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Abstract: Micro-arousals and the repeated desaturation of oxyhemoglobin, which are typical in
obstructive sleep apnea syndrome (OSAS), have adverse effects on the health of patients, leading to a
wide range of complications such as cardiovascular (arterial hypertension, pulmonary hypertension,
chronic heart failure, arrhythmias, myocardial infarction), cerebrovascular (strokes), metabolic (in-
sulin resistance, obesity, diabetes mellitus, metabolic syndrome), gastrointestinal (non-alcoholic liver
disease), urinary (chronic renal failure), and neuropsychiatric complications as well as a wide range
of malignancies. These, in turn, have multilateral effects on familial, occupational, and social life,
as well as increasing the risks of road traffic accidents and accidents at the workplace. Awareness,
timely screening, and the prevention of complications play important roles in diagnosing and treating
comorbid conditions. This review focuses on comorbidities in OSAS and the effect of Continuous
Positive Airway Pressure (CPAP) therapy on their prognoses.
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1. Introduction

Obstructive sleep apnea syndrome (OSAS) is one of the most important disorders
discovered in the last 50 years because of its particular impact on all organs and systems as
well as its reduction of the quality of life [1]. The repeated desaturation of oxyhemoglobin
and micro-arousals, which are typical in obstructive sleep apnea syndrome (OSAS), have a
negative impact on the health of patients, leading to complications from the cardiovascular
system—arterial hypertension, pulmonary hypertension, chronic heart failure, arrhythmias,
myocardial infarction, stroke, insulin resistance, diabetes mellitus, metabolic syndrome, and
chronic renal failure—and neuropsychiatric complications (depression, irritability, low level
of attention, loss of short-term memory, etc.), which affect familial, occupational, and social
life, as well as increasing the risk of road traffic accidents or accidents at the workplace [1].
The particular importance of OSAS is associated with an increase of its incidence by 14–55%
depending on age and gender [1]. Such an increase has great importance for the healthcare
system and points to the need for timely and effective screening [2].

A significant impact in the development of complications is obesity, which is a major
risk factor. Influence by the hypoxia adipocytes leads to changes in adipocytokine secre-
tion that contribute to insulin resistance and metabolic syndrome in patients with OSAS.
Intermittent hypoxia also causes the decline and necrosis of pancreatic beta cells because of
oxidative stress [1].
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Adipose tissue inflammation and local hypoxia contribute to increased cytokine levels,
oxygen-free radicals, tumor necrosis factor-alpha, pre-atherogenic chemokines, and proan-
giogenic peptides, some of which lead to the activation of the sympathetic nervous system
with endothelial dysfunction, arterial rigidity, and atherosclerosis [3]. Sympathetic afferents
generate renin-angiotensin system activation and hydrosaline metabolism modification, which,
combined with the reduction of baroreceptor sensitivity, results in the development of
arterial hypertension (AH) [4]. Studies have demonstrated an association of OSAS with
hypercoagulation and decreased fibrinolytic activity that results in a prothrombotic status
with an increased risk of thrombotic complications [5]. Men with an apnea/hypopnea
index (AHI) of more than 19 and women with an AHI of more than 25 are at significantly
higher risk of stroke than a healthy person [6]. An equally important effect of hypoxia
is the proinflammatory state, which is associated with systemic inflammatory response
syndrome and oxidative stress [7]. Based on the above, we noted the particular importance,
in the diagnosis of OSAS, of the critical role played by comorbidities. The late detection
and treatment of comorbidities can lead to severe and dangerous complications.

2. Results
2.1. Cardiovascular Diseases

At the moment, there is not only circumstantial evidence that specifies the role of OSAS
in the etiology and progression of cardiovascular diseases, especially high blood pressure
(HBP), but also direct evidence gathered over the past decade [1]. One of the reasons for this
phenomenon may be the neglect of OSAS evaluation in many previous epidemiological
studies [8]. To a certain extent, this neglect was attributable to the high costs that are
required for OSAS detection in large samples of the population. Additionally, OSAS
patients often suffer from concomitant diseases such as obesity, HBP, diabetes mellitus,
chronic obstructive pulmonary disease (COPD), bronchial asthma, and glucose intolerance
status; therefore, any independent effect of OSAS on cardiovascular risk could be masked
under comorbidities.

However, some prospective research papers aimed at investigating the incidence of
cardiovascular diseases, and assessment studies of the therapeutical effect of CPAP, have
provided accurate and indisputable evidence, confirming the close cause–effect relationship
between OSAS and cardiovascular pathology [1].

2.2. Hypertension

The most conclusive evidence confirming the role of OSAS in HBP occurrence is
derived from the well-known studies involving the Wisconsin Sleep Cohort [9]. In the
studied population re-evaluated 4 years after the initial investigation, apnea–hypopnea
index rates higher than 15 events per hour, regardless of other factors, were associated with
an increase by 3 times of risk of HBP development [10]. HBP incidence in OSAS patients
is approximately 30–70% [11]. Usually, the incidence of HBP and resistant hypertension
increases with OSAS aggravation [1].

These data suggest that a significant proportion of cases that were previously con-
sidered essential hypertension may reflect consequences of undiagnosed and, as a result,
untreated OSAS. Consensus guides on the management of hypertension reflect the in-
creasing amount of evidence of OSAS involvement in HBP etiopathogenesis. In 1997, the
sixth Report of the Joint National Committee on Prevention, Detection, Evaluation, and
Treatment of High Blood Pressure, which, for the first time, reported the critically important
role of OSAS, also recommended the exclusion of this pathology in the assessment of HBP
causation [12]. Further, guides published in 2003 placed OSAS in the top of the identi-
fied causes of resistant hypertension [13]. Additionally, other guides published between
2017–2018 confirmed the importance of OSAS in HBP management [14].

CPAP therapy for obstructive sleep apnea syndrome significantly reduces diurnal
blood pressure, not only in patients with resistant hypertension [1] but also for patients
with relatively mild forms of arterial hypertension [1].
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Even if the effect of blood pressure reduction is not apparent in normotensive patients
with OSAS on long-term CPAP treatment [15], two placebo-controlled randomized trials,
in which placebo was CPAP at sub-therapeutic dose, have demonstrated that an extended
duration of therapy resulted in slight, but statistically significant, decreases of daily blood
pressure from 1.3 to 5.3 mm Hg [1]. Therefore, there is ample evidence reaffirming the
role of untreated OSAS in the etiopathogenesis of HBP development; moreover, studies
demonstrate a significant reduction in diurnal blood pressure for CPAP in patients [16].

2.3. Myocardial Ischemia

OSAS induces different types of stress, chronic and acute, that may predispose patients
to sleep-related myocardial ischemia. In conditions of pronounced acute hypoxemia and
CO2 retention, the activation of the sympathetic nervous system and dramatic blood
pressure elevation can trigger myocardial ischemia. In a recent study, researchers found a
possible link between bridging night-shift work, increased levels of inflammatory markers,
and carotid intimal medial thickness [17]. In the long term, the establishment of diurnal
hypertension and the increased production of vasoactive and trophic substances (such as
endothelin), along with the activation of proinflammatory and procoagulant mechanisms,
can also contribute to the development and progression of ischemic heart disease (IHD).
In the Sleep Heart Health Study cohort, OSAS was recognized as an independent risk factor
for IHD [18]. Nocturnal changes of the ST segment, confirming myocardial ischemia, were
found in patients with OSAS with no clinical signs of IHD [19]. ST segment depression
occurs more frequently in patients with a severe form of OSAS who have a history of
nocturnal angina pectoris symptoms and depends on arterial oxygen saturation [20]. CPAP
treatment considerably reduces the overall duration of ST segment depression in patients
with sleep apnea [21]. In addition, some epidemiological studies have confirmed the
association between OSAS or snoring with myocardial infarction (MI) [22].

Obstructive sleep apnea is common in patients with MI in their histories [23]. Postin-
farction modifications in cardiac function may predispose patients to sleep apnea develop-
ment or the impairment of previously diagnosed OSAS. At the same time, for patients with
IHD, obstructive sleep apnea may constitute a prognostic predictor. The monitoring of
62 patients with detected IHD for a duration of 5 years identified a high mortality rate (38%)
in the OSAS group compared to the non-OSAS patient group, taking into consideration
other influential factors [24].

2.4. Cardiac Rhythm Disorders

Heart rhythm disorders occur in approximately 18–48% of OSAS patients, although
it is difficult to evaluate their actual prevalence because of the limited number of groups
included in research and the considerable number of different types of arrhythmias [1].
The presence of complicated tachyarrhythmias and bradyarrhythmias increases the risk of
cardiovascular complications, reduces the quality of life, and increases the risk of unfavor-
able outcomes [25]. Nocturnal oxygen desaturation is an independent risk factor for the
development of atrial fibrillation [1]. The presence of OSAS is also a risk factor for atrial
fibrillation recurrence after successful cardioversion [1]. However, in one randomized trial
that compared the patients on CPAP and non-CPAP therapies, no significant difference
was observed in the frequencies of arrhythmias between the groups [1]. The prevalence of
bradyarrhythmias is about 8% in patients with AHIs of less than 60, compared to 20% in
patients with AHIs of more than 60 [26].

Ventricular arrhythmias occur in about 5% of the general population, whereas it has
been found in 14–74% of patients with OSAS [27]. The prevalence depends on the condition
of AHI and desaturation being below 90% [28]. Moreover, it should be noted that 60% of
patients with ventricular arrhythmias hospitalized for catheter ablation or cardioverter-
defibrillator implantation had AHIs of more than 5, and 34% had moderate-to-severe stages
of OSAS [1].
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Considering the diversity of arrhythmias that can occur in OSAS patients, it is difficult
to evaluate their impact on a patient. Most probably, short episodes of bradycardia may
not be of significant importance, whereas atrial fibrillation and ventricular rhythm disorder
are the severe risk factors for thromboembolic events and sudden death [27].

As a result of upper airway obstruction, the proportion of blood gases changes, leading
to hypercapnia and hypoxemia. In these conditions, respiratory and cardiovascular activity
responses change through central and peripheral control mechanisms. Hypercapnia is
one of the most important triggers for the respiratory brain center. It leads to increased
ventilation and oxygen reuptake and also causes increased sympathetic activity, enhancing
oxygen intake, which ultimately leads to ischemia; another crucial factor is the provision
by hypoxemia of a stimulatory effect on a vagal tone that significantly increases the risk of
conduction rhythm disorders and bradycardia (Figure 1).
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Figure 1. Pathogenetic role of OSAS on the symphato-vagal balance (yellow arrow—sympathetic
system activity; red arrow—vascular aches; light blue arrow—respiratory changes; violet arrow—
parasympathetic activity). ↑ arrow—increased activity. ↓ arrow—decreased activity.

The presented scheme demonstrates the two most important pathogenetic mechanisms
caused by OSAS: hypoxia and sleep fragmentation. The role of hypoxia in the initiation and
progression of diverse pathological conditions cannot be underestimated. The cardiovascu-
lar system is affected by systemic inflammation, oxidative stress, and adrenergic activity.
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Both systemic inflammation and oxidative stress induce the synthesis of different factors,
leading to endothelial dysfunction, which is closely related to atheromatosis—an essential
element of coronary artery disease (Figure 2). The oxidative stress promotes atheroscle-
rosis through multiple mechanisms—lipid oxidation, DNA oxidation, and endothelial
dysfunction—and the last of these in turn leads to maladaptive changes of endothelium
and is strongly associated with the progressive development of atherosclerosis.

Clocks&Sleep 2023, 5  337 
 

 

The  presented  scheme  demonstrates  the  two  most  important  pathogenetic 

mechanisms caused by OSAS: hypoxia and sleep fragmentation. The role of hypoxia in 

the  initiation  and  progression  of  diverse  pathological  conditions  cannot  be 

underestimated.  The  cardiovascular  system  is  affected  by  systemic  inflammation, 

oxidative stress, and adrenergic activity. Both systemic inflammation and oxidative stress 

induce  the  synthesis  of different  factors,  leading  to  endothelial dysfunction, which  is 

closely related to atheromatosis—an essential element of coronary artery disease (Figure 

2). The  oxidative  stress promotes  atherosclerosis  through multiple mechanisms—lipid 

oxidation, DNA oxidation,  and  endothelial dysfunction—and  the  last of  these  in  turn 

leads  to  maladaptive  changes  of  endothelium  and  is  strongly  associated  with  the 

progressive development of atherosclerosis. 

 

Figure 2. Pathogenetic mechanisms of OSAS on cardiovascular disease development. ↑  arrow—

increased activity. ↓ arrow—decreased activity. 

Hypoxia and  sleep  fragmentation action are associated with  increased adrenergic 

activity, which mediates vasoconstriction and the development of hypertension. 

At the same time, sleep fragmentation is correlated with increased synthesis of blood 

clotting factors and the deterioration of hemorheological properties. The total action of 

these factors induces the development and progression of diverse cardiovascular diseases. 

2.5. Neurophyschiatric Deviations 

Neurocognitive disorders associated with OSAS  include daytime  sleepiness, poor 

concentration, depression, and even dementia [29]. 

Alzheimer’s disease (AD) is the most common form of dementia, and its prevalence 

increases with age. Several studies have demonstrated that cognitive disorders occur more 

frequently in OSAS patients [30]. A recent meta-analysis showed that about 50% of AD 

patients are encountered by OSAS after their primary disease diagnosis [30]. 

There  is a lot of evidence that suggests OSAS influences on AD progression, sleep 

fragmentation,  intermittent  hypoxia,  and  hemodynamic  changes  may  induce  a 

cumulative effect on Alzheimer’s disease development, and this suggests that timely and 

Figure 2. Pathogenetic mechanisms of OSAS on cardiovascular disease development. ↑ arrow—
increased activity. ↓ arrow—decreased activity.

Hypoxia and sleep fragmentation action are associated with increased adrenergic
activity, which mediates vasoconstriction and the development of hypertension.

At the same time, sleep fragmentation is correlated with increased synthesis of blood
clotting factors and the deterioration of hemorheological properties. The total action of
these factors induces the development and progression of diverse cardiovascular diseases.

2.5. Neurophyschiatric Deviations

Neurocognitive disorders associated with OSAS include daytime sleepiness, poor
concentration, depression, and even dementia [29].

Alzheimer’s disease (AD) is the most common form of dementia, and its prevalence
increases with age. Several studies have demonstrated that cognitive disorders occur more
frequently in OSAS patients [30]. A recent meta-analysis showed that about 50% of AD
patients are encountered by OSAS after their primary disease diagnosis [30].

There is a lot of evidence that suggests OSAS influences on AD progression, sleep
fragmentation, intermittent hypoxia, and hemodynamic changes may induce a cumulative
effect on Alzheimer’s disease development, and this suggests that timely and sufficient
CPAP therapy may help to prevent or to reduce cognitive decline and dementia [31].

Studies in neurodegenerative disorders have demonstrated that OSAS has also been
associated with an increased risk of Parkinson disease development [31,32].
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2.6. Cerebrovascular Pathology

The presence of snoring predisposes patients to an increased risk of stroke, regard-
less of other cardiovascular risk factors. It has also been found that sleep apnea has an
increased prevalence in patients with stroke [33], but it is still unknown whether sleep
apnea is an independent risk factor for cerebrovascular diseases. Hemodynamic, vascular,
inflammatory, and thrombocytic pathogenetic factors that are activated in OSAS can lead to
an increased risk of cerebrovascular disease development, regardless of the circumstances.
Acute episodes of apnea lead to dramatic falls in cerebral blood flow [34]. Ischemia is
induced by repeated episodes of sleep apnea intensified by associated hypoxia, as well
as any pre-existing modifications of autoregulation or vasodilator reserves. Thus, OSAS,
directly or indirectly and through concomitant diseases, increases the risk of stroke. At the
same time, stroke can trigger respiratory disorders during sleep: central and obstructive
apnea [35]. CPAP therapy plays an important role in the therapy of OSAS comorbidities. A
significant improvement of collateral cerebral blood flow was observed in patients with
OSAS on long-term CPAP therapy [36].

Some authors have indicated an increased frequency of OSAS occurrence among
patients with stroke. Among the patients from the stroke department, 73.7–86% had AHIs
of over 5, and about a third had AHIs of over 30 [37,38].

However, the relationship between embolic stroke and OSAS is still indirect. Further
long-term works are needed to establish whether OSAS an important cause of cerebrovas-
cular diseases independent of other factors. Considering that OSAS is a modifiable risk
factor for cerebrovascular diseases, specialists need to pay particular attention to this [39].

2.7. Peripheral Neuropathy

Chronic oxygen deprivation can lead to both central and peripheral nerve injury [40].
Patients with OSAS often have nerve dysfunction, the severity of which is partly related
to the level of nocturnal hypoxemia. Current studies demonstrate that abnormal nerve
conduction suggests axonal lesions and demyelinating neuropathies [41]. Clinical signs of
polyneuropathy can be seen in up to 71% of patients with OSAS. The severity of axonal
damage tends to correlate with the percentage of night time with an O2 saturation of below
90% [42]. Moreover, the risk of polyneuropathy increases in the case of other comorbidities
such as diabetes [43]. This damage, at least to some degree, can be reversible with proper
CPAP treatment for sleep apnea [44].

2.8. Depression

Among patients with OSAS, depression was found in 5–63% of cases. At the same time,
it should be noted that many symptoms of these pathologies are similar. Sleep disorders
are rarely studied in patients with depressive disorder, and depression is rarely evaluated
in patients with OSAS. The bidirectional interaction of these two conditions is complicated
and should be closely studied in the future [45]. The early screening of depressive disorder
in patients with OSAS can lead to the timely psychological and social rehabilitation of these
patients [46].

Nevertheless, a large cohort study, which was held from 1991 to 2015 and included
10149 patients over a median follow-up of 9.7 years, showed no correlation between OSAS
and depression [47]. Some of the depression cases in patients with OSAS may be results of
other factors such as biological (i.e., other diseases) and social (i.e., unemployment, family
conflicts, and so on) factors. It is important to note that the gravity of OSAS, obesity, and
gender are significant factors that need to be considered for the precise determination of
the real cause of depressive disorder [48].

Creating awareness, the timely screening of both depression and OSAS, and the
consideration of a possible interaction between these two disorders is an essential step
in combating both illnesses [49]. This fact also highlights that since these diseases are
characterized by “masks”, a correct diagnosis and treatment requires a multidisciplinary
team of specialists that includes a clinical psychologist or psychiatrist.
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2.9. Obesity

Weight gain is a slow and multifactorial process associated with lifestyle factors such
as short sleep duration, sedentary lifestyle, excessive caloric intake, and genetics. It is
estimated that approximately 40% of patients with a body mass index of greater than
28 suffer from OSAS, with a tendency towards higher morbidity simultaneously appearing
with weight gain [50].

Short sleep duration and higher caloric intake can cause hormonal imbalances. One
such imbalance is a reduced level of melatonin, which leads to changes in the metabolic
circadian rhythm, predisposing patients to weight gain and metabolic alterations [51].

There are also leptin and insulin modifications; it has been demonstrated that an
obese person develops resistance to both leptin and insulin. Leptin, which physiologically
reduces appetite and accelerates energy metabolism, was found to be decreased in patients
with short sleep durations, and this in turn had increased their appetite and led to weight
gain, but more than this, it was demonstrated that ghrelin, which stimulates appetite, was
elevated in people who had short sleep durations [52]. Furthermore, a positive impact
on OSAS has also been demonstrated in patients after bariatric procedures and sleeve
gastrectomy, being characterised by the resolution of or improvement in OSAS [53,54].

2.10. Gastrointestinal Disease

Recent studies have demonstrated that sleep deprivation and impaired sleep quality
are associated with various gastrointestinal disorders. The true nature of these changes
is complicated, but it is tightly linked to metabolic changes, proinflammatory cytokines,
and gut microbiota. Altogether these factors can cause a systemic reaction in an organism,
not being limited only to the gastrointestinal tract [55,56]. Approximately 10% of patients
with snoring or OSA have revealed that functional dyspepsia is associated with more
severe daytime sleepiness and higher apnea–hypopnea indices compared to those without
functional dyspepsia [57]

In a cross-sectional study of 5792 subjects that were surveyed as part of a community-
based cohort, the subjects provided information regarding their quality of sleep, according
to the Pittsburgh Sleep Quality Index (PSQI), and digestive symptoms, as assessed by the
Gastrointestinal Symptom Rating Scale (GSRS). The results revealed that sleep disturbances
were associated with digestive symptoms (aOR = 1.29, 95% CI = 1.22–1.36), especially
abdominal pains (aOR = 1.63, 95% CI = 1.19–2.25), acid regurgitation (aOR = 1.48, 95%
CI = 1.17–1.86), abdominal distension (aOR = 1.80, 95% CI = 1.42–2.28), and eructation
(aOR = 1.59, 95% CI = 1.24–2.03) [58]. This study demonstrated a tight link between sleep
quality and gastrointestinal diseases. Similar studies have demonstrated an increased risk
of inflammatory bowel disease. The odds ratio of IBS in a positive sleep apnea group versus
in a negative sleep apnea group were found to be 3.92 (95% confidence interval = 1.58–9.77,
p = 0.003) [59].

2.11. Nonalcoholic Fatty Liver Disease

NAFLD is characterized by the excessive accumulation of lipids in hepatocytes, which
results in the lipotoxicity and inflammatory damage of hepatocytes.

Intermittent hypoxia leads to tissue hypoxia and can result in oxidative stress, mito-
chondrial dysfunction, inflammation, and increased sympathetic nervous system activity.
In studies on these phenomena, intermittent hypoxia has been associated with insulin
resistance—a key factor of hepatic lipid metabolism dysfunction, hepatic steatosis, and fi-
brosis, each of which is involved in the development and/or progression of NAFLD [54,60].

In a study, Pretta et al. found an independent association between nocturnal oxygen
saturation values and significant liver fibrosis in adult patients’ biopsy results; severe
NAFLD was spotted a low prevalence of morbid obesity [61]. Moreover, several studies
have reported significant improvement in AST, ALT, and ALP levels in patients after
6 months of CPAP therapy [62–64].
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2.12. Diabetes Mellitus

The prevalence of diabetes mellitus among OSAS patients is about 23–48% [65,66].
Experimental studies have shown that sleep restriction to 4 h per night for six nights
is associated with impaired glucose tolerance [67]. The data obtained from one study
found that young and healthy night shift workers show increased expression of leukocyte
interleukin-1β RNA and a significant correlation of IL-1β expression with HbA1c blood
levels [68]. Another important mechanism of diabetes development in OSAS patients is
decreased insulin secretion, which leads to short-term or long-term hyperglycemia [69].
Moreover, OSAS is associated with low adiponectin levels and insulin tolerance and the
elevation of cortisol and catecholamines [70,71]. It has been observed that during fasting,
glycated hemoglobin and blood glucose levels are correlated with AHI, sleep duration, and
oxygen saturation of lower than 90% [72,73].

In conditions of proinflammatory state and oxidative stress, special attention should be
paid to the methods with potential to improve metabolism and reduce the negative impact
of hypoxia. After six months of CPAP treatment, a decrease in endothelial dysfunction,
inflammatory mediators, and lipid peroxides has been observed [74,75]. The results of
CPAP influence on glucose metabolism and insulin resistance are still controversial. Several
researchers have observed improvements in glycated hemoglobin levels and insulin sensi-
tivity in nondiabetic patients [76]. J. F. Guest et al. observed similar results in patients with
type 2 diabetes and OSAS [77]. Furthermore, it has been demonstrated that the incidence
of type 2 diabetes is reduced in OSAS patients on regular CPAP therapy compared to
non-CPAP patients [78]. However, some studies have not confirmed the positive effect of
CPAP on the glycemic profile in patients on CPAP therapy [79].

The pathogenesis of metabolic disorders and OSAS is summarized in Figure 3.
Diabetes mellitus, obesity, and non-alcoholic fatty liver disease constitute components

of metabolic syndrome. Insulin and leptin resistance and elevated levels of ghrelin, medi-
ated by short sleep duration, have been associated with sleep restrictions and increased
catecholamine and cortisol levels, and hypoxia can amplify hyperglycemia, negatively
affecting these processes. This situation shows the important roles of insulin resistance
and non-alcoholic fatty liver disease. In these conditions, the regulatory capacity of insulin
on hepatic lipase is compromised and the situation becomes complicated by hypoxia. Hy-
poxia induces hepatocyte injury with hepatic lipid metabolism alteration; specifically, it
increases lipid synthesis and causes a buildup of fat in the liver, decreasing lipase activity
and increasing lipid synthesis, leading to alterations of the lipid profile that are essential
for endothelial dysfunction—a crucial factor of atherogenesis.

2.13. Chronic Kidney Disease

End-stage renal failure affects 57% of patients with OSAS [80,81]. Hypoxia, fluid reten-
tion, and rennin-angiotensin system activation are the key elements of the interconnection
between OSAS and kidney failure, aggravating both conditions [82,83]. Nevertheless, not
only can OSAS lead to kidney failure installation, but there is an inverse variant of this
relation [84]. Due to the fact that OSAS patients often have comorbidities, such as AH,
advanced atherosclerosis, and diabetes mellitus, there is a perception that chronic renal
failure appears in the background of these illnesses. Nevertheless, in patients with CKD
and diabetes, OSAS seems to be a factor that results in a higher urinary albumin–creatinine
ratio and a lower estimated glomerular filtration rate [85]. OSAS is also a significant risk
factor for mortality in dialysis patients and is by itself linked to metabolic disturbances,
proteinuria, and arterial disease [86,87]. Preliminary data have indicated that CPAP therapy
contributes to kidney hypoxia injury protection; however, further large-scale randomized
trials are needed to estimate this effect [88]. Furthermore, up to 73% of patients with OSAS
have kidney dysfunction, which is revealed during screening and brings up the importance
of a multidisciplinary approach to this problematic group of multimorbid patients [89].
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2.14. Malignant Neoplasms

As a result of intermittent hypoxia and sleep fragmentation, OSAS may be involved
with cancer progression and, probably, with cancerogenesis. The reduced antitumor activity
and enhanced immunosuppression were found as a result of an experimental cell-culture
and mice-model study [90]. Short sleep duration was found to be associated with alterations
in tumor-associated macrophage (TAM) phenotypes, specifically higher TLR4 expression,
which plays an important role in tumor progression [91]; moreover, an experimental animal
model of colon cancer study determined a certain relationship between the impact of sleep
fragmentation and ROS-induced DNA damage, which in turn leads to cancerogenesis [92].

Intermittent hypoxia can also precipitate tumor growth and aggression through
(1) hypoxia-inducible factor 1 (HIF-1) activation with angiogenesis and the stimulation
of both tumor growth as well as metastatic rate [93], and (2) immune response changes,
specifically those caused by the activation of tumor-associated macrophages [94]. The in-
volvement of IH in cancerogenesis can be explained by oxidative stress induction and DNA
oxidation with the creation of gene mutations and cell malignancies [95]. Sleep fragmenta-
tion, which occurs in OSAS, has been associated with high risk of cancerogenesis [96,97].
However, such data have mainly been received from studies on animals and cell cultures,
where it is relatively easy to take into account such cofactors as age, obesity, and sleep time.
All of these factors independently increase the risk of oncological disease development and,
at the same time, are traditionally associated with OSAS [98].
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Several major studies have found a relationship between OSAS and elevated risk
of cancer development. The overall time with less-than-90% oxygen saturation has been
associated with a 2.33-times increased risk of cancer development [99]. Similar results have
been reported in patients from the prospective 20-year follow-up research by the same
authors [100]. Nevertheless, age is one of the risk factors for cancer development. Another
important point is the correlation of OSAS with different oncologic diseases. For instance,
patients with OSAS have a 1.5 times-increased risk of CNS neoplasm in comparison with
patients without apnea [101]. A large multicentric study that included 33711 patients
demonstrated that while controlling for confounders, severe OSAS was associated with a
15% increased hazard of developing cancer compared with no OSAS (HR = 1.15, 1.02–1.30;
ARD = 1.28%, 0.20–2.37; NNH = 78), and severe hypoxemia was associated with about a
30% increased hazard (HR = 1.32, 1.08–1.61; ARD = 2.38%, 0.47–4.31; NNH = 42) [102]. The
relationship in question seems to depend on the type of cancer and severity of OSAS. Some
cancers are not encountered as frequently as others in OSAS patients [103]. The differences
between cancers in OSAS patients are presented in the table below Table 1. It seems logical
that different tumors tend to react differently to oxygen deprivation. The results of some
types of cancer are perplexing, and it is early to say whether there is a relationship between
them and OSAS.

Table 1. Association between OSAS and some types of malignant neoplasms.

Malignant Neoplasia Possible Risk

CNS neoplasms

The overall risk for developing primary CNS cancers
was found to be significantly higher in the OSAS group
(aHR, 1.54; p = 0.046) after adjusting for age, gender, and
obesity among other variables. Subgroup analysis
revealed a significantly higher risk for primary brain
cancers but not for primary spinal cord cancers [101].

Lung cancer

The data on lung cancer differs from study to study.
Kendzerska and coworkers have reported a higher risk
of developing lung cancer in a subgroup of OSAS
patients with AHI Q4 vs. Q1 (1.78 [1.03–3.10] [102].
Sillah and coworkers have reported a protective effect of
OSAS on the lungs (SIR 0.66, 95% CI 0.54–0.79) [104].

Melanoma

The risk of melanoma tends to increase with more severe
AHI 2.49 (1.03–6.05) AHI: Q4 vs. Q1 [102]. Other studies
have also demonstrated an increased risk of melanoma
(HR = 1.13, CI = 1.09–1.18 and SIR 1.71, 95% CI
1.42–2.03) [105].

Breast cancer

The aHR of breast cancer in patients with OSAS was
found to be higher [HR, 2.09; 95% confidence interval
(CI), 1.06–4.12; p < 0.05] than that of the controls during
a 5-year follow-up. Despite not meeting statistical
significance, the authors reported an increase in the risk
of breast cancer in women aged 30–59 years (HR, 2.06;
95% CI, 0.90–4.70) and ≥60 years (HR, 3.05; 95% CI,
0.90–10.32) compared with those aged 0–29 years [103].



Clocks&Sleep 2023, 5 343

Table 1. Cont.

Malignant Neoplasia Possible Risk

Colorectal cancer

Patients with OSAS tend to have a higher risk of
colorectal cancer (1.63 [1.12–2.38]) [102]. Another study
has demonstrated similar results: after adjusting for
potential confounders, patients with OSAS were
associated with a significantly higher risk than those
without OSAS (aHR, 1.80; 95% CI, 1.28–2.52). Moreover,
the cumulative incidence of colorectal cancer was
significantly higher in the OSAS cohort than in the
comparison cohort [106].Nevertheless, several other
studies have demonstrated a decreased risk of colorectal
cancer [104].

Pancreatic cancer Patients with OSAS tend to have an increased risk of
pancreatic cancer (HR = 1.14, CI = 1.06–1.23) [106].

Kidney cancer

The risk of kidney cancer is debatable. Kendzerska and
coworkers found no association between kidney cancer
and OSAS [102]. Other studies have demonstrated an
increased risk (HR = 1.30, CI = 1.23–1.37; SIR 2.24, 95%
CI 1.82–2.72) [105].

Prostate cancer

One of the studies has demonstrated an increased risk of
prostate cancer 1.63 (1.06–2.51) [102] while another
demonstrated a protective effect (HR = 0.93, CI =
0.90–0.96 in both) [105].

Urinary cancer Severe OSAS tends to increase urinary cancer 1.72
(1.08–2.75) [102].

Uterus Uterus cancer is more frequent in OSAS patients (SIR
2.80, 95% CI 2.24–2.47) [104,105].

Some types of cancers are reported more frequently, particularly melanoma, bladder,
lung, liver, cervix and kidney, and pancreas cancers. Moreover, it is too early to say whether
the presence of OSAS can be related to an increased risk for metastasis or death [105].

Research into different oncological diseases in the context of hypoxia is especially
important, both for the better understanding of the mechanisms of cancer development and
for the selection of patient groups who need the timely screening and detection of OSAS.

Due to exposure to hypoxia, there are different pathological changes at the cellular
level. Metabolic changes induce the synthesis of diverse regulators and mediators, which
induce inflammation, cell dysfunction, and defective apoptosis. The oxidative stress
provides DNA oxidation damage that leads to the inhibition of DNA repair and mutation
accumulation, mediates the transformation of malignant cells, and also promotes the
growth, proliferation, and invasion of malignant cells (Figure 4).
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3. Conclusions

OSAS is one of the most important diseases discovered in the last 50 years. The
accumulated knowledge has helped us understand that this pathology is associated with a
marked function disorder not only of the respiratory system but also of many other systems.
Due to hypoxia, proinflammatory syndrome, oxidative stress, and other processes, the
dysfunctions of the cardiovascular, nervous, endocrine, excretory, and other systems have
been observed. The timely screening of OSAS and CPAP therapy administration contribute
to reparation and, in some cases, the marked deceleration of comorbidity progression.
The modern approach to OSAS requires a multidisciplinary team that is able not only to
reach correct diagnoses and treatment plans, but also to make adjustments according to the
present comorbidities.
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