMAL1/CLOCK and BMAL1/NPAS2 heterodimers. One more transcriptional–
translational feedback loop (ROR-REV-ERB) includes two nuclear receptors, REV-ERBα (nuclear 
receptor subfamily 1 group D member 1) and RORα (RAR-related orphan receptor alpha), that ad-
ditionally contribute to the circadian expression of BMAL1 and NPAS2. Both receptors are activated 
by BMAL1/CLOCK, and in turn regulate expression of BMAL1 and NPAS2 genes by acting on their 
promoter RORE (retinoic acid receptor-related orphan receptor response element) in the opposite 
direction, i.e., to either inhibit or activate transcription depending on which of two proteins binds 
first to the promoter (either REV-ERBα or RORα, respectively). 

In addition to controlling each other�s expression, these molecular regulators drive 
the rhythms of expression of many thousands of target genes. Circadian transcription 

Figure 1. A simplified representation of three transcriptional–translational feedback loops.
A transcriptional–translational feedback loop is a key feature of the circadian clock mechanism.
In a mammalian cell, this mechanism includes several transcriptional–translational feedback loops in-
volving clock genes. The circadian cycle is initiated by three circadian clock genes producing proteins
BMAL1, CLOCK, and NPAS2 (brain and muscle aryl hydrocarbon receptor nuclear translocator-like
1, circadian locomotor output cycles kaput, and neuronal PAS domain protein 2, respectively) that are
the members of the basic helix–loop–helix/Per-Arnt-Sim (bHLH-PAS) family of transcription factors.
In the cytoplasm, they start to interact with each other to produce heterodimers BMAL1/CLOCK and
BMAL1/NPAS2. At the next phase, these heterodimers translocate into the nucleus to activate the
transcription of several other clock genes, including CRYs, PERs, (cryptochrome circadian regulator 1
and cryptochrome circadian regulator 2, period circadian regulator 1, period circadian regulator 2,
and period circadian regulator 3), DECs (differentially expressed in chondrocyte 1 and differentially
expressed in chondrocyte 2), and BMAL1 itself. Namely, BMAL1/CLOCK and BMAL1/NPAS2
heterodimers act as transcription factors by binding the E-box regions on the promoters of the target
genes. In turn, CRYs, PERs, DECs encode for the repressor components of the circadian clocks. At a
later phase of the cycle, the protein products of these genes dimerize and form complexes between
themselves (PERs with CRYs and DEC1 with DEC2). At the final phase, the core feedback loop
(PER-CRY) is completed by transporting the cytoplasmic dimers PERs/CRYs back into the nucleus to
suppress activity of BMAL1/CLOCK and BMAL1/NPAS2 heterodimers. When they are suppressing
activity of these heterodimers, they are also repressing their own expression, thus giving rise to a
new cycle (i.e., this next cycle is started with the initiation of transcription of BMAL1, CLOCK, and
NPAS2). The cytoplasmic dimers DEC1 and DEC2 are included in another feedback loop (DEC). As
with PER and CRY dimers, they translocate into the nucleus to suppress activity of BMAL1/CLOCK
and BMAL1/NPAS2 heterodimers. One more transcriptional–translational feedback loop (ROR-REV-
ERB) includes two nuclear receptors, REV-ERBα (nuclear receptor subfamily 1 group D member
1) and RORα (RAR-related orphan receptor alpha), that additionally contribute to the circadian
expression of BMAL1 and NPAS2. Both receptors are activated by BMAL1/CLOCK, and in turn
regulate expression of BMAL1 and NPAS2 genes by acting on their promoter RORE (retinoic acid
receptor-related orphan receptor response element) in the opposite direction, i.e., to either inhibit
or activate transcription depending on which of two proteins binds first to the promoter (either
REV-ERBα or RORα, respectively).
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In addition to controlling each other’s expression, these molecular regulators drive
the rhythms of expression of many thousands of target genes. Circadian transcription
factors interact with various corepressors, coactivators, and chromatin-associated factors,
which in turn read or write or erase chromatin histone modification marks for activating or
repressing transcription [42–45].

Overall, the cellular circadian clocks govern the expression of approximately half of
the protein coding genes, thus providing coordination of circadian rhythms originating
from different biochemical, physiological, and behavioral systems in the organism [46,47].

At any higher (multicell) hierarchical levels, the same set of circadian clock genes
constitutes a basis of more complex circadian clocks with a similar molecular makeup. The
list of such multicell clocks includes the peripheral clocks of various organs and tissue,
the clocks of endocrine and physiological systems, and finally the central clocks in the
supra-chiasmatic nuclei, which entrain the circadian rhythms within an organism and
correct their phases by responding to environmental time cues [48,49].

Overall, the numerous modulating effects of the circadian clocks on gene expression,
DNA repair, proliferation, cellular metabolism, inflammation, apoptosis, etc. [50] gave rise
to hypotheses that the abnormal functioning of circadian clock genes may have various
pathological consequences, including tumorigenesis [51–59]. In particular, it was assumed
that the characteristics of clock genes signaling their abnormal functioning can serve as
specific molecular markers of malignant transformation of thyroid tissue [10–18].

In 2018, Angelousi et al. [15] presented results of a systematic search for studies testing
the association of circadian clock genes with different types of endocrine cancer. Results on
thyroid cancer were reported in only one of 23 eligible publications [1]. A majority of new
studies confirming this association were published more recently [5–9].

Therefore, the aim of the present systematic review was to summarize evidence
supporting the assumption of abnormal expression of circadian clock genes in thyroid
carcinoma.

2. Results

The main results of the literature search are summarized in Table 1. These indicated
that each of the circadian clock genes mentioned in the Introduction was tested at least
once in thyroid carcinoma between 2013 and 2022 (Table 1) and the results of such testing
were reported in nine selected publications, in the pioneer publication of Mannic et al.
(2013) [1] and eight following articles authored by Mond et al. (2014) [2], Chitikova et al.
(2015) [3], Makhlouf et al. (2016) [4], Gallo et al. (2018) [5], Sadowski et al. (2019) [6],
Lou et al. (2021) [7], Xu et al. (2022) [8], and Mou et al. (2022) [9] (article in Chinese with
abstract in English). The authors of the nine selected publications interpreted the detected
increase and decrease in expression of a gene compared to normal samples as its up- and
downregulation, respectively. Most frequently, the transcripts of BMAL1 (brain and muscle
aryl hydrocarbon receptor nuclear translocator-like) were studied under this and another
name (ARNTL). In five published studies, the results suggested its upregulation. BMAL1
forms heterodimers with CLOCK (circadian locomotor output cycles kaput) and NPAS2
(neuronal PAS domain protein 2), whose transcripts were less frequently tested (in three
studies and one study, respectively). The results reported in two studies and one study,
respectively, suggested that they were (like BMAL) upregulated (Table 1). Upregulation was
also reported for REV-ERBα (or NR1D1, nuclear receptor subfamily 1 group D member 1)
and RORα (RAR-related orphan receptor alpha) in one of three and one of two studies,
respectively (Table 1).
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Table 1. Involvement of 12 circadian clock genes into thyroid carcinoma.

Feedback
Loop

Name Circadian Clock Transcript
Gene Protein Upregulated Downregulated Nonsignificant No Data

Monomers or dimers are promoters

All three BMAL1 or
ARNTL

BMAL1 or
ARNTL

FTC and PTC [1]
PTC [3] PTC [6]
TC [7] MTC [9]

[2,4,5,8]

All three CLOCK CLOCK TC [7] MTC [9] PTC [3] [1,2,4–6,8]

All three NPAS2 NPAS2 ATC [8] [1–4,6,7,9]

ROR-REV-ERB RORα
Nuclear receptor
ROR-alpha PTC [2] PTC [3] [1,4–9]

Monomers or dimers are suppressors

ROR-REV-ERB REV-ERBα or
NR1D1 REV-ERBα PTC [2] FTC, PTC [1]

PTC [3] [4–9]

PER-CRY CRY1 CRY1 FTC, PTC [1]
PTC [3] TC [7] [2,4–6,8,9]

PER-CRY CRY2 CRY2 FTC and PTC [1]
PDTC [4] TC [7] PTC [3] [2,5,6,8,9]

PER-CRY PER1 PER1 FTC, PTC [1]
PTC [3] TC [7] [2,4–6,8,9]

PER-CRY PER2 PER2 TC [7] FTC and PDTC
[4]

FTC, PTC [1]
PTC [3] [2,5,6,8,9]

PER-CRY PER3 PER3 FTC, PTC [1]
PTC [3] [2,4–9]

DEC DEC1 DEC1 PTC [5] [1–4,6–9]

DEC DEC2 DEC2 PTC [5] [1–4,6–9]

Notes. TC: thyroid carcinoma. Malignant neoplasms: not further specified (TC), well-differentiated papil-
lary (PTC), follicular (FTC), poorly differentiated (PDTC), undifferentiated/anaplastic (ATC). Thyroid C-cell–
derived carcinoma: medullary (MTC). References (publication year): [1] Mannic et al. (2013); [2] Mond et al.
(2014); [3] Chitikova et al. (2015); [4] Makhlouf et al. (2016); [5] Gallo et al. (2018); [6] Sadowski et al. (2019);
[7] Lou et al. (2021); [8] Xu et al. (2022); [9] Mou et al. (2022). No data: this transcript of circadian clock genes
was not tested/mentioned in this article. An increase and a decrease in expression compared to normal samples
are interpreted as up- and downregulation, respectively. See Figure 1 for more details on the involvement of
monomers (RORα and REV-ERBα) and dimers formed by BMAL1, CLOCK, NPAS2, PERs, CRYs, and DECs in
the circadian clock mechanism.

Downregulation was consistently (in three of four articles) revealed for CRY2 (cryp-
tochrome circadian regulator 2). DECs (differentially expressed in chondrocyte 1 and
differentially expressed in chondrocyte 2) were tested in one study the results of which
indicated that, similarly to the results on CRY2, these two genes were downregulated
(Table 1). For only one gene, PER2 (period circadian regulator 2), the results on its tran-
scripts were contradictory. This gene was reported to be upregulated in unspecified thyroid
cancer (TC [7]) and downregulated in follicular and poorly differentiated cancer (FTC and
PDTC [4]). The results on the transcripts of this gene were reported to be nonsignificant
(Table 1) in two other studies of well-differentiated papillary cancer (PTC [1,3]) and follicu-
lar cancer (FTC [1]).

Nonsignificant results were obtained for the transcripts of three genes: CRY1 (cryp-
tochrome circadian regulator 1) and PER1 (period circadian regulator 1) in three studies
and for PER 3 (period circadian regulator 3) in two studies (Table 1).

The pioneer publication [1] contains results of additional comparisons of diurnal
profiles of expression of seven circadian clock genes in thyrocytes cultured in vitro for
7 days and harvested every 6 h during 36 h (Table 2).
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Table 2. Abnormal circadian rhythmicity of transcription of 7 clock genes in thyroid carcinoma.

Name Circadian Rhythmicity of Transcript Compared to
Gene Protein Altered Phase Altered Amplitude Other TC Type

BMAL1 or
ARNTL

BMAL1 or
ARNTL PDTC PTC or HB

REV-ERBα or
NR1D1 REV-ERBα PDTC PTC or HB

CRY1 CRY1 PDTC PTC or HB

CRY2 CRY2 PDTC PTC or HB

PER1 PER1 PDTC PTC or HB

PER2 PER2 PDTC PTC or HB

PER3 PER3 PDTC PTC or HB
Notes. Summary of the findings on diurnal profiles of expression of 7 circadian clock genes reported in
Mannic et al. (2013) [1]. HB: healthy tissue or benign nodule. See other notes in Table 1.

The results showed that thyrocytes from healthy and benign (HB) thyroid nodules
kept their circadian properties (i.e., the clock gene expressions in these nodules exhibited
circadian oscillatory patterns in synchronized thyrocytes). In contrast, only alternated
circadian profiles were detected in thyrocytes from poorly differentiated thyroid carcinomas
(PDTCs) [1]. As shown in Table 2, Mannic et al. [1] revealed abnormal circadian phase
positions for six of seven tested transcripts. Moreover, they failed to determine this position
for the seventh transcript due to an abnormally low circadian amplitude [1]. Sadly, there
have been no attempts so far to provide support to these very promising findings. Therefore,
replicability and reliability of the abnormalities in circadian oscillatory patterns remain to
be elaborated.

In sum, upregulation was reported for all three circadian clock genes involved in
the circadian cycle in its earlier phases: BMAL1, CLOCK and NPAS2. These genes
form heterodimers with the function of transcription activators. It was found that all
three genes were upregulated in thyroid carcinoma [1,3,6–9] (Table 1). Upregulation was
also shown for the genes producing receptors REV-ERBα and RORα, which are activated
by BMAL1/CLOCK (Table 1). Downregulation was reported for CRYs, DECs, and PERs.
These genes play the role of suppressors of activity of BMAL1, CLOCK and NPAS2 at
later phases of the cycle. Downregulation of genes that form dimers with the function of
transcription inhibitors was revealed for CRY2 [1,4,7], DEC1 and DEC2 [5], and PER2 ([4],
but see contradicting results reported in [7]; Table 1).

Overall, either up- or downregulation was reported for 9 of 12 tested circadian clock
genes. This result suggested that if two or more such genes were tested, there was a good
chance of finding evidence of dysregulation of expression of at least one of them (Table 1).

3. Discussion

In 2013, Mannic et al. [1] published results of their pioneer study providing evidence
for the involvement of circadian clockwork dysfunctions into malignant transformation of
thyroid tissue [1]. Further evidence for the abnormal expression of circadian clock genes
in cancerous thyroid nodules has gradually accumulated in the following 10 years [2–9].
The main aim of the present systematic review was to identify articles reporting results
of testing the association between thyroid carcinoma and expression of circadian clock
genes. The findings of nine relevant studies [1–9] were summarized and allowed the
conclusion of plausibility of the assumption of abnormal expression of circadian clock
genes in thyroid carcinoma. The reviewed findings provided evidence that if just two of
these genes were tested, there was a 100% chance of revealing that expression of at least
one of them was abnormal.

Additional results of the pioneer study of Mannic et al. (2013) [1] on the circadian
patterns of gene expression indicated that these patterns were alternated in each of seven
circadian clock genes tested in poorly differentiated thyroid nodules (PDTCs). Therefore,
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the integration of such studies on circadian biology of the thyroid gland into management
of thyroid cancer might lead to the development of new methodology for diagnosis of
malignant transformation of thyroid tissue. It is plausible to expect that an examination of
abnormalities in the levels and circadian rhythmicity of expression of circadian clock genes
in this tissue can help to decrease the rate of inadequate differential preoperative diagnosis
for thyroid carcinoma.

In more detail, upregulation of BMAL1 was reported for the first time in the pioneer
study [1] and confirmed by results of four subsequent studies: Chitikova et al. (2015) [3],
Sadowski et al. (2019) [6], Lou et al. (2021) [7] and Mou et al. (2022) [9]. Expression of
this gene was not tested in the remaining four studies of Mond et al. (2014) [2], Makhlouf
et al. (2016) [4], Gallo et al. (2018) [5], or Xu et al. (2022) [8], but the results of these
studies allowed the extension of the list of circadian clock genes demonstrating abnormal
expression in thyroid carcinoma. These results provided evidence for dysfunction of
practically all core circadian clock genes in malignant thyroid tissue.

The only contradictory results were obtained for the transcription of one of 12 tested
genes (PER2). Downregulation of PER2 was reported for follicular and poorly differentiated
cancer (FTC and PDTC) [4], while upregulation was found in a study of unspecified thyroid
cancer (TC) [7]. Results on other genes were not contradictory. Overall, upregulation
was found for BMAL1, CLOCK, NPAS2, REV-ERBα, and RORα, and downregulation was
revealed for CRY2, DEC1, and DEC2.

Such results regarding the directions of changes in gene expression in thyroid carci-
noma (increased or decreased transcription) were in good agreement with the directions
expected from the roles of the transcripts of the circadian clock genes in the transcriptional–
translational feedback loop regulating the body clocks (see Introduction). The general
rule was that if the dimers of genes acted as promoters of transcription of other circadian
clock genes, they were found to be upregulated, while if the dimers of genes suppressed
transcription of other circadian clock genes, they were found to be downregulated.

In more detail, dimers with opposite functions of transcription activator and transcrip-
tion inhibitor are formed by BMAL1, CLOCK and NPAS2 and by CRYs, DECs, and PERs,
respectively. Therefore, if it were consistently found in the reviewed studies that BMAL1,
CLOCK and NPAS2 were upregulated in thyroid carcinoma [1,3,6–9], the suppressors of
activity of BMAL1, CLOCK and NPAS2 (CRYs, DECs, and PERs) would be expected to
be downregulated in this carcinoma. Indeed, this expectation was confirmed by the re-
ports indicating downregulation of the majority of genes controlling expression of BMAL1,
CLOCK and NPAS2. Upregulation was revealed for CRY2 [1,4,7], DEC1 and DEC2 [5], and
PER2 ([4] but not [7]; see above).

Moreover, upregulation was obtained for the genes coding REV-ERBα and RORα
monomers [2], which are activated by BMAL1 and CLOCK heterodimer.

In oncological diseases, patient prognosis might be potentially improved by nor-
malization of circadian rhythms [18]. Therefore, chronobiotic therapeutic factors were
recommended to be used for prevention and/or treatment of these diseases (e.g., [17]). Two
major treatment approaches were suggested for avoiding the pathological consequences of
circadian clock dysfunction. The first is a direct pharmacological activation of some circa-
dian clock genes [60]. Another is a restoration of normal circadian rhythms with the help
of small molecules that are able to modulate activity of the core components of circadian
clocks [61]. However, such studies remain at a stage of basic experimental exploration.

It is well established that thyroid-stimulating hormone (TSH) produced by the pituitary
gland plays a pivotal role in regulating the hypothalamic–pituitary–thyroid axis. Therefore,
this hormone serves as the major marker of hormonal and physiological activity of the
pituitary and thyroid gland [13]. It was proposed that elevated TSH levels in serum can
have diagnostic value in the presurgical management of thyroid carcinoma [62–68], and that
the measurement of these levels can be recommended as an easily performed additional tool
for decision-making in patients with indeterminate cytological findings [69–71]. Moreover,
TSH exhibits a robust 24 h rhythm of secretion, and the diurnal profile of this hormone
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in serum is regarded as one of three most reliable markers of the circadian rhythmicity of
the human organism [10,72–75]. TSH is rhythmically secreted in response to the neuronal
and humoral signals from the central clocks, but thyroid tissue that contains the same
set of circadian clock proteins as the set expressed in the central clocks also exerts its
influence on regulation of this hormone [76,77]. Therefore, it is plausible to suggest that
thyroid cancer is linked to both an abnormal circadian rhythm of TSH and an abnormal
expression of the circadian clock genes. Empirical support of this suggestion might lead
to the recommendation of evaluation of both this hormone rhythmicity and these genes’
expression. However, with the exception of one publication [78], the literature is lacking
studies examining the 24 h rhythm of TSH in patients with different types of thyroid
carcinoma [12]. Therefore, it remains unknown whether the levels and daily pattern of TSH
in serum or thyroid issue might be challenged in parallel with the levels and daily pattern
of expression of circadian clock genes.

TSH directly bound to its receptor (TSH-R) [79] and levels of TSH circulating in thyroid
tissue regulate the receptor signaling in the thyrocyte’s membrane [80]. Studies suggested
the involvement of TSH-R in thyroid cancer (e.g., [81–84]). In particular, a reduced number
of binding sites was found in carcinoma tissue [85], and levels of TSH-R gene expression
were shown to be lower in such tissue [82,86]. Expression was decreased and even lost in
poorly differentiated and undifferentiated thyroid cancer, respectively [87–91]. Therefore, it
was proposed that TSH-R might have important diagnostic value for thyroid cancer, e.g., as
a marker of thyroid differentiation [84–93]. However, almost nothing has been published
about the diurnal profile of TSH-R expression, and this expression has not been examined
in relation to expression of any circadian clock genes [12].

Therefore, future research might be aimed at testing whether there are associations
between pathological changes in levels and diurnal profiles of thyroid hormones, their
receptors, and transcripts of circadian clock genes. For instance, further in vitro experi-
ments on cultured malignant thyrocytes might examine whether thyroid tumorigenesis is
linked to parallel pathological changes in regulation of circadian clock genes and circadian
rhythmicity of TSH and its receptor (TSH-R) [12].

Environmental factors can contribute to the risks of both thyroid cancer and circadian
dysregulation. Several types of endocrine cancers were found to be associated with chronic
circadian disruption caused by travel across time zones, shift and night work, sleep in-
sufficiency, and irregular sleep–wake cycles [94]. Patients with more severely disturbed
sleep and/or circadian disruption have worse prognosis than those having good sleep
and normal circadian rhythmicity [15]. In respect to thyroid cancer, night and shift work
was reported to be associated with an increased risk of thyroid nodules [95]. Moreover,
disturbances of the sleep–wake cycle were shown to be linked to a higher risk of thyroid
cancer in postmenopausal nonobese women [96]. Such a higher risk was also reported for
women who used a sedative–hypnotic drug [97].

Light at night was found to be associated with an increased risk of thyroid cancer [98].
This association may be partially driven by melatonin’s deficiency leading to a decrease in
its tumor suppression function and to the disruptions of sleep and circadian rhythms [98].
Future studies may provide deeper insights into the potential roles of melatonin in thyroid
cancer etiology and into the biological pathways underlying the relationship between light
at night and thyroid cancer.

Several traits of the sleep–wake cycle, such as sleep duration, insomnia, and chrono-
type, may be risk factors for cancer [99]. Lou et al. [7] found that patients with thyroid
cancer reported sleep disturbances more often when they also expressed elevated levels
of CLOCK, BMAL1, and PER2 and reduced levels of CRY2 compared to age-matched
cancer-free controls. Evidence for the extensive cross-talk between sleep, circadian rhythms,
and metabolic pathways involved in malignancy suggests a possibility for recommending
screening cancer patients for sleep and circadian disruptions [100,101].

Given that several variants of circadian clock genes were found to be associated with
incidents of thyroid carcinoma (e.g., [102–104]), polymorphism of human circadian clock
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genes might also contribute to the risks of development of thyroid cancer. These associations
and phenotypic traits underpinned by these variants require further exploration.

The mechanisms underlying the links between abnormalities of the circadian clock
machinery and malignant transformation of thyroid tissue remain to be elucidated. Some
proposed causes of the associations between circadian disturbances and cancer (including thy-
roid cancer) were discussed in several previously published reviews (e.g., [10,11,16,18,51–58]).
Analysis of existing evidence [105] indicated that the circadian clocks may be dysregulated
in many forms of cancer, but such dysregulation is not caused solely by inactivation of core
circadian clock genes. Rather, it is accompanied by large-scale changes in circadian gene
expression and coexpression because the cellular circadian clocks play an important role
in tumorigenesis, tumor immune escape, tumor growth, metastasis, and the processes of
regulation of proliferation, apoptosis, intracellular metabolism, etc.

As mentioned in the Introduction, the risks of unnecessary surgeries and delays
to diagnosis and treatment of thyroid carcinoma remain high due to a relatively low
percentage of cancerous nodules [20,21]. This problem was addressed in recent years by
introducing two new approaches to the diagnosis of cancerous nodules: liquid biopsy and
molecular testing platforms. Liquid biopsy provided a possibility to eliminate the invasive
procedures needed to obtain tissue samples. Because such biopsy detects and analyzes
biological samples released from the tumor into the bloodstream, it can be repeatedly
performed in a noninvasive way, at lower cost and without the risks associated with
classic tissue biopsy [30,106]. Using molecular platforms for stratification of patients with
neoplasm provides more definitive guidance for decision-making in the clinic, including
the decision to avoid unnecessary surgical interventions [32–36]. As already emphasized
in previously published reviews [10–18], the examination of expression of circadian clock
genes in thyroid carcinoma might be of practical importance for adequate presurgical
diagnosis of thyroid cancer. The reviewed findings here allow a recommendation to be
made for trying to improve the preoperational management of thyroid carcer by examining
whether the levels and circadian rhythmicity of expression of these genes are altered in
thyroid nodules.

This review had several limitations. The number of studies selected for this review
was small. Therefore, we cannot evaluate replicability of these studies. Although all
five main histological types of thyroid carcer (PC, FC, PDTC, ATC, and MTC) were tested
in nine reviewed studies, their results remain insufficient for comparisons of these types
to the extent of abnormal changes in expression of circadian clock genes. Some of these
types (e.g., PDTC and ATC) might be more vulnerable than other types to the development
of circadian clockwork disfunction. Therefore, the results obtained on one type should
be generalized to other types with caution. We reviewed here only studies on expression
of core circadian genes in thyroid cancerous nodules. Consequently, we cannot compare
the results on down- and upregulation of these genes in these nodules with the findings
on down- and upregulation of the same genes in other endocrine cancers. Moreover, this
review was limited to studies on expression of core circadian clock genes. We did not search
for studies exploring the relationships of these genes with genes playing an important role
in the processes of regulation of proliferation, apoptosis, and intracellular metabolism of
thyroid tissue. These relationships might be addressed in future reviews.

4. Materials and Methods

The main aim of this systematic review was to identify publications reporting results
of testing significance of associations between thyroid carcinoma and the levels and diurnal
pattern of expression of core circadian clock genes. PRISMA (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses) guidelines for systematic review were fol-
lowed [107]. Two bibliographic databases (Scopus and PubMed) were searched for articles
from inception to 20 March 2023. The reference lists of previously published nonsystematic
reviews [10–14,16–18] were also hand-searched for additional relevant articles.

Syntax for conducting the search within Scopus was the following:
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TITLE-ABS-KEY (((circadian AND transcription) OR (clock AND expression) OR
(clock AND genes) OR (circadian AND genes)) AND ((thyroid AND cancer) OR (thyroid
AND tumor) OR (thyroid AND nodule) OR (thyroid AND neoplasm)))

For PubMed, the same search syntax was applied:
((circadian transcription) OR (clock expression) OR (clock genes) OR (circadian clock))

AND ((thyroid cancer) OR (thyroid nodule) OR (thyroid tumor) OR (thyroid neoplasm))
In total, 118 articles were identified (the study selection process is reported in Figure 2

in the PRISMA format). The hand search in the reference lists of previously published
reviews [10–18] gave two additional relevant studies [2,5] that were previously mentioned
in some such reviews [10–12].
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Seven and two potentially eligible full-text articles [1–9] were finally selected by
searching the databases and reference lists, respectively (Figure 2).
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5. Conclusions

The first result suggesting the involvement of circadian clockwork dysfunction in
thyroid tumorigenesis was published in 2013. In the following 10 years, further evidence
for abnormalities in expression of circadian clock genes in thyroid carcinoma has been
gradually accumulating. The present systematic review of existing evidence for such ab-
normalities found nine studies published from 2013 to 2022. In each of the studies, an
abnormal expression in malignant thyroid tissue was documented for one or more circadian
clock genes. In total, 9 of 12 tested genes were found to be either up- or downregulated.
The list of up- or downregulated genes includes all families of core circadian clock genes,
BMAL1, CLOCK, NPAS2, CRYs, PERs, DECs, REV-ERBα, and RORα, constituting all three
transcriptional–translational feedback loops of the circadian clock mechanism. These find-
ings allowed the conclusion that the assumption of association of thyroid carcinoma with
circadian clockwork dysfunctions was supported. Therefore, the integration of circadian
biology into management of thyroid cancer can improve the methods of preoperative
diagnosis of thyroid cancer. In particular, such diagnosis might account for the results of
evaluation of circadian rhythmicity and mean levels of expression of circadian clock genes.
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