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Abstract: Light is an influential regulator of behavioural and physiological state in mammals. Features
of cognitive performance such as memory, vigilance and alertness can be altered by bright light
exposure under laboratory and field conditions. However, the importance of light as a regulator of
performance in everyday life is hard to assess and has so far remained largely unclear. We set out to
address this uncertainty by developing a tool to capture measures of cognitive performance and light
exposure, at scale, and during everyday life. To this end, we generated an app (Brighter Time) which
incorporated a psychomotor vigilance (PVT), an N-back and a visual search task with questionnaire-
based assessments of demographic characteristics, general health, chronotype and sleep. The app
also measured illuminance during task completion using the smartphone’s intrinsic light meter. We
undertook a pilot feasibility study of Brighter Time based on 91-week-long acquisition phases within
a convenience sample (recruited by local advertisements and word of mouth) running Brighter Time
on their own smartphones over two study phases in winter and summer. Study compliance was
suitable (median = 20/21 requested task completions per subject). Statistically significant associations
were observed between subjective sleepiness and performance in all tasks. Significant daily variations
in PVT and visual search performance were also observed. Higher illuminance was associated with
reduced reaction time and lower inverse efficiency score in the visual search. Brighter Time thus
represents a viable option for large-scale collection of cognitive task data in everyday life, and is able
to reveal associations between task performance and sleepiness, time of day and current illuminance.
Brighter Time’s utility could be extended to exploring associations with longer-term patterns of light
exposure and/or other light metrics by integrating with wearable light meters.

Keywords: light exposure; memory; attention; alertness; visual search; cognitive performance;
smartphone app

1. Introduction

The natural daily rhythm in ambient light is reflected in substantial 24 h variations in
many aspects of human behaviour and physiology. This association between ambient light
and physiology can be accounted for in part by synchronisation of the circadian clock with
the light:dark cycle, and in part by more direct effects of bright light on physiological and
behavioural state [1,2]. Among the parameters under this dual circadian and photic control
are determinants of cognitive performance, such as alertness and reaction time [3].

There is a growing understanding of the neurophysiological mechanisms linking light
exposure to aspects of cognitive performance (see, e.g., [4–8]). Moreover, associations
between brighter light exposure and improved alertness and/or cognitive performance
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have been reported in controlled laboratory and field experiments [9–21]. However, not all
studies have observed an impact of light on performance (see, e.g., [21–26]), and there is
evidence that effects may be quite context-specific (e.g., [21,27,28]). The true significance of
natural variations in light exposure as a determinant of performance in real-world settings
thus remains uncertain. One approach to address this deficit would be to determine how
cognitive performance correlates with light exposure in natural populations outside of
experimental conditions. Collecting such data would reveal the circumstances under which
naturally occurring variations in light exposure within and between individuals have a
significant influence on cognitive performance. Population-level studies of this type require
two types of technology: a meter capable of logging each subject’s personal light exposure,
and a method for incorporating objective task-based measures of cognitive performance
into everyday life.

The goal of this study was to establish the feasibility of a smartphone-based approach
to the problem of collecting measures of cognitive performance and light exposure in
everyday life. Smartphones have intrinsic light meters whose output is employed in
determining optimal screen brightness and camera settings and can provide a measure of
illuminance [29]. At the same time, we reasoned that adapting a selection of cognitive tasks
for presentation using a smartphone app could allow these tasks to be easily incorporated
into everyday life. In this way, we aimed to develop a methodology to allow cognitive tasks
to be performed at any time and under almost all circumstances, while simultaneously
measuring light exposure.

2. Methods
2.1. Recruitment and Procedure

Seventy volunteers were recruited via local advertisements and word-of-mouth. These
participants passed the following recruitment exclusion criteria: current sleep disorders,
eye disorders resulting in visual impairment, current consumption of medication known
to affect sleep, and recent (within 2 weeks) travel across time zones. All participants were
at least 18 years of age and based in the United Kingdom. The study was run at 2 times
of the year: January to March 2021 and July to August 2021. The former coincided with a
strict COVID-19 lockdown in the U.K., during which people were told to stay home except
for outdoor exercise and essential activities; educational and leisure establishments were
closed, as were non-essential shops; people could socialise outdoors in groups of up to 6;
and a face mask mandate was in place (https://commonslibrary.parliament.uk/research-
briefings/cbp-9068/ accessed on 10 October 2022). A less strict lockdown (socialising
indoors in groups of up to 6 allowed; non-essential businesses open; mask mandate in
place) was in place for part of phase 2 (until 19 July 2021). Participants were asked to
play games at least 3 times per day, preferably in the morning, middle of the day and
evening. In phase 1, 65 volunteers completed the study, and 68 volunteers completed phase
2. Amongst these, 21 of the volunteers completed both phases. This project was carried out
with the ethical approval of the University of Manchester Research Ethics Committee (Ref:
2020-8667-12901). Users provided informed consent through the app. Participants installed
and used the app on their own Android smartphone (with participants self-declaring that
the screen was not cracked or damaged).

For all tasks, reaction times less than 100 ms were defined as errors and discarded.
Entries from subjects with less than 40% correct answers for that task amongst all trials
were also discarded (1.2% of all entries were discarded because of insufficient accuracy).
If all ambient light measurements were zero for a given participant, light sensor read-
ings were considered erroneous and were nullified (3 out of 91 individual observations).
Participants who completed a task at least 8 times (independent of how many days they
played) were included in the analysis. For PVT, 22.5% of participants failed this criterion,
leaving 69 participants in the final analysis; for NB, 29.5% of participants failed, leaving
31 participants (note that only N-back data from phase 2 were eligible for inclusion); and
for VS, 24.4% of participants failed, leaving 65 participants.

https://commonslibrary.parliament.uk/research-briefings/cbp-9068/
https://commonslibrary.parliament.uk/research-briefings/cbp-9068/
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2.2. Software and Hardware

The Brighter Time app was created in Xamarin.Forms 4.8 by Dr. Adrian Harwood of
ResearchIT Manchester. The game engine was built using SkiaSharp 2.80.2 graphics API
and game pages are implemented as a Xamarin. The form content pages are presented with
a SkiaSharp canvas embedded edge to edge. The games were conceptualised and created
in Unity (V2018.3.3f1). The collected data were stored in the University of Manchester
ResearchIT’s Storage Connect service. The app was designed to be used on Android
phones because access to the sensors is restricted on iOS. Ambient light levels (lux) were
captured during gameplay using the phone’s forward-facing ambient light sensor. Mean
illuminance was reported as reading from the light sensor for the duration of the task
(sampled every 60 ms). To assess the efficacy of the Brighter Time light measures, a test
Android smartphone (Samsung M51) running the app was exposed to a range of calibrated
illuminances (from 0.1 lx to 105 lx; SpectroCAL MKII Spectroradiometer, Cambridge
Research Systems, Rochester, United Kingdom) produced by a yellow LED light in a dark
box. Expected and measured illuminances were highly correlated (Figure 1), but the app
slightly underestimated illuminance at the brighter settings (linear regression slope = 0.88;
95%CI = 0.8393 to 0.9120; Pearson R2 = 0.98; p < 0.001).
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to a range of calibrated (SpectroCAL MKII Spectroradiometer, Cambridge Research Systems) illu-
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Figure 1. Comparison of Brighter Time light measures with calibrated standards. Illuminance
was measured by the Brighter Time app using an Android smartphone (Samsung M51) under
exposure to a range of calibrated (SpectroCAL MKII Spectroradiometer, Cambridge Research Systems)
illuminances (from 0.1 lx to 10,000 lx) produced by a yellow LED light in a dark box. Black circles
show each observation. Expected and observed light measurements were compared using linear
regression (black line shows the regression fit line and dashed grey lines show 95% confidence
interval). The red line shows the ideal fit line (slope = 1).

2.3. Tasks

For our app, we chose three tasks: a psychomotor vigilance task (PVT) to measure
sustained attention; an N-back task to measure working memory; and a T vs. L visual
search task to measure search accuracy and efficiency (Figure 2). All tasks were presented
using monochrome images (apart from correct/incorrect indication in the N-back). We
produced ‘game’ versions of the PVT and visual search tasks with the aim of improving
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participant engagement and take up. As reaction time is a key performance metric for these
tests, we undertook simulations to confirm that measuring this parameter was in principle
compatible with smartphone sampling rates (Supplementary Figure S1).
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Figure 2. Screenshots of the cognitive tasks used in Brighter Time. (A) In the PVT task, participants
viewed a screen with a central fixation cross (i) and were asked to touch the screen when a zombie
(ii) appeared. (B) The N-back memory task comprised sequentially presented letters, with the
participant required to touch the screen when the letter presented was the same as one 2 presentations
prior. (C) The visual search task required participants to determine whether a ‘monkey’ target image
was present against a field of ‘man’ distractors. Screenshots for either (i) 21, (ii) 32 or (iii) 41 distractors.
‘Monkey’ and ‘man’ images were identical except the nose was T- or L-shaped, respectively.

The visual PVT was chosen due to its ease of administration and near absence of a
learning curve [30]. The game version of PVT was ‘Zombie Shooting’ (Figure 2A), whereby
participants fixated on a crosshairs target and were vigilant for a zombie appearing in its
place. When they tapped the screen, this was translated into ‘shooting’ the zombie, and
one of four simple headshot animations played. The cross occupied a space of 64 × 64 dp
and the zombie was 208 dp. The user was required to respond as quickly as possible, and



Clocks&Sleep 2022, 4 581

their reaction time and accuracy were recorded. A single session consisted of 37 trials with
a 2–10 s inter-stimulus interval randomly selected for each presentation. The stimulus
time-out was 1 s. The total test duration was approximately 5 min.

To assess working memory, we chose the N-back task (Figure 2B; [31]). A 3-back
version of the task was presented in phase 1, in which participants were sequentially
presented with letters sampled from A, B, D, E, K, M, R, S and T and required to indicate,
by pressing anywhere on the screen, when the letter presented was the same as the one
3 presentations prior (e.g., A-E-S-A-K). A green bar appeared at the bottom of the screen if
they were correct and a red bar if their selection was false or if they missed an N-back target.
The font was Anonymous Pro with size 256 dp. Stimuli were presented for a maximum
of 2 s, and the inter-stimulus interval was 1 s. Each trial consisted of 15 targets amongst
>300 trials. For each trial, the reaction time and accuracy were recorded. Participants
complained about how long it took to complete this version of the task (>6 min) and the
infrequent appearance of targets. In addition, task accuracy was very low in some subjects,
indicating that they did not understand the task. For phase 2, we refined the N-back
to improve compliance, switching to a 2-back version (e.g., A-B-A-D-T) and presenting
15 targets among 45 trials, parameters used in other studies [14,32]. Only the phase 2 data
were included in the analysis for the N-back task.

The visual search task we selected was a gamified version of T vs. L. In this task,
participants played ‘Find the Monkey’ in which, they searched for a ‘monkey’ as the target
among ‘men’ as distractors (Figure 2C). The man and monkey icons were identical, bar the
nose, which was a ‘T’ for monkey and an ‘L’ for man. The distractors could take one of four
(0◦, 90◦, 180◦, 270◦) orientations while the target is 0◦-oriented. The participant was asked
to indicate as quickly as possible if the target (monkey) was present or absent in the scene.
In the app, this is achieved by tapping the left half of the screen for ‘target present’ and the
right half for ‘target absent’. The participants were immediately informed if their response
was correct or incorrect and, in the case of the target being present, its location was revealed.
Each trial consisted of 120 presentations with a 50/50 split for present/absent trials and
equal amounts of three distractor numbers of 21, 32 and 41. The time-out for response was
10 s, with an inter-stimulus interval of 2 s. For each trial, the reaction time, accuracy and the
number of distractors were recorded. Given that density and character size are important
determinants in search efficiency, we chose to have the visual search arena a constant size
(400× 240 dp) across phones, with the arena on larger phones being surrounded by a white
border identical to the background, and the characters a constant size of 30 × 32 dp [16,33].

Tasks were shown always in the same sequence: PVT, N-back, visual search. Data were
saved after each task, and in rare instances (7% of sessions), not all tasks were completed.
All tasks presented the participants with running scores; these were subtle and in the
corner of the screen for the duration of the task and were centred on the screen upon task
completion. Correct responses increased the score, with more points for faster reaction
times, while misses or false responses reduced the score. The lower end of the score was
capped at zero to prevent negative motivation. Participants were given immediate feedback
as to whether they missed (time out) or were correct or chose an incorrect option (in the
case of N-back and visual search).

2.4. Surveys and Measures

As part of the feasibility assessment for the Brighter Time app, we asked users to create
a profile by completing introductory questionnaires (Supplementary Table S1) capturing
the type of information that could in principle be relevant for stratifying data in larger
datasets. This comprised questions relating to general demographic factors; sleep, eye,
psychological and neurological disorders; recent (2 weeks) travel across time zones; average
weekly caffeine and alcohol consumption; and smoking habits. They indicated if they were
breast feeding, had young children (<1 years of age) in their household and any medication
they were taking. They were asked their subjective chronotype. Chronotype was also
assessed with the Munich Chronotype Questionnaire (MCTQ) [34]. General activity levels



Clocks&Sleep 2022, 4 582

were assessed with the International Physical Activity Questionnaire (IPAQ) [35]. Only
upon completing these questionnaires and providing consent were the tasks available to
the participants.

Participants were asked to complete all three tasks (PVT, N-back and visual search)
multiple times a day for the period of 1 week. In the registration, participants practiced all
games before starting the study. Upon each opening of the app, participants were prompted
to report their sleepiness with a modified (10 point) version of the Karolinska Sleepiness
Scale (KSS) [36], their caffeine and alcohol consumption for that day, their sleep and wake
times for the previous evening, and any naps they have taken (Supplementary Table S2).
Whenever a task was initiated, participants were also required to indicate how long they
had been in their current lighting conditions.

2.5. Statistical Analysis

All data manipulation, analysis and plotting were conducted in RStudio version 4.0.4
(2021). Our analysis was built around a simple model of how light and circadian phase
could influence real-world cognitive performance based on relationships established under
laboratory conditions (Figure 3). According to the model, the main predictor variables in
our analysis were sleepiness score (1–10 scale, 10 being extremely sleepy), light exposure
(log photopic illuminance) and time awake (duration between awakening time and test
time). We also separately looked for daily variations in task performance.
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Figure 3. Directed acyclic graph representing hypothesised relationships between light, circadian
phase and performance. Light and circadian phase influence performance directly and/or via effects
on sleepiness. Circadian phase in turn influences light exposure thanks to the tendency for sleep and
rest to occur at low light levels.

In the absence of foreground knowledge about the performance of cognitive tasks as
administered in real life using Brighter Time, we structured our analysis to remain agnostic
regarding the most appropriate single outcome measure for each task. We therefore
included multiple measures, with appropriate correction for multiple comparisons. For
all tasks, we analysed hit rate (%correct answers/total presentations) and false alarm rate
(%incorrect attempts/total presentations), and median reaction times of correct answers.
Additionally, as participants may employ different tactics with regards to speed–accuracy
trade-offs, we included Inverse Efficiency Score (IES; average reaction time/proportion
correct answers) [37]. For PVT, the number of lapses (slower reaction times than 500 ms)
was recorded. For the N-back test, the discriminability index (d′) was calculated to measure
individuals’ ability to detect the correct signal. For visual search analysis, we included a
measure of search efficiency, calculated as the slope for the reaction time against varying
distractor size (ms/item) [38]. Efficient searches have a search time independent of the
number of distractors and as such are characterised by a search slope of ≈ 0 ms/item.
In tasks where the target closely resembles the distractors (known as ‘difficult searches’),
searches are never fully efficient and as such have a slope >0 ms/item. For our visual search
analyses, we reported performance outcomes for both target-present and target-absent
trials together.

For all analyses, linear mixed models (LMM) were used. Models were computed using
the lme4 package in R [39] and lmerTest package in R [40]. Random intercept-only models
were created for each outcome variable, with participant as a random effect. For each cog-
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nitive task type, five outputs were tested; therefore, the p-value significance threshold was
accepted as 0.01. We assessed three separate models for each output. The first models aimed
to determine Brighter Time’s ability to reveal the expected association between sleepiness
and cognitive task performance (Figure 4) and included only KSS score as a predictor. To
assess associations with light and circadian phase, the second models included time awake
(hour) and ambient light (log lx) as fixed effects. We finally assessed the ability of our
approach to reveal daily variations in performance using unimodal trigonometric models
where sine and cosine of time of day (radians) were added as predictors in the analyses.
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Figure 4. Associations between subjective sleepiness and (A) psychomotor vigilance task (PVT)
reaction times (ms; median for all presentations in an iteration of the task), (B) N-back task inverse
efficiency score (ratio of mean reaction time and proportion of correct answers), (C) visual search
median reaction time (ms). Linear regression fits between KSS score (higher scores are more sleepy)
and (A,C) median reaction times or (B) inverse efficiency slopes for each participant record, with the
distribution of slopes for fit lines shown in boxplots (box shows median ± inter-quartile range (IQR),
whiskers extend to 1.5 × IQR with outliers as closed circles) to the right.

3. Results

After exclusions (see Section 2), the PVT task had 69 participant records with
1305 observations and the visual search task had 65 records with 1215 observations. As
the N-back task was changed part way through the study (see Section 2), only data from
the second phase were included in the analysis (31 records with 586 entries). The majority
of participants (69.6%) were aged 18–30 years. There were similar numbers of male and
female (52.2%) participants. Participants had a range of physical activity as determined
by the international physical activity questionnaire (high: 36.2%, moderate: 33.3%, low:
30.4%). Chronotypes were determined numerically by the Munich Chronotype Question-
naire (MCTQ); we obtained a broad range of chronotype scores (MSF-sc) of 1.6 am–7.8 am
(Figure 5A), and the population exhibited a normal distribution (mean: 4.5 am). In response
to the subjects’ own assessment of chronotype, 8.7% defined themselves as ‘Definitely a
morning type’, 30.4% ‘Rather more a morning type’, 42.0% ‘Rather more an evening type’
and 18.8% ‘Definitely an evening type’. The majority of participants did not smoke (98.6%)
and consumed low levels of alcohol (49.3% never consume) and caffeine (median: 5 units
per day). The participants were healthy, with only 5.8% anxiety and 4.3% depression rates.
None of them were using sleep medication. During the 1-week study periods, participants
reported mean sleep duration of 7.8 h (SD = 1.7). They woke on average at 08:20 am
(SD = 1.8 h), and mean sleep onset was at 00:33 am (SD = 1.4 h).



Clocks&Sleep 2022, 4 584

Clocks & Sleep 2022, 4, FOR PEER REVIEW  8 
 

 

female (52.2%) participants. Participants had a range of physical activity as determined 
by the international physical activity questionnaire (high: 36.2%, moderate: 33.3%, low: 
30.4%). Chronotypes were determined numerically by the Munich Chronotype Question-
naire (MCTQ); we obtained a broad range of chronotype scores (MSF-sc) of 1.6 am–7.8 am 
(Figure 5A), and the population exhibited a normal distribution (mean: 4.5 am). In re-
sponse to the subjects’ own assessment of chronotype, 8.7% defined themselves as ‘Defi-
nitely a morning type’, 30.4% ‘Rather more a morning type’, 42.0% ‘Rather more an even-
ing type’ and 18.8% ‘Definitely an evening type’. The majority of participants did not 
smoke (98.6%) and consumed low levels of alcohol (49.3% never consume) and caffeine 
(median: 5 units per day). The participants were healthy, with only 5.8% anxiety and 4.3% 
depression rates. None of them were using sleep medication. During the 1-week study 
periods, participants reported mean sleep duration of 7.8 h (SD = 1.7). They woke on av-
erage at 08:20 am (SD = 1.8 h), and mean sleep onset was at 00:33 am (SD = 1.4 h). 

 
Figure 5. General characteristics of the study sample. (A) Histogram of mid-sleep time on free days 
corrected for sleep debt on workdays (MSFsc) collected by the Munich Chronotype Questionnaire 
(MCTQ) at the registration baseline. (B) Number of cognitive games played for each participant 
during their study period. The left graph shows the psychomotor vigilance task (PVT) entries, the 
middle graph shows the N-back entries and the right graph shows visual search entries. (C) Change 
in sleepiness with time awake (N = 3106). Sleepiness was measured using the Karolinska Sleepiness 
Scale (KSS), with 1 being ‘extremely alert’ and 10 being ‘extremely sleepy, can’t keep awake’. Time 
awake shows the duration between awakening time and test time. (D) Change in ambient light ex-
posure with time of day (N = 2979). Black dots show illuminance measured by the Brighter Time 
app and reported as log10(lux). (E) Ambient light exposure (log10 lux) measured during the PVT (N 
= 1248) for 69 participants (green bars). 

The median number of entries per record was 21 for PVT (maximum = 33) and 20 for 
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tries representing most times of day with median entry time around 15:00. The median 
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Figure 5. General characteristics of the study sample. (A) Histogram of mid-sleep time on free days
corrected for sleep debt on workdays (MSFsc) collected by the Munich Chronotype Questionnaire
(MCTQ) at the registration baseline. (B) Number of cognitive games played for each participant
during their study period. The left graph shows the psychomotor vigilance task (PVT) entries, the
middle graph shows the N-back entries and the right graph shows visual search entries. (C) Change
in sleepiness with time awake (N = 3106). Sleepiness was measured using the Karolinska Sleepiness
Scale (KSS), with 1 being ‘extremely alert’ and 10 being ‘extremely sleepy, can’t keep awake’. Time
awake shows the duration between awakening time and test time. (D) Change in ambient light
exposure with time of day (N = 2979). Black dots show illuminance measured by the Brighter Time
app and reported as log10(lux). (E) Ambient light exposure (log10 lux) measured during the PVT
(N = 1248) for 69 participants (green bars).

The median number of entries per record was 21 for PVT (maximum = 33) and 20 for
N-back and visual search (maxima = 25 and 32, respectively) (Figure 5B). There were entries
representing most times of day with median entry time around 15:00. The median time
awake at the time of entry was 8.4 h, with a maximum of 22.9 h. The median KSS at the
time of task completion was 4. Participants generally reported minimum sleepiness around
4–7 h after their awakening (Figure 5C). Descriptive statistics of performance parameters
for all three games are provided in Table 1.

The study had a median ambient light reading of 22 lx and a range of 133,000 lx
(Figure 5D); these values are broadly as expected for a device used primarily indoors
but also available outdoors, and measuring light in either the vertical or horizontal
plane [41–43]. Importantly, each participant performed tasks across a range of time of
day and light conditions (Figure 5D,E). Across all participants, there were 540 days of light
and cognition data. Of these, 51 days had data from at least one game played in bright
light (>1000 lx).



Clocks&Sleep 2022, 4 585

Table 1. Descriptive statistics of cognitive task outcomes.

Min. 1st Quantile 3rd Quantile Max. Median Mean Standard
Deviation

PVT

Median reaction time (ms) 260.0 366.0 483.0 860.0 419.5 431.3 88.6

Hit rate (%) 40.5 91.9 100.0 100.0 97.3 94.7 7.6

False alarm rate (%) 0.0 0.0 2.7 43.2 0.0 2.1 3.6

Inverse efficiency score 271.8 392.7 555.4 1644.0 456.6 487.2 90.3

Number of lapses 0.0 2.0 14.0 37.0 7.0 9.4 8.6

N-back

Median reaction time (ms) 329.5 454.2 694.8 1192.0 571.0 587.0 161.6

Hit rate (%) 46.7 93.3 100.0 100.0 100.0 95.7 7.7

False alarm rate (%) 0.0 0.0 3.3 26.7 3.3 3.2 4.0

Inverse efficiency score 336.3 511.6 789.8 1876.4 635.9 667.8 213.4

d′ 1.0 3.0 4.0 4.0 3.5 3.4 0.6

Visual search

Median reaction time (ms) 315.0 2225.8 3514.5 7084.5 2747.5 2924.6 1094.2

Hit rate (%) 40.2 84.3 94.1 100.0 90.2 87.1 10.6

False alarm rate (%) 0.0 5.9 14.7 59.8 9.8 12.6 10.3

Inverse efficiency score 887.0 2570.0 3969.0 14,069.4 3131.8 3356.6 1198.9

Search efficiency slope
(ms/item) −51.6 19.5 54.0 147.7 36.1 39.0 28.7

The PVT task had 69 participants with 1305 observations. The visual search task had 65 participants with
1215 observations. The N-back task had 31 participants with 586 entries.

Associations with sleepiness were observed for all three of our tasks. In the case of PVT,
statistical analyses revealed negative correlations of sleepiness with performance in atten-
tion (Table 2; Figure 4A). Thus, higher sleepiness scores were associated with longer reaction
time (coef. = 5.37 ms/KSS; Figure 4A), increased number of lapses (coef. = 0.46 number of
lapse/KSS) and higher inverse efficiency score (coef. = 6.99 score/KSS). Consistent with
these findings for the PVT results, sleepiness was associated with lower visual search perfor-
mance (Table 3; Figures 4C and 6B). Higher sleepiness was correlated with higher reaction
time (coef. = 47.76 ms/KSS), false alarm rate (coef. = 0.37 %/KSS) and inverse efficiency
score (coef. = 66.54 score/KSS), as well as decreased hit rate (coef. = −0.37 %/KSS). We had
fewer records for the N-back short-term memory task, because of problems with the way
the task had been presented in phase 1 of the study. In this smaller sample size, the only
relationship between task performance and predictors was between inverse efficiency score
and the KSS (Table 4). Sleepiness increased the score (coef. = 13.13 score/KSS; Figure 4B).

Table 2. Statistical models of psychomotor vigilance task (PVT) outcomes.

Median
Reaction
Time (ms)

Number of
Lapses Hit Rate (%) False Alarm

Rate (%)

Inverse
Efficiency
Score

Model-1
Intercept 413.13 7.82 94.89 1.90 467.04

KSS
Coef. 5.37 0.46 −0.16 0.07 6.99

SE 0.77 0.08 0.08 0.05 1.30
p 6.01 × 10−12 9.08 × 10−9 6.53 × 10−2 1.29 × 10−1 9.76 × 10−8
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Table 2. Cont.

Median
Reaction
Time (ms)

Number of
Lapses Hit Rate (%) False Alarm

Rate (%)

Inverse
Efficiency
Score

Model-2
Intercept 434.14 9.36 95.96 1.83 482.37

Time awake (h)
Coef. 1.35 0.11 −0.15 0.05 2.25

SE 0.49 0.05 0.05 0.03 0.83
p 5.69 × 10−3 2.95 × 10−2 6.59 × 10−3 1.26 × 10−1 7.02 × 10−3

Ambient light
(log lx)

Coef. −4.37 −0.20 −0.65 0.04 −0.49
SE 3.19 0.32 0.35 0.20 5.46

p 1.71 × 10−1 5.46 × 10−1 6.56 × 10−2 8.42 × 10−1 9.29 × 10−1

Time awake ×
Ambient light

Coef. −0.56 −0.06 0.03 0.00 −0.51
SE 0.34 0.03 0.04 0.02 0.57

p 9.37 × 10−2 9.35 × 10−2 4.30 × 10−1 9.95 × 10−1 3.79 × 10−1

Model-3
Mesor 438.18 9.89 94.19 2.26 499.71

Cosine
Coef. 8.43 0.53 −0.40 0.25 12.87

SE 1.86 0.19 0.20 0.11 3.12
p 6.49 × 10−6 5.29 × 10−3 4.66 × 10−2 2.26 × 10−2 3.98 × 10−5

Sine
Coef. 3.21 0.06 0.07 0.10 3.91

SE 2.48 0.25 0.27 0.15 4.15
p 1.95 × 10−1 8.03 × 10−1 7.95 × 10−1 5.01 × 10−1 3.46 × 10−1

Amplitude 9.02 0.53 0.41 0.27 13.45
Nadir (clock time) 13:23 12:27 23:20 13:26 13:08

Linear mixed models of PVT outcomes (median reaction time, number of lapses, hit rate, false alarm rate, inverse
efficiency score). Three separate models were performed for each outcome. Model-1 predictor: Karolinska
Sleepiness Scale (KSS). Model-2 predictor: time awake (h) + ambient light (log lx) + time awake × ambient light.
Model-3 predictor: cosine (2π × time of day/24) + sine (2π × time of day/24). Bold results are significant after
correction for multiple testing (p < 0.01).

Table 3. Statistical models of visual search task outcomes.

Median
Reaction
Time (ms)

Slope
(Reaction
time/Number
of Distractor)

Hit Rate (%) False Alarm
Rate (%)

Inverse
Efficiency
Score

Model-1
Intercept 2736.72 36.71 88.16 11.48 3115.93

KSS
Coef. 47.76 0.60 −0.37 0.37 66.54

SE 10.36 0.36 0.09 0.08 13.16
p 4.44 × 10−6 9.54 × 10−2 1.72 × 10−5 7.14 × 10−6 4.91 × 10−7

Model-2
Intercept 3248.42 45.74 87.03 12.60 3708.16
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Table 3. Cont.

Median
Reaction
Time (ms)

Slope
(Reaction
time/Number
of Distractor)

Hit Rate (%) False Alarm
Rate (%)

Inverse
Efficiency
Score

Time awake (h)
Coef. −16.71 −0.57 −0.07 0.05 −15.74

SE 6.51 0.22 0.05 0.05 8.34
p 1.04 × 10−2 1.05 × 10−2 2.15 × 10−1 3.04 × 10−1 5.95 × 10−2

Ambient light
(log lx)

Coef. −133.95 −2.64 0.05 −0.05 −150.59
SE 46.48 1.59 0.37 0.36 59.57

p 4.03 × 10−3 9.86 × 10−2 8.86 × 10−1 8.94 × 10−1 1.16 × 10−2

Time awake ×
Ambient light

Coef. 0.05 0.18 0.00 0.01 1.93
SE 4.76 0.16 0.04 0.04 6.10

p 9.92 × 10−1 2.74 × 10−1 9.53 × 10−1 7.38 × 10−1 7.52 × 10−1

Model-3
Mesor 2992.66 39.68 86.47 13.16 3459.68

Cosine
Coef. −1.25 −0.84 −0.40 0.38 13.20

SE 23.91 0.84 0.20 0.19 30.62
p 9.58 × 10−1 3.15 × 10−1 4.48 × 10−2 4.75 × 10−2 6.67 × 10−1

Sine
Coef. 186.21 1.55 −0.17 0.20 202.96

SE 32.34 1.13 0.27 0.26 41.42
p 1.10 × 10−8 1.72 × 10−1 5.39 × 10−1 4.39 × 10−1 1.10 × 10−6

Amplitude 186.21 1.76 0.43 0.42 203.39
Nadir 18:02 19:54 01:30 13:51 17:45

Linear mixed models of visual search task outcomes (median reaction time, slope (reaction time/number of
distractor), hit rate, false alarm rate, inverse efficiency score). Three separate models were performed for each
outcome. Model-1 predictor: Karolinska Sleepiness Scale (KSS). Model-2 predictor: time awake (h) + ambient
light (log lx) + time awake × ambient light. Model-3 predictor: cosine (2π × time of day/24) + sine (2π × time of
day/24). Bold results are significant after correction for multiple testing (p < 0.01).

Table 4. Statistical models of N-back task outcomes.

Median
Reaction
Time (ms)

d′ Hit Rate
(%)

False Alarm
Rate (%)

Inverse
Efficiency
Score

Model-1
Intercept 563.86 3.47 97.20 2.91 612.82

KSS
Coef. 5.62 −0.02 −0.36 0.06 13.13

SE 2.37 0.01 0.16 0.09 3.52
p 1.80 × 10−2 1.06 × 10−1 2.51 × 10−2 5.05 × 10−1 2.09 × 10−4

Model-2
Intercept 639.83 3.37 94.53 2.47 744.37

Time awake (h)
Coef. −3.16 0.00 0.06 0.02 −3.96

SE 1.29 0.01 0.09 0.05 1.94
p 1.44 × 10−2 7.71 × 10−1 5.25 × 10−1 7.00 × 10−1 4.22 × 10−2
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Table 4. Cont.

Median
Reaction
Time (ms)

d′ Hit Rate
(%)

False Alarm
Rate (%)

Inverse
Efficiency
Score

Ambient light
(log lx)

Coef. −21.63 0.02 0.49 0.22 −29.66
SE 8.69 0.05 0.60 0.32 13.13

p 1.32 × 10−2 7.39 × 10−1 4.12 × 10−1 4.87 × 10−1 2.43 × 10−2

Time awake ×
Ambient light

Coef. 1.02 0.00 −0.02 0.03 0.91
SE 0.90 0.00 0.06 0.03 1.36

p 2.57 × 10−1 4.25 × 10−1 7.09 × 10−1 4.19 × 10−1 5.04 × 10−1

Model-3
Mesor 591.74 3.38 95.45 3.12 676.42

Cosine
Coef. −4.64 0.00 −0.07 −0.02 −5.69

SE 5.53 0.03 0.38 0.20 8.28
p 4.02 × 10−1 9.37 × 10−1 8.60 × 10−1 9.28 × 10−1 4.92 × 10−1

Sine
Coef. 11.73 0.01 −0.43 −0.30 17.39

SE 7.05 0.04 0.48 0.26 10.56
p 9.69 × 10−2 8.24 × 10−1 3.73 × 10−1 2.52 × 10−1 1.00 × 10−1

Amplitude 12.61 0.01 0.43 0.30 18.30
Nadir (clock
time) 19:26 19:02 05:25 05:46 19:13

Linear mixed models of N-back task outcomes (median reaction time, d′ discriminability score, hit rate, false
alarm rate, inverse efficiency score). Three separate models were performed for each outcome. Model-1 predictor:
Karolinska Sleepiness Scale (KSS). Model-2 predictor: time awake (h) + ambient light (log lx) + time awake ×
ambient light. Model-3 predictor: cosine (2π × time of day/24) + sine (2π × time of day/24). Bold results are
significant after correction for multiple testing (p < 0.01).

Turning to the other elements of our conceptual model (Figure 3), we found as-
sociations between task performance and time awake for both PVT and visual search,
and between illuminance and performance for visual search (Tables 2 and 4). For time
awake, longer duration since awakening was associated with increases in reaction time
(coef. = 1.35 ms/h; Figure 6A) and inverse efficiency score (coef. = 2.25 score/h), and also
reduced hit rate (coef. = −0.15%/h) in the PVT. Conversely, longer time awake was associ-
ated with shorter reaction time (coef. =−16.71 ms/h; Figure 6B) and higher search efficiency
(lower search slope; coef. = −0.57 search slope/h) in the visual search. Higher illuminance
was associated with reduced reaction time (coef. = −133.95 ms/log lx; Figure 7A) in the
visual search.

The differing effects of time awake on PVT and visual search were also apparent in the
time-of-day analysis. There was a significant daily variation in both tasks, but a difference
in the time for highest performance. For PVT, median reaction time (Figure 7B), number
of lapses and inverse efficiency score all peaked at around 1 p.m. The time-of-day model
showed that visual search reaction time was the fastest (Figure 7C) and inverse efficiency
score the lowest around 18:00.



Clocks&Sleep 2022, 4 589

Clocks & Sleep 2022, 4, FOR PEER REVIEW  13 
 

 

hit rate (coef. = −0.15%/h) in the PVT. Conversely, longer time awake was associated with 
shorter reaction time (coef. = −16.71 ms/h; Figure 6B) and higher search efficiency (lower 
search slope; coef. = −0.57 search slope/h) in the visual search. Higher illuminance was 
associated with reduced reaction time (coef. = −133.95 ms/log lx; Figure 7A) in the visual 
search. 

 
Figure 6. Associations between time awake (h) and (A) psychomotor vigilance task (PVT) reaction 
times (ms; median for all presentations in an iteration of the task), (B) visual search median reaction 
time (ms). Linear regression fits between time awake and (A,B) median reaction times for each par-
ticipant record, with the distribution of slopes for fit lines shown in boxplots (box shows median ± 
inter-quartile range (IQR), whiskers extend to 1.5 × IQR with outliers as closed circles) to the right. 

 
Figure 7. (A) Associations between visual search reaction time and illuminance (log lx). Linear re-
gression fits between reaction time (median for all presentations in an iteration of the task) and 
illuminance for each participant record, with the distribution of slopes for fit lines shown in boxplots 
(box shows median ± IQR, whiskers extend to 1.5 × IQR with outliers as closed circles) to the right. 

Figure 6. Associations between time awake (h) and (A) psychomotor vigilance task (PVT) reaction
times (ms; median for all presentations in an iteration of the task), (B) visual search median reaction
time (ms). Linear regression fits between time awake and (A,B) median reaction times for each
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Figure 7. (A) Associations between visual search reaction time and illuminance (log lx). Linear
regression fits between reaction time (median for all presentations in an iteration of the task) and
illuminance for each participant record, with the distribution of slopes for fit lines shown in boxplots
(box shows median ± IQR, whiskers extend to 1.5 × IQR with outliers as closed circles) to the right.
(B,C) Associations between time of day and (B) psychomotor vigilance task (PVT) reaction times
(ms) and (C) visual search reaction times (ms). Scatter plots showing the distribution of visual search
reaction times across all participant records as a function of time of day. The red lines show the
harmonic fit (see Section 2), with horizontal blue line indicating mesor and vertical blue line showing
the time of nadir.
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4. Discussion

We report the generation of a smartphone app, Brighter Time, capable of simultane-
ously recording local light intensity and performance in attention, working memory and
visual search tasks on a user’s own Android device. Inclusion of a simple questionnaire
allows these data to be related to demographic parameters and self-reported sleep. We
further show in a pilot feasibility study that Brighter Time is able to reveal associations
between subjective sleepiness (KSS) and aspects of performance in all three of the cognitive
tasks (PVT, N-back and visual search) under real-world conditions. It also revealed daily
variation in PVT and visual search performance, and an association between illuminance
and aspects of visual search.

The primary objective of this work was to establish a method for capturing information
on light exposure and cognitive task performance at scale and under real-world conditions.
Brighter Time has a number of advantages for this purpose. It employs devices (Android
smartphones) that are already an intrinsic element of many lives. Smartphones are designed
to function across all commonly encountered light intensities and, thanks to their portability,
often accompany their user throughout their waking hours. We attempted to make the
cognitive tasks more engaging by ‘gamifying’ two of them and to keep the total time
taken to complete them as short as possible. In this study, we asked participants to access
Brighter Time three times per day, but did not specify times of day to do so, nor was
remuneration dependent on the number of tasks completed. Nevertheless, the median
number of iterations for each task was ≥20 across 7 days. Given that there were three tasks,
it follows that many subjects completed >63 Brighter Time tasks in a week. Recruitment and
subject initiation were also efficient. Brighter Time could be made available to download
from an app store, and installed and activated without experimenter involvement. The
combination of easy accessibility and user engagement raise the possibility of using Brighter
Time to collect large amounts of data.

Turning to the quality of cognitive task data produced by Brighter Time, our sustained
attention reaction time measures were broadly comparable with lab-based measurements.
Thus, in a lab-based sleep deprivation protocol, Grant and colleagues reported reaction
times between 250 and 500 ms according to sleepiness level for a 10-minute PVT applied on
a computer and between 200 and 300 ms for equivalent data collected on a smartphone for a
3-minute PVT [44]. Our mean reaction time in PVT is 430 ms, which is within this range, but
long for a population that was not sleep deprived and for a task run for a relatively short
duration (around 5 min) and on a smartphone. This suggests that running the Brighter
Time PVT in the real world captures a higher variation in performance than the similar
smartphone paradigm achieved in the laboratory conditions employed by Grant et al. [44].
We are less confident about our memory outputs of the N-back because fewer participants
completed this. In phase 1 of the study, we employed a three-back version, but this proved
too difficult (based on participant feedback and number of records with poor performance),
either because of the intrinsic nature of the task under real-world conditions, or because it
was imperfectly explained to the participants. We therefore switched to a two-back version
for phase 2. However, our results show that the two-back test may have been too easy, with
96% accuracy, which is higher than previous reports [45]. The N-back test thus requires
further optimisation (e.g., employing a shorter version of the three-back task) in future
versions of Brighter Time to achieve an appropriate level of difficulty.

One concern with any cognitive task is that performance may improve over time as
subjects become more adept at the task and/or develop more effective approaches (learn-
ing). Our participants practised all three tasks as part of the study initiation, but we did
not include a specific learning phase in the protocol. To determine whether learning was a
substantial consideration, we assessed changes in task performance over time (Supplemen-
tary Figure S2). Neither the PVT nor N-back tasks showed evidence of a strong learning
effect in this analysis. Visual search task reaction times did seem to improve across the
study. Accounting for this visual search learning curve in protocol design could be improve
future studies.
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A potential downside of collecting data from the subject’s own smartphone is that
measures of cognitive function could be impacted by variations in performance across
devices. We did not undertake a systematic investigation of device-to-device variation in
Brighter Time performance, which in any case could never be comprehensive given the
huge range of smartphone models in circulation (never mind variation within models).
Nevertheless, a feeling for the scale of the problem can be achieved by comparing PVT
reaction time as a function of smartphone manufacturer in our dataset (Supplementary
Figure S3). Reaction times are of particular concern as they require accurate logging of
subject response with respect to the precise timing of stimulus presentation. The plot of
reaction time by the manufacturer reveals that, while this parameter was broadly similar,
there was not full overlap of inter-quartile ranges across devices. We cannot be sure
whether such variability reflects systematic variation in device performance or imperfect
distribution of subjects with varying PVT performance across the smartphone models. In
either event, this plot confirms the desirability of accounting for inter-individual variability
in design and analyses of studies using Brighter Time to avoid introducing bias, and the
need to account for the potential for device-to-device variability to increase variance in task
performance measures when considering effect sizes and statistical power.

Ultimately, Brighter Time’s utility is defined by its ability to reveal influences on cogni-
tive performance. Figure 3 captures our hypothesised influences on cognitive performance.
As sleepiness is a common route via which both light and circadian time could influence
performance, we were especially interested in whether Brighter Time was able to reveal
associations between sleepiness and aspects of task performance. A positive correlation
between sleepiness and reaction time in vigilance tests has been reported under controlled
conditions (e.g., [3,46]). Brighter Time confirmed that such an association was also apparent
in our sample population during everyday life, with higher KSS scores (greater sleepiness)
being associated with longer reaction times, more lapses and higher inverse efficiency in
the PVT in our dataset. The impact of sleepiness was also apparent on other tasks, with
inverse efficiency score for the N-back task and reaction time, false alarm rate and inverse
efficiency on visual search, all indicating poorer performance at higher KSS scores.

The Brighter Time dataset was also able to reveal daily variations in performance for
the PVT and visual search. Interestingly, the optimal time of day for these two tasks was
different. Highest performance on PVT measures was in the early afternoon, whereas the
peak in visual search performance was delayed by around 5 hours to the early evening.
This implies that in our sample population, while sustained attention was highest around
the middle of the day, at least some of the processes required for visual search peaked in
the early evening [47].

Brighter Time provided tentative evidence for an association between illuminance and
performance. In our analysis, we accounted for the strong correlation between illuminance
and time of day (Figure 5D) by employing a model including both factors. This returned
significant associations between time of day and several parameters of the PVT and visual
search task. Accounting for this time-of-day effect, an association between illuminance and
visual search performance was observed. Higher illuminance was associated with shorter
reaction times which is an indicator of improved performance. The magnitude of this
effect was comparable with that associated with natural variations in subjective sleepiness,
with an estimated 250 ms reduction in vs. reaction time across 10–1000 lx, equivalent to
that predicted for a five-point change in KSS. However, interpretation of this outcome
should take account of the likely association between illuminance and screen brightness,
which itself could impact performance [48]. In designing Brighter Time, we considered
disabling the automatic screen brightness adjustment but decided that this would have a
greater impact on the association between ambient light level and screen visibility. Changes
in screen brightness are an unavoidable consequence of running these tasks under very
divergent lighting, and the user’s application of automatic screen brightness adjustment
functions (or other methods) represents a reasonable approach to ensure suitable visibility
under all circumstances (although under direct sunlight these maybe insufficient).



Clocks&Sleep 2022, 4 592

The Brighter Time approach has a number of limitations when it comes to measuring
light exposure. Our own validation and published work [29] indicates that Android light
meters provide a reasonable measure of illuminance, unlikely to approach the performance
of fully calibrated lux meters, but probably adequate to track large variations in light
exposure [41]. However, the smartphone light meter measures only illuminance, rather
than other more appropriate metrics such as melanopic irradiance [49,50]. Moreover, it
measures light in the direction that the smartphone is pointing, which is, by definition,
approximately opposite to the participant’s direction of view. In addition, participants
might be using sunglasses, so the observed illuminance may not be the true magnitude an
individual was exposed to. Finally, and perhaps most importantly, while Brighter Time can
measure illuminance at the time of task performance, there is no easy way for it to provide
an accurate log of light history. We know from experimental manipulations that integrated
light exposure over up to several hours can impact performance and other non-image
forming responses [19,51]. In principle, the app could record the smartphone’s measure of
illuminance continuously, but that would have a detrimental effect on battery life, and the
smartphone’s exposure to light could be different from that of its user when not in use. In an
attempt to address this problem, Brighter Time did request a response to the question ‘How
long you had been in your current lighting environment?’ before each task completion. In
practice, the appearance of implausible responses (>12 h) indicated that subjects interpreted
this question in different ways, and we did not include it in our analysis.

In summary, Brighter Time represents a viable option for collecting cognitive task
performance across waking hours over several days in everyday life from naïve subjects
without specialist knowledge or training. Its ease of use for both researcher and participant
means that it is readily scalable for large dataset collection. Brighter Time can also collect
responses to simple questionnaires, meaning that it can be used to explore relationships
between performance and demographic parameters, as well as self-assessed behavioural
state and sleep logs. While there may be room for improvement in the design of the
cognitive tasks (especially N-back), Brighter Time’s biggest limitation for our purposes is
its method of light measurement. Integration of the data collection elements of Brighter
Time with wearable light loggers represents an exciting opportunity to objectively assess
associations between cognitive performance and light exposure in real-world populations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/clockssleep4040045/s1, Table S1: App registration questionnaire;
Table S2: Questions upon every log on; Figure S1: Simulated impact of smartphone temporal
resolution on reaction times; Figure S2: Learning effects in the PVT, N-back and visual search
cognitive tasks; Figure S3: Varying PVT performance across the smartphone makes.
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