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Abstract: Previous studies of animal behavioural sleep is mainly divided into two study types,
observation by video recording or counts by sensor, both of which require a complex environment
and procedure. An actigraph unit is a commercially available product which can provide non-
invasive monitoring human rest/activity cycles. The goal of this study was to evaluate whether
actigraphy can be applied for analysing behavioural sleep in rats, since no reports have described
utilization of the actigraphy unit for monitoring sleep of small animals. The actigraph unit was
held on the chest of eight male rats by a loose elastic belt. The rats spent two days in a normal
condition, followed by two days of sleep deprivation. Total counts measured by the actigraph could
be clearly divided into two phases, sleep phase and awake phase, when the rats were kept in the
normal cage. Next, the rats were moved into the sleep-deviation cage, and the total counts were
significantly higher during daytime, indicating the successful induction of sleep deprivation. These
results showed that the actigraphy unit monitored rest/activity cycles of rats, which will contribute
to making sleep behaviour experiments easier.
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1. Introduction

Sleep is an essential component of health, with its timing, duration, and quality being
critical determinants of health [1–3]. Animal experiments have shown that impaired sleep
affects metabolic and emotional regulation, performance, memory consolidation, brain re-
cuperation processes, and learning [4–9]. Animal experiments on sleep research have been
classified as either: behavioural sleep—quantified by behavioural observations [10–14], or
electrographic sleep—quantified by electrographic recordings [15–19]. The latter is less
frequently studied over the former as it requires complex preparation and analysis of
electrographic recordings. Studies of animal behavioural sleep are mainly divided into
two study types: observation by video recording or counts by sensor, such as an infrared
photocell [10–12,14]. For such studies, researchers had to create a particular environment
for the experiment, and they had to concentrate on counting, observing, and analysing
animal behaviour.

The actigraph unit (or actimetry sensor) is commercially available and provides a
non-invasive method of monitoring human rest/activity cycles. Gross motor activity is
continually measured by an actigraph in a wristwatch-like device. Data from such can be
transferred to a computer and easily analysed offline [13,20–24]. As commercially available
actigraph units are created for humans, several animal sleep experiments have employed
such to study large animals, such as monkeys [18], dogs [25], or horses [26]; but not for
small animals, such as rats or mice. However, animal sleep experiments are frequently
performed on these small animals [10,14,27–30]. The goal of this study was to investigate
whether actigraphy can be applied for the analysis of rats.
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2. Results
2.1. Activity under Control Condition

The average of total counts in each two-hour period were plotted in Figure 1a. Total
number of counts showed a natural division into two cycles: total counts below 400 in the
light, and total counts above 400 in the dark. The average of total counts was 214.8 ± 94.0
in the light and 748.4 ± 202.6 in the dark, suggesting a sleep phase in the light and an awake
phase in the dark (Figure 2). There was a significant difference in total counts between
these phases.
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Figure 1. Total ‘counts’ measured by the actigraph unit. (a) Under the control condition, total counts were lower during the
light cycle, and higher during the dark cycle, indicating a sleep phase in the light and an awake phase in the dark. (b) In the
sleep deprivation cage, the activity of the rats was higher compared with the control condition. Total counts did not differ
significantly between day 1 and day 2. Data are shown as mean ± standard error of means.
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the dark, the count average was slightly higher under sleep deviation, which was not significant
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2.2. Activity under Sleep Deprivation

The average total counts in each two-hour period in the first 24 h (day 1) and in the
second 24 h (day 2) are plotted in Figure 1b. No significant difference was observed in the
total counts of 2 h between day 1 and day 2. However, the average of total counts in the
light was significantly increased in day 1 and day 2 compared with the control (Figure 2),
indicating more activity due to the sleep-deviation cage. The activity also seemed higher
in the dark in day 1 and day 2; however, no significant difference was observed when
compared with the control condition.

3. Discussion

The assessment of locomotor and exploratory behaviour in rodents is one of the most
widely used behavioural methods to determine the effects of genetic, physiological, and
pharmacological manipulations for humans. An extensive variety of measures have been
used for behavioural sleep to quantify motor activity in rodents. The oldest and most
common paradigm is the open field test [31,32]. A small rodent is placed in the field
for a fixed time interval and a number of activity variables are quantified, including the
distance covered per unit time, the number of regions visited, rearing, latency to initial
movement, stereotypic behaviours (e.g., sniffing or grooming), and physical responses (e.g.,
defecation or urination). To simplify the open field test, a container with the floor marked
into discrete regions was developed, and an observer manually scored rodent transitions
between the regions and quantified entries. Since rodents are nocturnal, observation itself
may affect their behaviour. To alleviate problems associated with direct observation of
rodents and to simplify data collection, a number of automated open field instruments
have been developed, including photobeam and video recording systems [33–36].

As shown above, previous behaviour studies required a rather large environment, and
a complex means of observation [10–12,14]. Furthermore, results can be affected by many
factors, including their condition, illumination, ambient noise, and time. Therefore, it was
difficult to quantify behaviour and to obtain reliable results. Actigraphy is designed for
humans to show their activity and sleep. The present study is the first to directly measure
rat activity and behaviour via actigraphy, and to precisely quantify their movement.

From the first experiment under the control condition, the rats’ activity was shown
by the actigraph as clearly divided into two phases: the sleep phase in the light, and
the awake phase in the dark. Following, the rats were placed in a special cage for sleep
deprivation (which is frequently used in research to evaluate the hypnotic effect [28,37]).
Increased activity through the day indicated successful induction of sleep deprivation.
Actigraphy proved a useful tool for the investigation of sleep behaviour without harming
the rats’ life cycle.

Sleep disturbance may be a risk factor for the development of the ADHD, or a symp-
tom or a comorbid condition of ADHD, affected by similar psychopathology [38–40]. Sleep
deprivation has become a major problem not only affecting human health but also social
and development defects. Unfortunately, actigraphy of rats’ sleep behaviours and animal
experiments studying sleep behaviour regarding these problems are still insufficient. We
hope this study will facilitate easier experimentation and encourage more researchers to
undertake experiments in this area to elucidate sleep disorders, which are on the rise.

4. Materials and Methods
4.1. Actigraphy

The actigraph device, the GT3X from ActiGraph (Pensacola, FL, USA) was utilised and
data analysed via ActiLife (version 6) data analysis software from the same company. The
GT3X provides objective 24-h physical activity and sleep/wake assessment by monitoring
activity with either the ‘threshold crossing’ or ‘cycle count’ method; activity is shown by
‘count.’ The threshold crossing technique involves incrementing a ‘count’ each time the
magnitude of acceleration (activity) exceeds a given threshold. The cycle count technique
produces a ‘count’ when sufficient force is applied to move a mechanical lever through a
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full cycle (up and down). These two techniques are very similar in nature to that of the
modern-day pedometer.

4.2. Animals

Eight adult male Wistar rats (Japan SLC Inc., Shizuoka, Japan) weighing between
300 and 350 g were used. All animals were maintained in an air-conditioned room with
controlled temperature (24 ± 2 ◦C) and humidity (55 ± 15%). They were housed in
aluminium cages with sawdust flooring and kept under a light (200 lux)–dark (5 lux; LD)
cycle (lights on from 8:00 am to 8:00 pm). The animals were allowed free access to food
and water before and during the sleep deprivation. These procedures were conducted in
accordance with the approval of the Animal Ethics Committee of Nagoya City University,
Graduate School of Medical Sciences.

4.3. Sleep Deprivation Cages

To create sleep deprivation, each rat was placed in a specially designed test cage [28,30].
The cage was a plastic cylinder (diameter, 26 cm; height, 31 cm), with its floor covered by a
grid of stainless-steel rods (3 mm wide; 2 cm apart). It was filled with water up to 2 cm
below the grid surface. The rats were thus subjected to two relatively powerful stressors:
the grid and water. Hence, the arousal time of rats placed on the grid was longer than that
of rats placed on sawdust. Sleep deprivation occurs while rats are under these conditions,
as confirmed by electroencephalogram recording; rats on the grid had significant increases
in sleep latency and duration of wakefulness observed compared with rats on sawdust [41].

4.4. Activity under Control Conditions and Sleep Deprivation

As shown in Figure 3, the actigraph was strapped to the rat with a loose elastic belt, to
avoid disturbing its breathing. The rats (n = 8) wore the actigraph under anaesthesia with
pentobarbital sodium (35 mg/kg; Abbott Laboratories, North Chicago, IL, USA) in the
morning of the first day. Data collection started from 8 am the following morning to avoid
effects from anaesthesia and were continued for 24 h. Thereafter, each rat was transferred
to the sleep deprivation cage, and data were collected over another 24 h. The average total
counts of the rats in the normal cage (control) were compared to those of rats in the sleep
deviation cage for both periods (day 1 and 2).
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4.5. Statistics

Data are shown as mean ± standard error of means and were analysed using one-way
analysis of variance followed by the Tukey test for multiple comparisons among groups by
JMP for Windows version 9 (SAS Institute Inc., Cary, NC, USA). A value of p < 0.05 was
considered statistically significant.
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