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Abstract: Future automotive interior lighting might have the potential to go beyond decorative
purposes by influencing alertness, circadian physiology, and sleep. As the available space in the
interior of an automobile for lighting applications is limited, understanding the impact of various
luminous surface sizes on non-image-forming effects is fundamental in this field. In a laboratory
study using a within-subject design, 18 participants were exposed to two bright light conditions with
different solid angles and one dim light condition in a balanced, randomized order during the course
of the evening. Our results demonstrate that both light conditions significantly increased subjective
alertness and reduced salivary melatonin concentration but not cognitive performance compared
to dim light. The solid angle of light exposure at constant corneal illuminance only affected visual
comfort. While subjective alertness can be increased and melatonin can be attenuated with rather
small luminaires, larger solid angles should be considered if visual comfort is a priority.

Keywords: bright light exposure; non-visual effects; non-image-forming; automotive interior lighting;
solid angle; luminous surface size; subjective alertness; salivary melatonin; cognitive alertness

1. Introduction

Individually customizable ambient interior lighting has gained popularity in the
automotive industry and is currently viewed as an important feature in upgrading car
interiors. Such lighting fulfils a primarily decorative and practical purpose and facilitates
the spatial perception of the car interior. Research, however, has shown that light not only
enables humans’ visual perception but also has non-image-forming (NIF) effects. Light
influences cognitive functions such as alertness, cognitive performance, and mood [1,2].
In addition, light contributes to the synchronization of circadian rhythmicity and helps
humans to adjust their sleep–wake rhythm to the day–night cycle [3,4].

Besides rods and cones, there is a third photoreceptor type: the intrinsic photosen-
sitive retinal ganglion cells (ipRGC), which contain the photopigment melanopsin, are
distributed across the entire retina of the human eye [5,6], and are directly connected to
the suprachiasmatic nuclei (i.e., the internal master clock [7,8]). Light exposure during
the evening and in the night can suppress the release of melatonin—a hormone that is
involved in the regulation and synchronization of the circadian rhythm and the increase
in sleepiness [9–13]. Furthermore, exposure to blue- and white-appearing light with a
high proportion of short-wave radiation during the evening or before sleep leads to longer
sleep onset latencies and increased alertness levels [14,15]. These effects can be explained
not only by the suppressing effect on melatonin but also by the direct influence of light
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on alertness via other neuronal pathways [16,17]. Thus, such light exposures might im-
prove performance of shift workers, doctors, pilots, or drivers working during the night
by counteracting fatigue [18]. While most of these observations were made under strict
laboratory conditions, there are also some automotive field studies conducted in driving
simulators [19–23] and under real driving conditions [24–28] with the goal to increase
alertness and reduce fatigue by applying specific light exposures before or during driving.
Due to the large differences in the characteristics of light exposures and inconsistent results
within and between these studies, these investigations do not allow for clear conclusions to
be drawn about the potential of appropriate automotive applications.

The solid angle of lighting exposure, which results from the illumination area and
its distance to the illuminated person’s eye, could be a relevant factor to consider when
designing biologically effective lighting modules for vehicle interiors [29]. Since ipRGCs
are spread extensively across the retina [7,30], it can be assumed that non-visual effects of
light are enhanced when light is emitted from a large surface area, as it would illuminate a
greater area across the retina. Some studies indicate that larger solid angles of light exposure
that keep the illuminance at the eye at a constant level might induce stronger melatonin
suppressions than light exposures with a small luminous area and thus a smaller solid
angle [31,32]. However, these studies either also varied the light color temperature [31]
or lacked statistical significance, probably due to small sample size (N = 6) [32]. Recently,
Niemeyer et al. (2020) investigated the influence of two morning light exposures with
different solid angles (0.05sr vs. 0.44sr) at the eye on subjective alertness and cognitive
performance [33]. They did not find significant differences for either of the two light
exposures compared to dim light, which poses the question whether an increase in the
solid angle can increase alertness and cognitive performance in the evening and at night.

The available space in the interior of an automobile for lighting applications is severely
limited, and the distance between possible light units and the eyes of the passenger is
generally smaller than in applications designed for buildings’ interiors. Therefore, it is
of practical importance to investigate whether the size of the luminous area plays a role
in NIF effects. In this work, we investigated the influences of two different solid angles
of bright light exposure compared to dim light exposure in the evening on melatonin
concentration, subjective alertness, and on the performance in two cognitive attention
tasks. We expected an increase in melatonin due to its circadian nature, while we expected
subjective and objective alertness to decrease according to circadian phase, time awake,
and the occurrence of task-related fatigue [34,35]. We hypothesized that light exposure
attenuates these increases and declines. Furthermore, we expected that a larger solid
angle leads to a greater degree of melatonin suppression and a less pronounced decline in
subjective alertness and cognitive performance.

2. Materials and Methods
2.1. Ethical Approval

The study protocol, questionnaires, and consent forms of the research project were
reviewed and approved by the Ethics Committee Northwestern and Central Switzerland
(EKNZ) for its compatibility with the valid national and international guidelines for research
studies involving humans (BASEC reference number: 2019 00718). All participants gave
written informed consent to the planned procedure of the study prior to their participation.

2.2. Study Participants

Healthy, male participants (20 to 40 years) were recruited for this study. Poten-
tial participants completed the following questionnaires: the Pittsburgh Sleep Quality
Index (PSQI) [36], a German adaption of the Morningness–Eveningness Questionnaire
(D-MEQ) [37], the SF-36 Health Status Questionnaire [38], as well as a short sociodemo-
graphic questionnaire. Based on the results of these questionnaires, 18 eligible male subjects
aged 20 to 35 years (M = 25.5, SD = 3.92) were selected to participate in the experiment. Sub-
jects with a good sleep quality (PSQI < 5) and no evening or extreme morning chronotypes



Clocks&Sleep 2022, 4 609

(MEQ score: ≤30 and ≥42) were included in the study. Participants with a monocular vi-
sual acuity <0.7 (Freiburg Visual Acuity Test [39]) and with color vision deficiencies (<17 of
21 Ishihara plates [40]) were excluded from the study. Further exclusion criteria were drug
consumption, medication, diagnosed mental illness, and cardiovascular or neurological
disorders. Thus, according to G*Power 3.1.9.7 [41] and using the suggested study design,
approximately medium to large effects (ηp

2 ≥ 0.089) can be detected with a power of 0.8 at
an alpha level of 0.05. The subjects were asked to maintain a regular sleep–wake cycle over
a period of three weeks starting 7 days prior to the study, which was documented in a sleep
log. Subjects who completed the study were compensated with an allowance of 400 CHF.

2.3. Tasks and Measures

Saliva samples were scheduled every 30 min. Salivary melatonin levels were quantified
using saliva melatonin kits (BÜHLMANN Laboratories AG, Schönenbuch, Switzerland) by
a direct double-antibody radioimmunoassay (analytical least detectable dose: 0.3 pg/mL;
Chrono@Work, Groningen, The Netherlands).

To assess subjective alertness, participants completed the Karolinska Sleepiness Scale
(KSS) [42] at hourly intervals. In addition, a Visual Comfort Questionnaire (VCQ; also used
by [43], derived from the results of [44]) was used at hourly intervals to assess the visual
comfort of lighting based on pleasure, brightness, light color, glare, and the impact on
alertness as well as concentration, each rated on a five-point scale.

Objective alertness was assessed at hourly intervals using a 10 min version of the
Psychomotor Vigilance Task (PVT) [45] and a 20 min adaptation of the Mackworth Clock
Test (MWCT) [46,47]. In the PVT, a white cross was displayed against a dark background
and was replaced at regular intervals by a white stopwatch. The subjects’ task was to focus
on the white cross and to react to an appearance of the stopwatch as quickly as possible by
pressing a key on the keyboard. The interstimulus interval varied randomly between 2 and
10 s. Mean reaction times of each PVT session were evaluated to assess cognitive alertness
(outliers ± 3 SD excluded). In the MWCT, subjects had to follow a white dot moving
clockwise across 60 circles arranged in a circle. The white dot moved to the next circle at
one-second intervals. At 12 random times (3 times in each 5 min segment, with a minimum
interval of 8 s between two events), the dot skipped one of the circles, to which the subjects
had to react as quickly as possible by pressing a key. A response was considered a miss
if there was no reaction within 8 s after a skip event. The miss rate was considered as the
performance measure for each MWCT session, defined as the quotient of the number of
misses divided by the number of skips occurred.

2.4. Procedure

Each subject was invited to a controlled laboratory environment at the Centre for
Chronobiology on three evenings (washout period between laboratory sessions was one
week). Subjects were asked to spend as little time as possible in daylight and to refrain
from consuming caffeinated beverages prior to the laboratory sessions. During the sessions,
subjects underwent identical test procedures in each of the three lighting conditions (dim
light, light exposure with small solid angle, light exposure with large solid angle) in pseudo-
randomized order for 5 h. Subjects arrived in the laboratory 4.5 h before individual bed
times. Within 90 min after arrival, subjects received instructions, were allowed to listen
to an audio book, received a meal, and underwent a dark adaptation phase (<0.1lx) for
the last 30 min prior to the start of the experiment. Subsequently, the light exposure
started at 8:00 or 8:45 p.m., depending on individual bed times, and lasted 180 min. All
measurements of the dependent variables are denoted in minutes relative to the start
time of light exposure (e.g., t30 was collected 30 min after start of the light intervention).
To ensure a constant gaze direction during the three-hour light exposure, participants
had to watch a video of an autonomous drive, filmed from the driver’s perspective on a
monitor, and respond to lane changes by pressing a key. At hourly intervals, this task was
paused, and participants were asked to complete the 10 min PVT (t30, t90, t150) followed
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by the 20 min MWCT (t40, t100, t160) and the visual comfort questionnaire (t60, t120, t180).
Starting 90 min before light exposure, subjects gave saliva samples to determine melatonin
concentration at 30 min intervals (t-90–t210; t-30 was omitted because subjects consumed
their meal immediately beforehand). Additionally, starting 60 min before light exposure,
subjects completed the KSS at hourly intervals (t-60–t180).

2.5. Experimental Setup and Light Settings

The design and spatial arrangement of the experimental luminaires are based on the
study of Niemeyer et al. (2020) [33]. The experimental setup is illustrated schematically in
Figure 1. Wooden boards were placed beneath the participant’s seat to adjust the individual
vertical eye position relative to the floor to a height of 1270 mm. This ensured comparable
lighting conditions at the eyes across all subjects. To minimize light reflections on the
table and in the test room, the test setup was lined with black fabric. A camera and an
audio communication system allowed the experimenter to observe the subjects during
the experiment from a separate room and to communicate with the subjects in case they
averted their gaze from the monitor or had any questions. Figure 2 illustrates the test setup
and a participant completing the MWCT.

Figure 1. Side (a) and top view (b) of the experimental setup, illustrating the position of the subjects’
eyes and the angles of incidence. The angles refer to the two test conditions with a small (11.2◦ vertical,
16.1◦ horizontal) and large (31.2◦ vertical, 43.6◦ horizontal) solid angle.
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Figure 2. (a) Experimental setup in the test condition with the large solid angle; (b) subject completing
the MWCT in the test condition with the small solid angle.

The experimental luminaire consists of 140 groups of six LEDs (one each of Osram
DURIS® GD PSLR31.13-2U-2-F-150 and GT PSLR31.13-MP-T1-E-150, two each of Os-
ram SYNIOS® KB DMLN31.13-5F-6-15 and KY DMLQ31.FY-7J-5F-8E-300). At a distance
of 50 mm in front of the LED groups, an acrylic glass (WH02 GT) with dimensions of
560 × 400 mm was positioned as a diffuser to create a homogeneous light-emitting surface.
In the test condition with the small solid angle, a masking black frame was placed in
front of the acrylic glass, reducing the light-emitting surface to an area of 190 × 145 mm.
The resulting solid angles were 0.393sr (small solid angle condition) and 0.051sr (large
solid angle condition) at subjects’ eye position as shown in Figure 1. For each solid angle
condition, luminaires were adjusted to produce a corneal illuminance of approximately
100lx and a Correlating Color Temperature (CCT) of ≥12,000 K, providing a melanopic
equivalent daylight D65 illuminance (mEDI) of about 120lx (using LED-Meter MK350S,
UPRTek, Jhunan, Taiwan). Control measurements resulted in an illuminance of 101.98lx
(mEDI = 122.3lx) and 98.94lx (mEDI = 118.2lx) at the defined eye position in the experimen-
tal conditions with a small and large solid angle, respectively (mEDI calculated with the
CIE S 026/E:2018 Toolbox [48]). In the dim light condition, the luminaire was not activated,
so the screen was the only light source in the room. Control measurements revealed a
corneal illuminance of 1.06lx and 0.87lx mEDI. Figure 3a illustrates the spectral irradiance
vertical at eye position used in the three experimental conditions. Irradiances weighted
for all photoreceptors are presented in Figure 3b. Table A1 in Appendix A provides an
overview of all relevant photometric metrics.
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Figure 3. (a) Spectral irradiances vertical at eye position (see Figure 1a) used in the three experimen-
tal conditions; (b) equivalent daylight (D65) illuminances in the experimental conditions for the five
photoreceptor S-cones, melanopsin, rods, M-cones, and L-cones according to the CIE S 026/E:2018
standard [48].

2.6. Statistical Analysis

For each dependent variable, an analysis of variance (R package “afex” [49]) was
performed with the two repeated-measures factors, “experimental condition” ((dim) light,
(small) solid angle, (large) solid angle) and “time of measurement” (includes all times (tx)
after the start of light exposure). To minimize the influence of inter- and intraindividual
differences in the initial levels, KSS and melatonin values were analyzed as the difference
to the values at t0 on the same experimental day, indicating the in- (positive values) or
decrease (negative values) in the melatonin and alertness level, respectively, since the
start of light exposure. The Mauchly test was used to test sphericity assumptions, and
Greenhouse–Geisser epsilon-adjusted degrees of freedom and probabilities were reported
in case of violations [50–52]. Where an analysis of variance revealed a significant main
effect in the factor experimental condition, a contrast analysis was performed with respect
to the research questions. To test the general effect of light exposure, the experimental
condition dim was contrasted against the combination of the experimental conditions small
and large. With another planned contrast, the experimental condition small was contrasted
with the experimental condition large to determine the effect of the solid angle between the
two conditions with light exposure. Differences were assumed to be significant at p < 0.05.

3. Results
3.1. Salivary Melatonin

The time course of the salivary melatonin concentrations is shown in Figure 4a. Mela-
tonin concentration followed the typical evening profile with increasing levels during the
laboratory sessions (F1.92, 30.78 = 38.99, p < 0.001, η2 = 0.34). In addition, the analysis yielded
a significant main effect of experimental condition on melatonin levels indicating an effect
of the light exposures on melatonin release (F2, 32 = 10.12, p < 0.001, η2 = 0.11). However,
the interaction between the factors experimental condition and time of measurement was
non-significant (F3.11, 49.72 = 2.63, p = 0.06). A planned contrast revealed lower melatonin
concentrations in the two experimental conditions with light exposure (M = 3.19, SD = 5.02)
compared to the dim condition (M = 6.33, SD = 5.91), t16 = 3.69, p = 0.002. Between the
experimental conditions with a small (M = 3.14, SD = 4.99) and large solid angle (M = 3.23,
SD = 5.07), melatonin concentration did not significantly differ (t16 = 0.15, p = 0.89). Individ-
ual melatonin profiles revealed large individual differences (see Appendix B Figure A1). Of
the 18 subjects, 4 did not show a significant melatonin increase even during the dim light
condition (≤5.0 pg/mL at t180). In addition, the expected melatonin suppression induced
by each of the light exposure conditions could not be observed in four subjects who showed
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an increase in melatonin during the dim light condition (difference between dim and both
light conditions at t180 ≤ 5.0 pg/mL).

Figure 4. Mean values of salivary melatonin concentrations (a) and KSS scores (b) relative to the
beginning of light exposure (t0). The error bars represent the standard deviations. The individual
values are highlighted in pale colors.

3.2. Subjective Alertness

Figure 4b shows the time course of the KSS values in the three experimental conditions.
As expected, KSS values increased over time (F1.38, 22.07 = 20.72, p < 0.001, η2 = 0.09)
and differed significantly between the experimental conditions (F2, 32 = 3.48, p = 0.043,
η2 = 0.08). The interaction between experimental condition and time of measurement was
non-significant (F4, 64 = 1.38, p = 0.25). Contrast analysis revealed a statistically significant
difference between the dim condition (M = 2.51, SD = 1.47) and the two experimental
conditions with a small and large solid angle (M = 1.57, SD = 1.7) (t16 = 2.45, p = 0.026),
confirming an alertness-enhancing effect of light exposure. However, mean KSS values
in the light exposure conditions with a small (M = 1.49, SD = 1.76) and large solid angle
(M = 1.65, SD = 1.66) did not differ significantly (t16 = 0.41, p = 0.69).

3.3. Cognitive Alertness

Mean reaction times in the PVT increased during all conditions, indicating a significant
effect of time of measurement (see Figure 5a) (F1.26, 20.11 = 11.87, p < 0.001, η2 = 0.04). How-
ever, there was no significant influence of experimental condition (F2, 32 = 1.33, p = 0.28) and
no significant interaction effect between experimental condition and time of measurement
(F2.37, 37.86 = 0.73, p = 0.51). An identical pattern can be seen for the miss rates in the MWCT
(see Figure 5b). Miss rates increased over time (F2, 34 = 6.16, p = 0.005, η2 = 0.02). There was no
effect of condition (F2, 34 = 0.09, p = 0.92) and no significant interaction (F2.65, 45 = 0.65, p = 0.57).
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Figure 5. Mean values of reaction times in the PVT (a) and miss rates in the MWCT (b) for each time
of measurement and experimental condition. The error bars represent the standard deviations. The
individual mean values are pale shaded.

3.4. Visual Comfort

Statistical analysis of visual comfort reveals a significant main effect of condition for
all six dimensions of the questionnaire (see Figure A2 in Appendix B). Descriptively, both
light exposures were rated as being too bright (Msmall = 1.92; Mlarge = 2.22), slightly glaring
(Msmall = 3.65; Mlarge = 2.93), and unpleasant (Msmall = 3.90; Mlarge = 3.52). In terms of
brightness, the small solid angle was perceived as less pleasant compared to the large solid
angle (t16 = 2.27, p = 0.037) and less glaring (t16 = 3.57, p = 0.002). The lighting in the dim
light condition was considered to be more tiring (Mdim = 4.09) (t17 = 3.80, p = 0.001) and to
impair concentration ability to a greater degree (Mdim = 3.72) (t17 = 2.36, p = 0.03) as opposed
to the two lighting conditions (tiring: Msmall/large = 2.66/2.57; impairing concentration:
Msmall/large = 3.06/2.77). There were no significant differences between the two different
solid angles.

4. Discussion

We evaluated the effects of light exposure with two different solid angles compared
to dim light on salivary melatonin concentration, subjective alertness, and cognitive per-
formance in the evening. Consistent with the theoretical assumptions regarding circadian
hormone variations, alertness modeling (e.g., [34]), and the occurrence of passive task-
related fatigue (e.g., [35]), melatonin concentrations increased over time while subjective
and objective performance decreased. Measurements of salivary melatonin confirmed the
melatonin-suppressing effect of short-wavelength light (e.g., [53]). After 180 min, both
lighting conditions attenuated melatonin by around 40% compared to a predicted sup-
pression of 60% according to [54]. Obtained KSS ratings indicated an alertness-increasing
effect of exposure to bright light. However, the present study does not provide evidence of
an effect of bright light exposure with different solid angles on cognitive performance, as
indicated by the reaction times in the PVT or miss rates in the MWCT. A possible reason
may be that the MWCT results did not yield a sufficiently high power due to the small
number of events. Nevertheless, this mismatch between effects on subjective and behav-
ioral alertness measures is consistent with numerous studies that also demonstrated an
influence of light exposure on subjective alertness but not on cognitive alertness in the
PVT (e.g., [18,22,55–58]) or the MWCT (e.g., [59,60]). Since the general public is becoming
increasingly aware of the alerting effects of light, expectations and placebo effects might
have influenced the KSS ratings but not cognitive alertness [2].
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In line with past research (e.g., [61,62]), it must be noted that both the magnitude and
the onset of the evening melatonin increase varied greatly between participants. While a
180 min long light exposure of 40lx mEDI should be sufficient for an evening melatonin
suppression of up to 50% [54], light intensities applied in this study were possibly not
high enough to affect some individual participants (required light intensity can vary
between 6 and 350lx [63]). This demonstrates the challenge of designing appropriate light
applications for a wide range of people, as individuals have very different sensitivities to
NIF light effects, which could be due to different genetic characteristics [64].

The present study further provides no evidence that the solid angle of light exposure affects
the degree of melatonin suppression, subjective alertness, or cognitive performance during the
evening. This is surprising because the light exposure with a large solid angle irradiates a larger
retinal area in the eye and thus stimulates a larger number of ipRGCs. However, while the corneal
illuminance remained constant in both light exposure conditions, light exposure with a small solid
angle resulted in a higher retinal illuminance of the exposed portion of the retinal area.

In contrast, there are differences between the two light exposures regarding visual
comfort. The light exposure with a large solid angle was rated more visually pleasant and
less glaring. This can be explained by the fact that the perceived degree of visual comfort
and glare of a lighting situation depends, among other things, on the luminance of the
lighting surface and its contrast to the luminance of the background lighting within the
visual field [65]. Since the luminance of the luminous surface was significantly higher in
the small solid angle condition compared to the large solid angle, there was a stronger
contrast to the dark background environment. These results corroborate recommendations
for the design of lighting applications that consider NIF effects to favor larger solid angles
for high corneal illuminances without visual discomfort [66].

Nevertheless, it should be taken into account that the sample used in this study con-
sisted of a very homogeneous group of subjects and the results cannot be generalized for
women and other age groups. Women are known to differ from men in the biological mech-
anisms involved in sleep regulation as well as sensitivity to the NIF effects of light [67–69].
Moreover, the experimental design reflects the real-world conditions only to a limited
extent. Especially when driving at night, the driver’s eyes are exposed to more dynamic
lighting conditions compared to the lab. Light produced by urban infrastructure or other
traffic participants outside the vehicle can reach the interior, thus affecting the overall light-
ing conditions inside the car. The upright seated position with a defined eye position, as
used in the laboratory setting, also does not correspond to a realistic seating position inside
a car. To better understand the influence of the solid angle of light exposure, different solid
angle sizes, brightness levels, and spectra should be further investigated. With regard to
future applications in the field, it should also be mentioned that late-evening light exposure
can induce circadian phase delays and hence cause adverse effects, such as reduced sleep
quality at home and increased sleepiness on the following morning [70]. However, to date
there is only limited knowledge available regarding the effects of evening light exposure,
especially for shift work [71]. Additional empirical research, both under strictly controlled
conditions and in the field, is necessary to design NIF-effective automotive interior lighting.



Clocks&Sleep 2022, 4 616

5. Conclusions

The aim of this study was to demonstrate the NIF effects of two light exposures with
different solid angles in a controlled laboratory environment. A lower increase in salivary
melatonin and a reduced decrease in subjective alertness was shown during the 3 h evening
light exposure. While cognitive performance declined with progressing evening hours,
subjects revealed no improvement in performance during light exposure. There was no
difference in subjective alertness and salivary melatonin between the two solid angles. Thus,
it can be summarized that a luminaire creating a solid angle of 0.05sr (at ~120lx mEDI)
was sufficient to influence the subjective alertness as well as melatonin concentration in
the evening. The light exposure with a large solid angle, however, was rated as visually
more pleasant compared to that with the smaller solid angle. Thus, a trade-off must be
made when designing appropriate lighting applications: while a small luminous area is
associated with a lower cost of the device, a larger luminous area offers the option to
produce higher corneal illuminances without causing visual discomfort.
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Appendix A

Appendix A contains material on study design, experimental setup and light setting.

Table A1. Illuminance, CCT, α-opic irradiances, melanopic efficacy of luminous radiation, melanopic
daylight D65 efficancy ratio, and melanopic equivilant daylight D65 illuminance according to CIE S
026/E:2018 [48] in each experimental condition. Measured with the spectrometer UPRtek LED-Meter
MK350S at the subjects’ eye position (cornea).

Dim Small Solid Angle Large Solid Angle

photopic illuminance
(lx) 1.06 101.96 98.94

CCT (K) 4982 12158 12146

S-cone-opic
irradiance (mW/m2) 0.76 124.24 119.90

M-cone-opic
irradiance (mW/m2) 1.44 155.80 151.40

L-cone-opic
irradiance (mW/m2) 1.73 165.42 160.23

rhodopic irradiance
(mW/m2) 1.31 169.95 164.78

melanopic irradiance
(mW/m2) 1.16 162.22 156.80

mELR (melanopic
efficacy of luminous
radiation; mW/lm)

1.09 1.59 1.58

mDER (melanopic
daylight D65

efficancy ratio)
0.82 1.20 1.19

mEDI (melanopic
equivilant daylight
D65 illuminance; lx)

0.87 122.32 118.23
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Appendix B

Appendix B contains material about the results of the study presented in the
present paper.

Figure A1. Individual courses of melatonin concentrations. Note: For subject Subj_008 a different
scaling of y-axis is used. Due to the significant higher concentrations, subject Subj_008 was excluded
from all other evaluations and visualizations.
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Figure A2. Mean values of the ratings of the six scales of the VCQ. Statistical analysis reveals a
significant main effect of condition for lighting situation, F1.40, 22.38 = 15.08, p < 0.001, η2 = 0.29,
brightness, F2, 34 = 50.25, p < 0.001, η2 = 0.54, glaring, F2, 34 = 62.78, p < 0.001, η2 = 0.56, light color,
F2, 34 = 10.77, p < 0.001, η2 = 0.20, effect on wakefulness, F2, 34 = 20.80, p < 0.001, η2 = 0.35, and effect
on concentration, F1.44, 24.55 = 4.93, p = 0.02, η2 = 0.13. The error bars represent the standard deviation.
The individual ratings are shaded.
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