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Abstract: The purpose of this study is to characterize the impact of the timing and duration of missing
actigraphy data on interdaily stability (IS) and intradaily variability (IV) calculation. The performance
of three missing data imputation methods (linear interpolation, mean time of day (ToD), and median
ToD imputation) for estimating IV and IS was also tested. Week-long actigraphy records with no
non-wear or missing timeseries data were masked with zeros or ‘Not a Number’ (NaN) across a
range of timings and durations for single and multiple missing data bouts. IV and IS were calculated
for true, masked, and imputed (i.e., linear interpolation, mean ToD and, median ToD imputation)
timeseries data and used to generate Bland–Alman plots for each condition. Heatmaps were used
to analyze the impact of timings and durations of and between bouts. Simulated missing data
produced deviations in IV and IS for longer durations, midday crossings, and during similar timing
on consecutive days. Median ToD imputation produced the least deviation among the imputation
methods. Median ToD imputation is recommended to recapitulate IV and IS under missing data
conditions for less than 24 h.
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1. Introduction

In recent years, the use of wearable sensors for remote and longitudinal monitoring
has increased in prevalence across multiple disciplines. While wearables have decreased
in size and increased in battery life, current form factors still suffer from spurious or
missing data due to removal by users [1,2]. Spurious data due to non-wear (typically
repeated zero-values) can lead to unreliable results in some algorithms (e.g., mistaking
non-wear for sleep) and consequently, various methods for detecting non-wear have been
developed [3,4]. Similarly, bouts of missing data may limit accurate assessment. In general,
the threshold for tolerable amounts of spurious or missing timeseries data and algorithmic
methods for minimizing its impact through imputation has not been explicitly explored for
many applications.

In the field of sleep and circadian rhythms, accelerometry recorded from the wrist
(actigraphy) is commonly used to study ambulatory sleep-wake and activity patterns [5,6].
While some algorithms used to examine daily activity patterns may be more robust to
missing data, such as cosinor analysis [7], they often rely on underlying pattern matching
assumptions, which may not extend to populations with sleep-wake disturbances or devi-
ating activity patterns [8–10]. Nonparametric algorithms can quantitate activity patterns
without a priori assumptions about the shape of the activity patterns.

A set of commonly used nonparametric metrics is that of intradaily variability (IV)
and interdaily stability (IS). IV characterizes the average degree of hour-to-hour activity
variability within a day, and IS characterizes the regularity of hourly activity between
days. IV and IS have been examined in many hundreds of manuscripts and differences
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in these measures are associated with the severity and time course of a variety of disease
processes, including bipolar disorder, schizophrenia, and depression, among others [10–17].
However, using at least 5 days of continuous data without non-wear or missing periods
is recommended to make reliable estimations [18]. Moreover, based on the mathematical
structure of the calculations, these metrics are more sensitive to missing data than cosinor
analyses. The amount and timing of missing data and its relative impact on non-parametric
measures such as IV and IS is not well understood [19].

Several methods of timeseries imputation have been used to fill non-wear and missing
actigraphy data ranging from methods relying exclusively on data surrounding the gap
such as simple linear interpolation [20,21], methods relying on data from other days during
the same time of day such as time-of-day-based mean and median imputation [19,21],
and more sophisticated approaches leveraging larger datasets such as deep learning
methods [21]. However, the impact of the method used to impute the data, especially
in the context of long bouts of consecutive missing data, on the calculation of IV and IS
is unknown.

The purpose of this study is two-fold: (1) to determine the impact of the two missing
data phenotypes (i.e., spurious zero-values and missing “Not a Number” (NaN) values),
both in duration and clock time, on the calculation of IV and IS and (2) to determine
the utility of different imputation methods in replacing missing data when calculating
IV and IS. To accomplish this, we examined data obtained from the UK Biobank, a large,
community-based sample of adults in the United Kingdom.

2. Results
2.1. Participant Characteristics

The subset of n = 84 individuals randomly selected from the UK Biobank dataset pool
containing no identified non-wear were about half female (n = 47) and predominantly
white (n = 83). The age range during accelerometry data collection was diverse, with the
youngest and oldest included individuals being 47 and 77 years old, respectively (median
[IQR]: 64 [56–67] years). Townsend Deprivation Index, a measure of material deprivation
within a population with higher scores representing higher material deprivation, ranged
from −6.18 to 4.69 (median [IQR]: −2.2 [−3.75–0.25]). IV ranged from 0.46 to 1.62 (median
[IRQ]: 0.91 [0.78–1.06]. IS ranged from 0.15 to 0.80 (median [IRQ]: 0.54 [0.44–0.63]).

2.2. Single Gap Imputation—IS

Simulation of missing timeseries data via masking across various durations and
starting times of day indicates that missing data primarily impacts the mean difference
in IS (Figure 1). When masked with zeros compared to complete data, IS mainly be-
comes artificially lower (Figures 1E and S2), has a moderate increase in standard deviation
(Figure S3). An increase in magnitude of the slope, especially during the overnight, indi-
cating that IS estimation was systematically worse with smaller values of IS (Figure S4).
When masked with NaNs compared to complete data, IS mainly becomes artificially higher
(Figures 1D and S2), has a low increase in standard deviation (Figure S3), and has little
effect on slope (Figure S4). Longer durations of masked data as well as mid-morning starts
had the largest impact on IS with lower values reported for masking with zero and higher
values reported for masking with NaNs (Figure 1D–E). Linear interpolation was generally
poor at recapitulating true IS (Figure 1A). While it reduced the error for missing data dura-
tions less than approximately 7 h (Figure 1A), it did not do so for longer durations at many
times of day. Linear interpolation also worsened the standard deviation (Figure S3) and
slope (Figure S4) calculations for missing data durations longer than 7 h. Mean time-of-day
(ToD) imputation allowed for recapitulation of most IS values except for long duration data
gaps that started during the night (Figure 1B). Mean ToD imputation kept both standard
deviation (Figure S3) and slope (Figure S4) relatively low. Median ToD imputation had the
best results in that the imputed data led to IS that were within 0.05 units of actual IS values
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(Figure 1C) and, as with mean imputation, kept both the standard deviation (Figure S3)
and the slope (Figure S4) relatively low.
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Figure 1. Rhythm regularity (IS) for a single missing data gap starting on a representative day
(Tuesday). Data are the mean difference between the masked and true IS values (D,E) or imputed
and true IS values (A–C), as extracted from Bland–Altman plots. Three different imputation methods
[linear interpolation (A), mean Time of day (ToD) (B), median ToD (C)] and two masking methods
[NaNs (D), zeros (E)] are presented for varied durations (y-axis) and timing (x-axis) of masked data
gaps. Values are color-coded as indicated with best performance being closer to 0 (green). For heat
maps of each individual day of rhythm regularity, see Supplemental Data Figure S2.

2.3. Single Gap Imputation—IV

Simulation of missing data via masking across various durations and starting times
of day indicates that missing data primarily impacts the mean difference in IV for data
masked with zeros but not for data masked with NaNs. When masked with zeros compared
to the complete dataset, IV becomes artificially both lower and higher than would have
been calculated, especially with data gaps longer than 13 h (Figures 2E and S5). When
masked with NaNs compared to the complete dataset, IV showed little deviation in mean
(Figures 2D and S5). Masking had a moderate impact on increasing the standard deviation
in the difference between IV calculated from true and masked datasets (Figure S6). Masking
did not, however, have a large impact on the slope (Figure S7), indicating that the rela-
tionship between IV calculated from complete and missing datasets did not systematically
vary based on the magnitude of IV. Linear interpolation (Figure 2A) was generally poor at
recapitulating true IV. For most durations and times of day, linear interpolation of missing
data made IV less accurate than if the data were masked with zeros, especially at dura-
tions longer than approximately 13 h (Figure 2A). Linear interpolation also worsened the
standard deviation (Figure S6) and slope (Figure S7) calculations for many combinations
of missing data durations and start times. Both mean ToD (Figure 2B) and median ToD
(Figure 2C) imputation similarly corrected errors in IV due to missing data, though neither
decreased the standard deviation error (Figure S6).

2.4. Multiple Gap Imputation—IS

While a single short period of missing data has relatively little impact on the calcu-
lation of IS (Figure 1D,E), multiple bouts of short (115 min, 140 min, Figure 1) missing
data segments impacted IS when masked with zeros but not when masked with NaNs
(Figures 3D,E and S8). When masking with zeros compared to complete IS data, the great-
est deviations from the mean occurred with a banding pattern, indicating that missing
data during the same time on consecutive days affects IS scores most (Figure 3E). Standard
deviation has a moderate increase in both masking conditions. Linear interpolation and
mean ToD and median ToD imputation methods each performed well and similarly across
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mean and slope measures (Figures 3, S8 and S10). Standard deviation was elevated for
linear interpolation compared to other imputation methods and masking (Figure S9).
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Figure 2. Rhythm fragmentation (IV) for a single missing data gap starting on a representative day
(Tuesday). Data are the mean difference between the masked and true IV values (D,E) or imputed
and true IV values (A–C) as extracted from Bland–Altman plots. Three different imputation methods
[linear interpolation (A), mean ToD (B), median ToD (C)] and two masking methods [NaNs (D), zeros
(E)] are presented for varied durations (y-axis) and timing (x-axis) of masked data gaps. Values are
color-coded as indicated with best performance being closer to 0. For heat maps of each individual
day of rhythm fragmentation, see Supplemental Data Figure S5.
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Figure 3. Rhythm regularity (IS) for two gaps (gap 1: 115 min, gap 2: 140 min) of missing data
starting on a representative day (Tuesday). Data are the mean difference between the masked and
true IS values (D,E) or imputed and true IS values (A–C), as extracted from Bland–Altman plots.
Three different imputation methods [linear interpolation (A), mean ToD (B), median ToD (C)] and
two masking methods [NaNs (D), zeros (E)] are presented for varied durations between bouts (y-axis)
and timings (x-axis) of masked data gaps. Values are color-coded as indicated with best performance
being closer to 0; NaN values indicate where values could not be calculated due to dataset constraints.
For heat maps of each individual day of rhythm regularity, see Supplemental Data Figure S8.

2.5. Multiple Gap Imputation—IV

Masked data predominantly affected IV score with at least one gap of missing data
at midday, in a banding pattern (Figure 4D,E). Linear, mean, and median imputation
methods each performed well and similarly across mean, standard deviation, and slope
(Figures 4 and S11–S13).
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Figure 4. Rhythm fragmentation (IV) for two gaps (gap 1:115 min, gap 2:140 min) of missing data
starting on a representative day (Tuesday). Data are the mean difference between the masked and
true IV values (D,E) or imputed and true IV values (A–C), as extracted from Bland–Altman plots.
Three different imputation methods [linear interpolation (A), mean ToD (B), median ToD (C)] and
two masking methods [NaNs (D), zeros (E)] are presented for varied durations between bouts (y-axis)
and timing (x-axis) of masked data gaps. Values are color-coded as indicated with best performance
being closer to 0; NaN values indicate where values could not be calculated due to dataset constraints.
For heat maps of each individual day of rhythm fragmentation, see Supplemental Data Figure S11.

3. Discussion

Our results suggest that IS and IV are most sensitive to missing data with start times
midday and morning, respectively, and both are sensitive to longer missing data durations.
The magnitude of the impact of missing data is not insubstantial, being similar to the differ-
ences that have been observed between controls and a variety of populations, including
those with either unipolar or bipolar depression [11,12]. Thus, failure to accurately account
for missing data can lead to inappropriate conclusions, especially if there is an expectation
of differential data loss between two populations (i.e., one more likely to not wear the
activity recorder). However, imputing periods of missing data with the median acceleration
measured at other days at those times of day can adequately replace data loss up to 24 h
and recapitulate expected IS and IV calculated from a full week of data.

While both IS and IV are impacted by non-wear data phenotypes (i.e., masking with
zeros), sensor failure phenotypes (i.e., masking with NaNs) has relatively little impact on IV
for data loss up to 24 h. The reason that IV is more robust to missing data as compared to IS
may be due to the formulation of these calculations and their normalization. For IV, the raw
data for a week are collapsed into N-1 terms representing the number of hours in a week
minus one (i.e., 167), whereas for IS the data are collapsed into p terms, representing the
number of hours in a day (i.e., 24). Due to this, one hour of missing data will impact one out
of 167 terms (0.6%) in the calculation of IV and one out of 24 terms (4.2%) in the calculation
of IS. This also indicates that these metrics are more sensitive to spurious, non-wear data
than sensor failure phenotypes indicating the importance of non-wear detection.

Timing of missing data also had an impact with midday gaps affecting results at
shorter durations. This may be due to the typical patterns of human activity with highest
activity levels and day-to-day variability generally occurring midday. Missing data during
this timeframe would therefore have a greater impact compared to other timeframes on
both the calculation of IV and IS. This is also consistent with the finding that for multiple
gaps, similar times on consecutive days and midday crossovers had the greatest impact on
IS, whereas IV was particularly sensitive to midday gaps.

The imputation methods selected here are statistical and are not meant to recreate
the missing timeseries data but to improve the accuracy of IV and IS calculation. The
simplest methods of imputation were initially selected to explore this application. Other
imputation methods could have been chosen and may very well improve upon the results
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observed here, however, the median imputation method, and to a lesser extent the mean
imputation method, is sufficient to replace most missing data <24-h duration. We speculate
that median imputation was less susceptible to outliers and captured more signal variability
than median imputation. We did not impute data that were shorter than one hour, though
our results indicating that intentionally masking for two hours has relatively little impact
on IV and IS imply that a 1 h data loss would have minimal impact on IV and IS and does
not need to be detected or imputed for such calculations.

We tested these algorithms in a randomly selected population of community dwelling
individuals using a specific actigraph (Axivity). While it is unlikely that the choice of
monitor would change the implications of these findings, given the continued small impact
of data loss on slope even after imputation, it is possible that populations in which there is
an expectation for less consolidated or more irregular activity could benefit more from a
different imputation method.

Overall, IV and IS measured from wrist actigraphy is sensitive to both known and
unknown missing data. Median ToD imputation is capable of recapitulating IV and IS
values under missing data conditions for up to 24 h from a week-long recording. Future
studies should explore the stability of IV and IS with variable recording durations.

4. Materials and Methods
4.1. Dataset

Data were obtained from the UK Biobank database (project ID 63099), a large-scale
biomedical research resource with >500,000 participants recruited from the general popu-
lation of England, Wales, and Scotland, aged between 40 and 69 years in 2006–2010 [22].
Between 2013 and 2015, a subset (n = 103,685) of individuals participated in wrist actig-
raphy data collection. Participants were asked to wear a wrist actigraph (AX3, Axivity,
Newcastle upon Tyne, UK) for one week. The device, similar to a standard fitness tracker,
is equipped with a tri-axial accelerometer recording at 100 Hz with a dynamic range of
±8 g. We excluded participants who withdrew, had unreliable data or calibration, wear du-
rations as defined by UK Biobank of shorter than 5 days, or recordings during the Daylight
Savings time switch or the week following. We also excluded participants with non-wear
periods spanning multiple days, leaving a final sample of 83,937 participants (Figure 5A).
These data were down-sampled to a single vector magnitude value with noise and gravity
removed for every 30 s interval (biobank accelerometer analysis, Python 3.6.1) [23]. A
subset (0.01%, n = 84) of individuals with at least 7 days of data and no bouts of non-wear
(588 total days) were randomly selected for further analysis of the impact of missing data
on the calculation of IV and IS (Figure 5B).
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Number values (NaNs) to simulate bouts of non-wear and missing data at multiple times 

of day, varying both bout duration and duration between multiple bouts (detailed in 

4.3.1). Three methods of imputation were used to statistically replace missing data: linear 

interpolation, mean ToD imputation, and median ToD imputation (detailed in 4.3.2). IV 

and IS were calculated for each individual with each mask tested. Bland–Altman plots 

Figure 5. Consort Diagram. In total, 103,685 files were assessed for eligibility, of which 19,747 were
excluded, resulting in 83,938 accelerometer files (A). A random subset (N = 84 files, 0.01% of extracted
sample) of individuals with at least 7 days of data without missing data were subjected to masking,
imputation, IV and IS calculation (B).
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4.2. Calculation of IV and IS

IV and IS are common metrics calculated in the assessment of activity patterns span-
ning multiple days. Both metrics leverage hourly average activity and hour-to-hour changes
in activity levels to characterize patterns of activity. IV quantifies the degree of consolida-
tion of activity by calculating the normalized ratio of the sum of the squared hour-to-hour
changes in activity to the sum of the squared difference in hourly activity from the overall
average across the data, and is calculated as:

IV =
n ∑n

i=2(Xi − Xi−1)
2

(n − 1)∑n
i=1

(
Xi − X

)2 (1)

where n is the total number of hours in the data collection (168 h for 7 days of data), Xi is
the hourly average at hour i, and X is the average across all hours. IV values range from
0 to 2, with lower values representing greater consolidation.

IS quantifies the degree of stability of the hourly activity pattern between days by
calculating the normalized ratio of the sum of the squared difference in average activity
from each hour of the day from overall average activity to the sum of the squared difference
in hourly activity from the overall average across the data, and is calculated as:

IS =
n ∑

p
h=1

(
Xh − X

)2

p ∑n
i=1

(
Xi − X

)2 (2)

where p is the hour of the day ranging from 1 to 24 and Xh is the average hourly value across
all days [24]. IS values range from 0 to 1 with higher values representing greater regularity.

4.3. Missing Data Simulation and Imputation

For each participant, actigraphy timeseries data were masked with zeros or Not a
Number values (NaNs) to simulate bouts of non-wear and missing data at multiple times
of day, varying both bout duration and duration between multiple bouts (detailed in
4.3.1). Three methods of imputation were used to statistically replace missing data: linear
interpolation, mean ToD imputation, and median ToD imputation (detailed in 4.3.2). IV and
IS were calculated for each individual with each mask tested. Bland–Altman plots were
generated using the masked and imputed IV and IS values as compared to the full data
values. Mean, standard deviation, and slopes extracted from the Bland–Altman plots were
used to generate heatmaps spanning the masking conditions (Figure 1B) (detailed in 4.4.).
All data processing was done using MATLAB (R2020b, Mathworks, Natick, MA, USA).

4.3.1. Masking

A series of masks were generated to simulate missing data by artificially replacing data
with zeros or NaNs to represent possible phenotypes of missing data. Replacement with
zeros is representative of the sensor being removed from the wrist but still collecting data.
Replacement with NaNs is representative of the sensor turning off and collecting no data.
Single bouts of missing data were simulated by varying the bout duration from 1 to 23 h in
2 h increments and the bout starting time across the day in 2 h increments (Figure 6A,B).
We also examined instances in which we simulated multiple bouts of missing data on a
single day and bouts missing at similar times on consecutive days. The selection of the
multiple bout scheme was informed by missing data trends in the UK Biobank dataset.
Missing data patterns within the complete UK Biobank dataset (Figure S1) indicated that
two bouts of missing data were most common. The harmonic means of the duration of
the first and second missing data bouts indicated representative durations of 113 min
and 136 min, respectively (Figure S1). The start time of the first bout and the duration
between the two bouts were varied. Start time was varied in two-hour increments across
the day and week and the duration between gaps was varied in two-hour increments from
3 to 47 h (Figure 6C,D).
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Figure 6. Mask overview. Data were systematically removed in single gaps at various durations (A),
as well as single gaps starting at various times (B), while multiple gaps of missing data were varied
in duration between gaps (C), as well as gap start time (D).

4.3.2. Imputation Methods

Three common methods were selected to impute data, including linear interpolation,
mean ToD imputation, and median ToD imputation. In linear interpolation, missing data
are replaced with a line with slope and intercept set by the surrounding non-missing points
and was calculated as:

alinear(t) =
aend+1 − astart−1

tend+1 − tstart−1
∗ (t − tstart−1) + astart−1 (3)

where a is the actigraphy value, alinear is the imputed actigraphy value, t is the time, and
start and end correspond to the start and end of the missing data segment, respectively.
Note that imputation was performed only in the range of the missing data segments.

Mean ToD imputation, which is commonly used and is incorporated into the Biobank
Accelerometry Analysis Python package, relies on the mean of the data on non-missing
days at the corresponding timepoints of missing data to impute and is calculated as:

amean(t) =
1

N − 1 ∑N
i=1 ai, ToD(t) (4)

where amean is the mean ToD imputed actigraphy value, N is the number of instances of
time of day, ToD, corresponding with time, t. Imputation was performed in the range of the
missing data gap and without including the missing data value in the mean calculation.

Median ToD imputation was calculated similarly to mean ToD imputation but uses
the median of the non-missing days at the corresponding timepoints and is less sensitive to
outliers. Median ToD imputation was calculated as:

amedian(t) = aToD(t)

[
N − 1

2

]
(5)

where amedian is median ToD imputed actigraphy value. Imputation was performed in the
range of the missing data gap and without including the missing data value.

Generally, the imputation methods are statistical timeseries gap filling methods and
as such are not identical to the data that have been masked (Figure 7). Linear interpolation
is most sensitive to the values surrounding the missing data but does not consider data
from other days without missing data (Figure 7B). Mean ToD imputation (Figure 7C) has
greater sensitivity to outliers but less variability than median ToD imputation (Figure 7D).
It is important to note that these imputation methods are intended to improve estimates of
IV and IS rather than replace missing timeseries data.
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interpolation (B) is highly dependent on the values surrounding the gap, mean ToD imputation (C) 

Figure 7. Example of a segment with complete data (A), and linear interpolation data (B), mean ToD
imputed data (C), and median ToD imputed data (D) on 5 h of missing data starting at 10 am. Linear
interpolation (B) is highly dependent on the values surrounding the gap, mean ToD imputation
(C) has more smoothing than median ToD imputation (D); each of the imputation methods are
statistical and do not perfectly represent the true data (A).

4.4. Bland–Altman Plots and Heat Maps

Bland–Altman plots were used to assess the impact of missing data and the perfor-
mance of the imputation methods on the calculation of IS and IV. The mean, standard
deviation, and slope from each of the Bland–Altman plots are presented as heat maps
for clarity on the impact of missing data timing and duration on estimation of IV and IS.
Bland–Altman plots were generated using the negative controls (masked or imputed) IV
and IS values compared to the positive control (unadulterated data). The difference from
the positive control was plotted against the average between the two compared measures
for each condition (Figure 8). The mean difference, 1.96 × standard deviation, and the
slope were extracted from the Bland–Altman plots for each of the masking conditions and
imputation method. Heat maps were generated across all days of the week for both single
and multiple masking conditions.
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Figure 8. Sample Bland–Altman plots for IS masked with a single 5 h gap starting at 10 am and
imputed. The solid black line depicts the mean, while dotted lines indicate ±1.96 × standard
deviation and the gray line represents the linear fitted slope. Performance of linear interpolation (A),
mean imputation (B), median imputation (C), data masked with NaNs (D), and data masked with
zeros (E) are presented.



Clocks&Sleep 2022, 4 506

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/clockssleep4040039/s1. Supplementary Materials contain his-
tograms of non-wear episodes in the general population and heatmaps of Bland–Altman plot means,
1.96*standard deviation, and slopes for all days of the week. Code supporting this project can be
found at https://github.com/ZeitzerLab/IVIS_Imputation (made available on 26 September 2022).

Author Contributions: Conceptualization, L.W., R.L. and J.Z.; methodology, L.W., D.C., R.L. and
J.Z.; software, L.W. and D.C.; validation, L.W., R.L. and J.Z.; formal analysis, L.W.; investigation,
L.W.; resources, J.Z.; data curation, L.W.; writing—original draft preparation, L.W., R.L. and J.Z.;
writing—review and editing, L.W., R.L. and J.Z.; visualization, L.W. and R.L.; supervision, J.Z.; project
administration, J.Z.; funding acquisition, N/A. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: This research has been conducted using data from UK Biobank, a
major biomedical database. Data that contributed to this research can be requested at https://www.
ukbiobank.ac.uk/ (accessed on 16 September 2020).

Acknowledgments: Some of the computing for this project was performed on the Sherlock cluster. We
would like to thank Stanford University and the Stanford Research Computing Center for providing
computational resources and support that contributed to these research results. This research has
been conducted using the UK Biobank Resource under Application Number 63099.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lok, R.; Zeitzer, J.M. A temporal threshold for distinguishing off-wrist from inactivity periods: A retrospective actigraphy

analysis. Clocks Sleep 2020, 2, 466–472. [CrossRef] [PubMed]
2. Ustinov, Y.; Lichstein, K.L. Actigraphy reliability with normal sleepers. Behav. Sleep Med. 2012, 11, 313–320. [CrossRef]
3. Ahmadi, M.N.; Nathan, N.; Sutherland, R.; Wolfenden, L.; Trost, S.G. Non-wear or sleep? Evaluation of five non-wear detection

algorithms for raw accelerometer data. J. Sports Sci. 2019, 38, 399–404. [CrossRef] [PubMed]
4. Choi, L.; Liu, Z.; Matthews, C.E.; Buchowski, M.S. Validation of accelerometer wear and nonwear time classification algorithm.

Med. Sci. Sports Exerc. 2011, 43, 357. [CrossRef] [PubMed]
5. Sadeh, A.; Hauri, P.J.; Kripke, D.F.; Lavie, P. The role of actigraphy in the evaluation of sleep disorders. Sleep 1995, 18, 288–302.

[CrossRef] [PubMed]
6. Ancoli-Israel, S.; Cole, R.; Alessi, C.; Chambers, M.; Moorcroft, W.; Pollak, C.P. The role of actigraphy in the study of sleep and

circadian rhythms. Sleep 2003, 26, 342–392. [CrossRef] [PubMed]
7. Cornelissen, G. Cosinor-based rhythmometry. Theor. Biol. Med. Model. 2014, 11, 1–24. [CrossRef] [PubMed]
8. van Someren, E.J.W.; Swaab, D.F.; Colenda, C.C.; Cohen, W.; McCall, W.V.; Rosenquist, P.B. Bright light therapy: Improved

sensitivity to its effects on rest-activity rhythms in Alzheimer patients by application of nonparametric methods. Chronobiol. Int.
1999, 16, 505–518. [CrossRef] [PubMed]

9. Youngstedt, S.D.; Kripke, D.F.; Elliott, J.A.; Klauber, M.R. Circadian abnormalities in older adults. J. Pineal Res. 2001, 31, 264–272.
[CrossRef] [PubMed]

10. van Someren, E.J.W.; Kessler, A.; Mirmiran, M.; Swaab, D.F. Indirect bright light improves circadian rest-activity rhythm
disturbances in demented patients. Biol. Psychiatry 1997, 41, 955–963. [CrossRef]

11. Jones, S.H.; Hare, D.J.; Evershed, K. Actigraphic assessment of circadian activity and sleep patterns in bipolar disorder. Bipolar
Disord. 2005, 7, 176–186. [CrossRef] [PubMed]

12. Berle, J.O.; Hauge, E.R.; Oedegaard, K.J.; Holsten, F.; Fasmer, O.B. Actigraphic registration of motor activity reveals a more
structured behavioural pattern in schizophrenia than in major depression. BMC Res. Notes 2010, 3, 149. [CrossRef] [PubMed]

13. Mitchell, J.A.; Quante, M.; Godbole, S.; James, P.; Hipp, J.A.; Marinac, C.R.; Mariani, S.; Cespedes Feliciano, E.M.; Glanz,
K.; Laden, F.; et al. Variation in actigraphy-estimated rest-activity patterns by demographic factors. Chronobiol. Int. 2017,
34, 1042–1056. [CrossRef]

14. Satlin, A.; Volicer, L.; Ross, V.; Herz, L.; Campbell, S. Bright light treatment of behavioral and sleep disturbances in patients with
Alzheimer’s disease. Am. J. Psychiatry 1992, 149, 1028–1032. [CrossRef] [PubMed]

15. Scherder, E.; Knol, D.; van Tol, M.J.; Van Someren, E.; Deijen, J.B.; Swaab, D.; Scheltens, P. Effects of high-frequency cranial
electrostimulation on the rest-activity rhythm and salivary cortisol in Alzheimer’s Disease: A pilot study. Dement. Geriatr. Cogn.
Disord. 2006, 22, 267–272. [CrossRef]

https://www.mdpi.com/article/10.3390/clockssleep4040039/s1
https://www.mdpi.com/article/10.3390/clockssleep4040039/s1
https://github.com/ZeitzerLab/IVIS_Imputation
https://www.ukbiobank.ac.uk/
https://www.ukbiobank.ac.uk/
http://doi.org/10.3390/clockssleep2040034
http://www.ncbi.nlm.nih.gov/pubmed/33198122
http://doi.org/10.1080/15402002.2012.688779
http://doi.org/10.1080/02640414.2019.1703301
http://www.ncbi.nlm.nih.gov/pubmed/31826746
http://doi.org/10.1249/MSS.0b013e3181ed61a3
http://www.ncbi.nlm.nih.gov/pubmed/20581716
http://doi.org/10.1093/sleep/18.4.288
http://www.ncbi.nlm.nih.gov/pubmed/7618029
http://doi.org/10.1093/sleep/26.3.342
http://www.ncbi.nlm.nih.gov/pubmed/12749557
http://doi.org/10.1186/1742-4682-11-16
http://www.ncbi.nlm.nih.gov/pubmed/24725531
http://doi.org/10.3109/07420529908998724
http://www.ncbi.nlm.nih.gov/pubmed/10442243
http://doi.org/10.1034/j.1600-079X.2001.310311.x
http://www.ncbi.nlm.nih.gov/pubmed/11589762
http://doi.org/10.1016/S0006-3223(97)89928-3
http://doi.org/10.1111/j.1399-5618.2005.00187.x
http://www.ncbi.nlm.nih.gov/pubmed/15762859
http://doi.org/10.1186/1756-0500-3-149
http://www.ncbi.nlm.nih.gov/pubmed/20507606
http://doi.org/10.1080/07420528.2017.1337032
http://doi.org/10.1176/AJP.149.8.1028
http://www.ncbi.nlm.nih.gov/pubmed/1353313
http://doi.org/10.1159/000095108


Clocks&Sleep 2022, 4 507

16. Scherder, E.J.A.; van Someren, E.J.W.; Swaab, D.F. Transcutaneous electrical nerve stimulation (TENS) improves the rest-activity
rhythm in midstage Alzheimer’s disease. Behav. Brain Res. 1999, 101, 105–107. [CrossRef]

17. Vinzio, S.; Ruellan, A.; Perrin, A.E.; Schlienger, J.L.; Goichot, B. Actigraphic assessment of the circadian rest-activity rhythm in
elderly patients hospitalized in an acute care unit. Psychiatry Clin. Neurosci. 2003, 57, 53–58. [CrossRef] [PubMed]

18. Blume, C.; Santhi, N.; Schabus, M. nparACT’ package for R: A free software tool for the non-parametric analysis of actigraphy
data. MethodsX 2016, 3, 430–435. [CrossRef]

19. Comiran Tonon, A.; Pilz, L.K.; Amando, G.R.; Constantino, D.B.; Boff Borges, R.; Caye, A.; Rohrsetzer, F.; Souza, L.; Fisher, H.L.;
Kohrt, B.A.; et al. Handling missing data in rest-activity time series measured by actimetry. Chronobiol. Int. 2022, 39, 964–975.
[CrossRef] [PubMed]

20. Gershon, A.; Ram, N.; Johnson, S.L.; Harvey, A.G.; Zeitzer, J.M. Daily actigraphy profiles distinguish depressive and interepisode
states in bipolar disorder. Clin. Psychol. Sci. 2016, 4, 641–650. [CrossRef] [PubMed]

21. Jang, J.H.; Choi, J.; Roh, H.W.; Son, S.J.; Hong, C.H.; Kim, E.Y.; Kim, T.Y.; Yoon, D. Deep learning approach for imputation of
missing values in actigraphy data: Algorithm development study. JMIR mHealth uHealth 2020, 8, e16113. [CrossRef] [PubMed]

22. Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M.; et al. UK biobank:
An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015,
12, e1001779. [CrossRef] [PubMed]

23. Doherty, A.; Jackson, D.; Hammerla, N.; Plötz, T.; Olivier, P.; Granat, M.H.; White, T.; Van Hees, V.T.; Trenell, M.I.; Owen, C.G.; et al.
Large scale population assessment of physical activity using wrist worn accelerometers: The UK Biobank Study. PLoS ONE 2017,
12, e0169649. [CrossRef]

24. Witting, W.; Kwa, I.H.; Eikelenboom, P.; Mirmiran, M.; Swaab, D.F. Alterations in the circadian rest-activity rhythm in aging and
Alzheimer’s disease. Biol. Psychiatry 1990, 27, 563–572. [CrossRef]

http://doi.org/10.1016/S0166-4328(98)00150-8
http://doi.org/10.1046/j.1440-1819.2003.01079.x
http://www.ncbi.nlm.nih.gov/pubmed/12519455
http://doi.org/10.1016/j.mex.2016.05.006
http://doi.org/10.1080/07420528.2022.2051714
http://www.ncbi.nlm.nih.gov/pubmed/35350931
http://doi.org/10.1177/2167702615604613
http://www.ncbi.nlm.nih.gov/pubmed/27642544
http://doi.org/10.2196/16113
http://www.ncbi.nlm.nih.gov/pubmed/32445459
http://doi.org/10.1371/journal.pmed.1001779
http://www.ncbi.nlm.nih.gov/pubmed/25826379
http://doi.org/10.1371/journal.pone.0169649
http://doi.org/10.1016/0006-3223(90)90523-5

	Introduction 
	Results 
	Participant Characteristics 
	Single Gap Imputation—IS 
	Single Gap Imputation—IV 
	Multiple Gap Imputation—IS 
	Multiple Gap Imputation—IV 

	Discussion 
	Materials and Methods 
	Dataset 
	Calculation of IV and IS 
	Missing Data Simulation and Imputation 
	Masking 
	Imputation Methods 

	Bland–Altman Plots and Heat Maps 

	References

