
Article

Effect of Rashba Impurities on Surface State of a
Topological Kondo Insulator

Partha Goswami

D.B.College, University of Delhi, Kalkaji, New Delhi-110019, India; pgoswami@db.du.ac.in

Received: 7 August 2020; Accepted: 7 September 2020; Published: 10 September 2020
����������
�������

Abstract: In this communication, we report surface state, with Rashba impurities, of a generic
topological Kondo insulator (TKI) system by performing a mean-field theoretic (MFT) calculation
within the framework of slave-boson protocol. The surface metallicity together with bulk insulation
is found to require very strong f -electron localization. The possibility of intra-band as well as
inter-band unconventional plasmons exists for the surface state spectrum. The paramountcy of the
bulk metallicity, and, in the presence of the Rashba impurities, the TKI surface comprising of ‘helical
liquids’ are the important outcomes of the present communication. The access to the gapless Dirac
spectrum leads to spin-plasmons with the usual wave vector dependence q1/2. The Rashba coupling
does not impair the Kondo screening and does not affect the quantum critical point (QCP) for the bulk.
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1. Introduction

The Periodic Anderson model (PAM) [1–6] basically involves highly correlated electrons (localized
magnetic moments) in one f -orbital, which are screened by weakly correlated electrons in a second
d orbital. Although this model has been thoroughly examined for several decades, the model itself
and its extensions [5,6] are still relevant for the theoretical condensed-matter physics. A captivating
development in recent years is the discovery that Kondo insulators can develop topological order
to form a topological Kondo insulator (TKI). The theoretical description of a Kondo insulator [7–11]
is usually based on PAM. In this paper we shall focus on a generic topological Kondo insulator
with the simplest band structure. Upon including the effect of a Rashba system (such as Au(111),
Ag(111), or Ni(111)) on the TKI surface, which bolster the Rashba spin-orbit interaction (RSOI) between
f -electrons in the surface state Hamiltonian, we get access to the gapless Dirac spectrum and the
spin-plasmons with the usual wave vector dependence q1/2. The Kondo screening in the bulk remains
unaffected by RSOI.

It may be mentioned that the first example of correlated topological Kondo insulator (TKI) [1,7–10]
is SmB6. It has a cubic crystal structure of the cesium-chloride type with a lattice constant of a ≈ 4.13 Å.
At high temperature, the material behaves similar to a metal, but when reducing the temperature
below ~50 K, it exhibits insulating behavior [12]. The hybridization gap (∆) has been measured at
~15 meV [12,13]. This is a peculiarity exhibited by a Kondo insulator. The compound SmB6 exhibits
yet another oddity. It has been found [14] that its resistivity at temperatures above 5 K increases upon
decreasing the temperature. The saturation value in the resistivity, unaffected by the presence of
non-magnetic impurities due to protection accorded to the surface states by the time reversal symmetry
(TRS) [15], is achieved at temperatures below 5 K. A TRS breaking perturbations, such as the presence
of the magnetic impurities, are expected to destroy topological surface state. Quite surprisingly,
contrary to this expectation, the surface state in SmB6 is found to be insensitive to the magnetic field
or magnetic impurities by Cooley et al. [16]. It had been shown by them that the application of
large magnetic fields up to 60 T is insufficient to destroy the low temperature saturation of resistance.
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Recently, however, Kim et al. [17] have found that when the doping concentration is modest the surface
state of doped SmB6 can be altered even with non-magnetic impurities. While the investigation of
the effect of the non-magnetic impurities on the surface state is underway, we have demonstrated
below (see Equation (29)) that the magnetic exchange field can be used to open an additional gap at the
surface state dispersion. These unusual properties of the rare earth hexa-borides are ascribed to the
interaction of the 5d and 4f -electrons of rare earth element with the 2p conduction electrons of Boron.
Unlike the well-known topological insulators, such as Bi2Se3 family of materials, in TKIs the strong
correlation effects among the 4f -electrons are very important. It brings about the strong modification
of the 4f -band width. It may be mentioned that in the Bi2Se3 family of materials, the band inversion
happens between two bands both with the p character and similar band width. The situation in SmB6

is quite different, where the band inversion happens between 5d and 4f bands with the band widths
differing by several orders of magnitude, which leads to very unique low energy electronic structure.

To investigate the bulk model, the slave boson technique [1,18–21] is usually employed. The slave
particle protocol is based on the assumption of spin-charge separation in the strongly correlated electron
systems in Mott insulators. The surmise is that electrons can metamorphose into spinons and chargons.
However, to preserve the fermion statistics of the electrons, the spinon-chargon bound state must
be fermionic, so the simplest way is to ascribe the fermion statistics to one of them: if the spinon
is fermionic then the chargon should be bosonic (slave-boson), or if the chargon is fermionic then
the spinon should be bosonic (slave-fermion). The two approaches are just two low-energy effective
theories of the complete-fractionalization theory [22,23]. We use the slave-particle mean-field theory
(MFT) [1,13–15] which allows the study of low-energy regime of a Kondo system with a quadratic
single-particle Hamiltonian in the limit of the f -electron correlations being larger than all other energy
scales in the problem. We obtain the self-consistent equations for MFT parameters minimizing the
grand canonical potential of the system with to these parameters, as in [1]. The parameters enforce
constraints on the pseudo-particles due to the infinite Coulomb repulsion and the need of the formation
of singlet states between an itinerant electron and a localized fermion at each lattice site in order to
have a Kondo insulator. The technique used by us to calculate various thermodynamic averages is
the Green’s function method, as used by Legner [1]. The theory allows to conveniently circumvent
complications associated with formally, infinite repulsion between the f -electrons by “splitting” the
physical f -electron into a product of a fermion and a slave boson, supplemented with a constraint
to remove the double occupancy. The temperature range where the slave-particle mean-field-theory
is valid is limited to very low values (T → 0). Furthermore, MFT involves condensing the boson
field and neglecting all of its dynamics. This effectively leads to a non-interacting model of an
insulator, where the gap is proportional to the condensate and hybridization parameter, and makes it
amenable to a topological analysis. Since the electron states being hybridized have the opposite parities,
the resulting Kondo insulator is topological and contains its hallmark feature—the metallic surface
states. Thus, the mean-field theory is reasonable, and works at the qualitative level. A fundamental
quantity describing the magnetic response of the system is the spin susceptibility. The Kondo screening
mechanisms are mostly characterized by the same response function. We wish to report shortly the
calculation of the bulk spin susceptibility of this system identified by the dominance of the bulk
metallic character.

The paper is organized as follows: In Section 2, we consider a model for a (topological) Kondo
insulator on a simple cubic lattice with one spin-degenerate orbital per lattice site each for d and
f -electrons with Hubbard type interaction term (U) between the latter. We implement the slave-boson
protocol to include the effect of infinite U into consideration at the mean-field theoretic (MFT) level.
We obtain the grand canonical potential ῾Ω of the system in the slave-boson representation with infinite
U. The mean-field parameters, such as slave-boson field, auxiliary chemical potential, and a Lagrange
multiplier to enforce the prohibition of double occupancy were obtained by minimizing this grand
canonical potential with respect to these parameters. In Section 3, we investigate the surface state
dispersion followed by the plasmonics of the surface states. Upon including the effect of Rashba
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impurities on the surface, we get access to the gapless Dirac spectrum and the spin-plasmons. The paper
ends with a short discussion and concluding remarks at the end.

2. Periodic Anderson Model

The widely accepted model of a topological Kondo insulator (TKI) [7–11] involves, alongside a
strong spin-orbit coupling, hybridization between an odd-parity nearly localized band and an
even-parity delocalized conduction band. In the case of SmB6 with a cubic crystal structure, these bands
correspond to 4f and 5d electrons, respectively. It is then imperative that we start with the periodic
Anderson model (PAM) where there are two different species of electrons, namely conduction electrons
and localized electrons, often originating from d and f orbitals, respectively. We shall call them the
conduction electrons and the valence electrons, respectively. The model [1–6,8,24] given below ignores
the complicated multiplet structure of the d and f orbitals usually encountered in real TKIs such as
SmB6. This has no major implication as most topological properties of cubic Kondo insulators do not
depend on the precise form of the hopping and hybridization matrix elements or, on the particular
shape of the orbitals.

2.1. Model

We consider below a well-known model [1–6,8] for a (topological) Kondo insulator on a simple cubic
lattice with one spin-degenerate orbital per lattice site each for d and f -electrons. In momentum-space,
we represent them by creation (annihilation) operators d†k ζ (dk ζ) and f †k ζ (fk ζ), respectively. Here,
the index ζ (= ↑,↓) represents the spin or pseudo-spin of the electrons, where the latter is relevant
for the localized electrons with generally large SOC. The Hamiltonian consists of two parts, namely,
the bare hopping of the individual orbitals plus the hybridization between d and f orbitals (ℵ), and an
onsite repulsion or f -electrons (ℵint). We have

ℵ =
∑

kζ = ↑,↓

(
−µ − εd

k

)
d†k.ζdk,ζ +

∑
k,ζ = ↑,↓

(−µ − ε
f
k ) f †k.ζ fk,ζ+

∑
k,ζ = ↑,↓

{
Γζ = ↑,↓(k)d†kζ fk,ζ + H.C.}, (1)

where εd
k = [2td1c1(k) + 4td2c2(k) + 8td3c3(k)] and ε

f
k =[

− ε f + 2t f 1c1(k) + 4t f 2c2(k) + 8t f 3c3(k)
]
. The

(
td1, t f 1

)
,

(
td2, t f 2

)
, and

(
td3, t f 3

)
, respectively,

are the NN, NNN, and NNNN hopping parameters. In addition,

c1(k) = (cos kxa + cos kya + cos kza),
c2(k) = (cos kxa cos kya + cos kya cos kz a + cos kz a cos kxa),
c3(k) = (cos kxa cos kya cos kza)

(2)

With a as the lattice constant. The sums run over all values for the crystal momentum (k) and
the index ζ = (↑,↓) for all (cubic) lattice sites. The dispersion of the d and f -electrons is described by
the first and the second term, respectively. The momentum-dependent form-factor matrix Γζ = ↑,↓(k),
in the third term, corresponds to the Dirac-type spin-orbit coupling associated with the hybridization
between the conduction and the f -electrons [1,7,21]. The matrix is given by Γζ = ↑,↓(k) = −2V(s(k).ζ),
where ζα are the Pauli matrices in physical spin space, and s(k) =

(
sin kxa, sin kya, sin kza

)
. What is

the source of the momentum dependence of the matrix Γζ = ↑,↓? Due to spin-orbit coupling the
f -states are eigenstates of the total angular momentum J, and hence hybridize with conduction band
states with the same symmetry. This gives rise to the momentum-dependence of the form-factor
Γζ = ↑,↓(k). Furthermore, the hybridization is the source of non-trivial topology of the emergent bands.
Since the f - and d-states have different parities, for the hybridization we must have odd parity:
Γζ = ↑,↓(−k) = −Γζ = ↑,↓(k). The negative sign of t f 1 is necessary for the band inversion, which induces
the topological state [25,26]. The system shows the insulating as well as the metallic phases. The
difference between the metallic and insulating phase is the sign of tf1: It is positive for the metallic
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and negative for the insulating phase. The band width of the f -electrons is much smaller than the
band width of the conduction electrons and we therefore assume that |t f 1| << |td1| and similar relations
hold for second-and third-neighbor hopping amplitudes. The hybridization is characterized by the
parameter V for which we typically use |V| < |td1|. Throughout the whole paper, we choose td1 to be
the unit of energy, td1 = 1. We note that the hybridization is an odd function of k in order to preserve
time reversal symmetry (TRS), as it couples to the physical spin of the electron. The interaction
term ℵint = U

∑
i f †i↑ fi↑ f †i↓ fi↓ is the onsite repulsion of f -electrons. Here we have assumed that

the f -electrons locally interact via a Hubbard-U repulsion while the d electrons are non-interacting.
The total Hamiltonian (without the interaction term U) yields the single–particle spectrum ∈(ζ)α (k) =

−

(
εd

k+ε
f
k+ζM

)
2 + α

√ (
εd

k−ε
f
k+ζM

)
4

2

+ ∈2
h where α = 1 (−1) for upper band (lower band), ζ = ±1 labels the

eigenstates (↑, ↓ ) of ζ z, and ∈h = −2V
(
s2

x + s2
y + s2

z

)
1/2. The pictorial depiction of the spectrum is

shown in Figure 1. It is clear from the figure that the bulk metallicity is accessible when t f 1 is positive,
as the conduction bands in this case are half empty. On the other hand, when t f 1 is negative, the band
gap exists between the valence and the conduction bands leading to the bulk insulation.
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Fermi level (chemical potential represented by solid, horizontal line) is located in the hybridization 
gap, which implies bulk insulation. 
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problem, effectively enforce a no-double-occupancy constraint on each site, and therefore contribute 
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creation operator), respectively, creates doubly-occupied and empty bosonic impurity states out of 
vacuum. The bosons created by b† are supposed to carry the electron’s charge. The single site 
fermionic occupation operator is denoted by s†. This corresponds to a fermionic operator and carry 
the electron’s spin, but no charge. For U → ∞ , the double occupancy is prohibited, and hence the 
operators 𝑎 and awill not be under consideration. The connection of the remaining auxiliary 
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Figure 1. The two-band energy spectra of a bulk TKI. The parameter values are, aky = π, td1 =

1, td2 = 0.01, td3 = 0.001, t f 2 = 0.01, t f 3 = 0.001, u = 0.0, ε f = −0.02, V = 0.10. In (a), t f 1 = 0.3.
The conduction band is partially empty which implies the bulk metallicity. In (b), t f 1 = −0.3. In case
this case, the Fermi level (chemical potential represented by solid, horizontal line) is located in the
hybridization gap, which implies bulk insulation.

Our main aim in this paper is to capture physics associated with the inclusion of the
RSOI generating impurities in the system, modelled by appropriate surface Hamiltonian derived
from the bulk Hamiltonian ℵ + Rashba coupling + ℵint. The interaction term ℵint can be studied
non-perturbatively by various methods, including dynamical mean-field theory, Gutzwiller-projected
variational wave-functions, or slave-particle representations [1,27,28]. In what follows we shall use
the slave-particle protocol. The f -electron correlations, being larger than all other energy scales in the
problem, effectively enforce a no-double-occupancy constraint on each site, and therefore contribute
through virtual processes at low temperatures only. The original Hilbert space thus get projected onto
a smaller subspace, where the double occupancy is excluded.

2.2. Slave-Boson Protocol

One utilizes the well-known slave-boson protocol [1,20,21,27,28] to do the projection onto the
Hilbert space. In this protocol, the electron operator is expressed in terms of psuedo-fermions
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and slave-bosons. The operators a† (heavy slave-boson creation operator) and b† (light slave-boson
creation operator), respectively, creates doubly-occupied and empty bosonic impurity states out
of vacuum. The bosons created by b† are supposed to carry the electron’s charge. The single site
fermionic occupation operator is denoted by s†. This corresponds to a fermionic operator and carry
the electron’s spin, but no charge. For U→∞ , the double occupancy is prohibited, and hence the
operators a† and a will not be under consideration. The connection of the remaining auxiliary operators
(b, s) to the physical f -electron operator is f †ζ = s†ζ b. In the slave-boson mean-field theory of the
infinite-U model (which consists of replacing slave-boson field (b) at each lattice site by the modulus
of its expectation value—a c number), the anti-commutation relation { fζ , f †ζ } = δ ζ ζ′ , implies that b2

{sζ, s †ζ′} = δ ζ ζ′ . To take care of the conservation of auxiliary particle number one needs to impose
the restriction

∑
ζ s†ζsζ + b†b = 1 or,

∑
ζ s†ζsζ � 1− b2 at a site. It is now straight-forward to write the

thermal average of the TKI slave-boson mean-field Hamiltonian

〈ℵsb(b, λ, ξ )〉 =
∑

kζ = ↑,↓

(
−µ − ξ− εd

k

)
〈d†k.ζ dk,ζ〉+

∑
k,ζ = ↑,↓ (−µ + ξ − b2ε

f
k + λ)〈s†k.ζsk,ζ〉

+ b
∑

k,ζ,σ = ↑,↓{Γζ = ↑,↓(k)〈d†kζ sk,ζ〉+ H.C.}+ λ Ns (b2
− 1) ,

(3)

where the additional terms, in comparison with (1), are −µ((Nd + Ns) − N) − ξ(Nd − Ns) +

λ [
∑

k,σ = ↑,↓ 〈s†k.ζsk,ζ〉 + Ns(b2
− 1)]. The first term is the constraint which fixes the total number of

particles N (N = Nd + Ns), the second term enforces the fact that there are equal d and s fermions
(Nd = Ns), and the third term describes the constraint on the pseudo-particles due to the infinite
Coulomb repulsion. In order to have a Kondo insulator, formation of singlet states between d and
s fermions is needed at each lattice site. This means that the number of d and s fermions are equal
on average. Here λ is a Lagrange multiplier, and Ns is the number of lattice sites for s electrons
(similarly, Nd corresponds to d-electrons). The dispersion of the f -electron is renormalized by λ and
its hopping amplitude by b2. Moreover, the hybridization amplitude is also renormalized by the
c-number b. The total parameters are slave-boson field b, auxiliary chemical potentials ξ and µ (µ is a
free parameter), and the Lagrange multiplier λ. Though these facts are explained clearly in [1], we
have never-the-less found it necessary to include them to make this paper self-contained. One obtains
equations for the parameters (b,λ,ξ) minimizing the thermodynamic potential per unit volume
Osb = −(βV)−1lnTr exp(−βℵsb(b, λ, ξ)):∂Osb

∂b = 0, ∂Osb/∂λ = 0, and ∂Osb/∂ξ = 0. Here, β denotes the
inverse of the product of temperature T and Boltzmann constant kB. The thermodynamic potential has
been calculated by the method outlined in [29] and [30] (see Appendix A). These equations are:

2 λ b = N−1
s

∑
k

∂
∂b [2V

(
sx − isy

)
〈d†k↑ bsk,↓〉 + 2V

(
sx − isy

)
〈bs†k,↑ dk↓ 〉+ H.C.]

+ N−1
s

∑
k,ζ

∂
∂b [ε

f
k 〈bs†k.ζbsk,ζ〉 + εd

k〈d
†

k.ζ dk,ζ〉]+N−1
s

∑
k,ζ

∂
∂b [2Vszζ 〈d†k,ζ bsk,ζ 〉 + H.C.],

(4)

(
1 − b2

)
= N−1

s
∑
k

∂
∂λ [2V

(
sx − isy

)
〈d†k↑ bsk,↓〉 + 2V

(
sx − isy

)
〈bs†k,↑ dk↓ 〉+ H.C.]

+ N−1
s

∑
k,ζ

∂
∂λ [ε

f
k〈bs†k.ζbsk,ζ〉 + εd

k〈d
†

k.ζ dk,ζ〉] + N−1
s

∑
k,ζ

∂
∂λ [2Vszζ 〈d†k,ζ bsk,ζ 〉 + H.C.],

(5)

0 = N−1
s

∑
k

∂
∂ξ [2V

(
sx − isy

)
〈d†k↑ bsk,↓〉 + 2V

(
sx − isy

)
〈bs†k,↑ dk↓ 〉+ H.C.]

+ N−1
s

∑
k,ζ

∂
∂ξ [ε

f
k〈bs†k.ζbsk,ζ〉 + εd

k〈d
†

k.ζ dk,ζ〉]+N−1
s

∑
k,ζ

∂
∂ξ [2Vszζ 〈d†k,ζ bsk,ζ 〉 + H.C.].

(6)

εd
k = [2td1c1(k) + 4td2c2(k) + 8td3c3(k)

]
, (7)
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ε
f
k =

[
−ε f + 2t f 1c1(k) + 4t f 2c2(k) + 8t f 3c3(k)

]
, (8)

The averages 〈d†k.ζ dk,ζ〉, 〈bs†k.ζ bsk,ζ〉, etc., have been calculated in Appendix A below.
Their expressions show that in the zero-temperature and the long-wavelength limits, the contribution
of the averages 〈d†k↑ bsk,↓〉 and 〈bs†k,↑ dk↓ 〉, etc., to the derivatives in Equations (4)–(6) are insignificant in

comparison with those of
∑

k,ζ[ε
f
k〈bs†k.ζbsk,ζ〉 + εd

k〈d
†

k.ζ dk,ζ〉]. This observation allows us to approximate
the equations as

2λb ≈ N−1
s

∑
k,ζ

∂
∂b

[ε
f
k〈bs†k.ζbsk,ζ〉 + εd

k〈d
†

k.ζdk,ζ〉], (9)(
1 − b2

)
≈ N−1

s

∑
k,ζ

∂
∂λ

[ε
f
k〈bs†k.ζbsk,ζ〉 + εd

k〈d
†

k.ζdk,ζ〉], (10)

0 ≈ N−1
s

∑
k,ζ

∂
∂ξ

[ε
f
k〈bs†k.ζbsk,ζ〉 + εd

k〈d
†

k.ζdk,ζ〉], (11)

in these limits. As we already have noted, for the conservation of auxiliary particle number, one needs

to impose the restriction
∑
ζ s†ζsζ � 1 − b2 at a site. On noting that sζ(r) = N

−
1
2

s
∑

k eik.rsk,ζ where

Ns is the number of s-fermion, equivalently, one may also write this as
∫

dr
∑
ζ〈bs†ζ(r)bsζ(r)〉 �

Nsb2
(
1 − b2

)
. This is the fourth equation, with (9)–(11) as the first three, and we have four unknowns,

viz. (b,λ,ξ,akF), where a ≈ 4.13 A is the latticeconstant and kF is the Fermi wave number. In view of
the fact that the chemical potential is a free parameter and could be somewhere between the valence and
the conduction bands once again it is easy to see that for the low-lying states in the zero-temperature
limit one may write the imposed restriction as 2 N−1

s
∑

k,ζ 1 = b2
− b4. This is an equation for

b2 in terms of (akF). After a little algebra, we find that whereas (9) and (10) together yield λ =

−6t f 1 + 6b2t f 1, Equation (11) yields ξ = −3td1 + 3t f 1. We estimate (akF) in the following manner : Since
the Fermi velocity v∗F of the low-lying states is known to be less than 0.2 eV/Å [24], taking the effective

fermion mass (m∗ =
}kF
v∗F

) a 100 times that of an electron [25], we find that (akF) ∼ 0.01. This is

consistent with the long wavelength limit we have assumed. The two values of b2 obtained from here
are close to but less than one (1−) and close to zero (0+). The fact to remember is when b is nonzero,
the system is in Kondo state, and when b vanishes, the system is in normal gas state. The admissible
value of b2 will be thus be 1−. With this a reasonable spectral gap is obtained in the Kondo insulating
state (see Figure 2b) in the long wavelength limit. We see in the figure that in order to have a gapped
Kondo state it is required that the tunneling of the localized fermions must have an opposite sign
compared with the conduction fermions. This is difficult to achieve, because the signs of the tunneling
for the lowest Bloch bands are usually the same. However, it has been taken to be positive for the
metallic phase and negative for the insulating phase for the following reason: For the metallic phase the
leading term for f -electrons in the Hamiltonian, viz. −2t f 1c1(k)〈bs†k.ζbsk,ζ〉, corresponds to a minimum
at (0,0,0) (electron-like band) and in the insulating phase it corresponds to a maximum (hole-like
band). Furthermore, it must be mentioned that in their quantum simulation of the topological Kondo
insulator in ultra-cold atoms, Zheng et al. [26] have suggested a transformation leading to a staggered
Kondo coupling—positive for the metallic phase and negative for the insulating phase. Abiding by
this specification, we find that in the metallic phase ξ is −2.7 and, in the insulating phase it is −3.3.
All the unknown parameters now stand determined.
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Figure 2. The contour plots of Kondo singlet term given by Equation (12) as a function of exchange
field energy (M) and (Boltzmann constant. Temperature) (kT) in eV for (a) µ = 0.01 eV, and t f 1 =

−0.03 eV, (b) µ = 0.03 eV, and t f 1 = −0.03 eV, and (c) µ = 0.01 eV, and t f 1 = −0.05 eV at akx = aky = akz =

1. The anti-ferromagnetic quantum critical point (AFM QCP) is, respectively, at M = MQCP = 0.045 eV,
0.065 eV, and 0.015 eV in (a–c). Other parameters in the graphical representations are b = 0.95, td1 =

0.5 eV, td2 = 0.001 eV, t f 2 = 0.001 eV, td3 = 0.0001 eV, t f 3 = 0.0001 eV, εf = −0.002 eV, and the hybridization
parameter V = 0.0001 eV.

An investigation on Kondo system is incomplete without the possibility of the Kondo screening
being explicitly shown. We, therefore, calculate the Kondo singlet density which may be defined as
Ksinglet(k, b,λ, u, ξ ) = [〈d†k↑ bsk,↓〉 + bs†k,↑ dk↓ 〉]. The calculation details is given in Appendix A.

Ksinglet(k, u) =
2V2(s2

x+s2
y)

ε_(k,b,λ,u,ξ) [(e
β(∈

(−)
−

(k)−µ) + 1)
−1
− (eβ(∈

(−)
+ (k)−µ) + 1)

−1
]

+
2V2(s2

x+s2
y)

ε+(k,b,λ,u,ξ) [(e
β(∈

(+)
−

(k)−µ) + 1)
−1
− (eβ(∈

(+)
+ (k)−µ) + 1)

−1
],

(12)

where ε+, ε−,∈(ζ)α , etc., are given by Equations (A7)–(A10). This average is the ultimate signature of
the Kondo insulating state, where there is precisely one conduction electron paired with an impurity
spin. The point we wish to make is that unless we have an anti-ferromagnetic exchange field in the
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bulk Hamiltonian this Kondo screening term will not be non-zero. Assuming(V/td1)� 1, we model
the interaction between an impurity moment and the itinerant (conduction) electrons in the system
with coupling term −| J |

∑
m Sm. Sm, where Sm is the m th-site impurity spin, sm =

(
1
2

)
d†mζζzdmζ,

dmζ is the fermion annihilation operator at site-m and spin-state ζ (=↑,↓) and ζ z is the z-component
of the Pauli matrices. We make the approximation of treating the impurity spins as classical vectors.
The latter is valid for |S| > 1. Absorbing the magnitude of the impurity spin into the coupling constant
J(M = | J ||S|/td1) it follows that the exchange field term, in the (dk↑f k↑ dk↓fk↓)T basis, appears as {ζ z

⊗M (τ0+τz)/2}, where τ0 and τz, respectively, are the identity and the z-component of Pauli matrix for
the pseudo-spin orbital indices. We thus obtain the dimensionless contribution [M

∑
k,ζsgn(ζ) d†k,ζdk,ζ]

to the momentum space Hamiltonian above. It is not difficult to see that the terms ε+, ε−, and ∈(ζ)α are
to be redefined now in the following manner:

ε(k,b,λ,ξ) =

√√(
2ξ + εd

k − b2ε
f
k + λ − M

)
4

2

+ 4V2b2(s2
x + s2

y + s2
z), (13)

ε+(k, b,λ, ξ) =

√√(
2ξ + εd

k − b2ε
f
k + λ + M

)
4

2

+ 4V2b2(s2
x + s2

y + s2
z), (14)

∈
(ζ)
α (k)= −

(
εd

k + b2ε
f
k − λ + ζM

)
2

+ α

√√(
2ξ + εd

k − b2ε
f
k + λ + ζM

)
4

2

+ 4V2b2(s2
x + s2

y + s2
z), (15)

εd
k = [2td1c1(k) + 4td2c2(k) + 8td3c3(k)

]
,ε f

k =
[
−ε f + 2t f 1c1(k) + 4t f 2c2(k) + 8t f 3c3(k)

]
. (16)

Upon substituting these re-defined terms in Equation (12) we obtain non-zero values of Ksinglet.
In Figure 2 we have contour plotted Ksinglet as a function of the anti-ferromagnetic exchange field (M)
and (Boltzmann constant. Temperature) (kT) in eV for (a) µ = 0.01 eV, and t f 1 = −0.03 eV, (b) µ = 0.03 eV,
and t f 1 = −0.03 eV, and (c) µ = 0.01 eV, and t f 1 = −0.05 eV at akx = aky = akz = 1. The anti-ferromagnetic
quantum critical point (AFM QCP), respectively, is at M = MQCP = 0.045 eV, 0.065 eV, and 0.015 eV
in (a)–(c). This is typical Doniach-like phase diagram [31]. At T = 0 K M > MQCP corresponds to the
heavy-fermion liquid, while M < MQCP corresponds to anti-ferromagnetic liquid. From the plots we
notice that the location of QCP depends on µ and t f 1. In fact, QCP increases with increase in µ and
decreases with increase in |t f 1|.

In order to ascertain whether there is any effect of Rashba coupling (RC) (λR) on
the Kondo screening, we add the term [2λR

∑
k

(
ky + ikx

)
bs†k↑ bsk,↓ + H.C.] to the bulk Hamiltonian.

We have assumed to have deposited particles with high Rashba spin-orbit (RSO) interactions
λR, such as Au(111), on the bulk of material. We once again calculate the average S =

[2Vb
(
sx − isy

)
(〈d†k↑ bsk,↓〉 + 〈bs†k,↑ dk↓ 〉) + H.C.] corresponding to the Kondo singlet following the

method outlined in the Appendix A. We find that the RC does not impair the Kondo screening and does
not affect the QCP for the bulk. Even in the surface state Hamiltonian in the next section, upon adding
the Rashba coupling, one can show that the average similar to S is non-zero. The stage is now set to
investigate the surface state.

3. Surface State

3.1. Surface States

We choose a representation involving the states (|〈ck,↑,±〉, |〈ck,↓,±〉) , where the operators ck,↑,± and
ck,↓,±, respectively, are the spin-up and spin-down annihilation operators corresponding to the upper
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and lower bands with spin-splitting (∈(↑) ±(k) and ∈( ↓) ±(k)), as our basis. In the basis chosen above
our bulk mean-field Hamiltonian matrix in slave-boson protocol will appear as

−u− ξ− εd
k −2Vbsz 0 −2Vb

(
sx − isy

)
−2Vbsz −u + ξ− b2ε

f
k + λ −2Vb

(
sx − isy

)
0

0 −2Vb
(
sx + isy

)
−u− ξ− εd

k 2Vbsz

−2Vb
(
sx + isy

)
0 2Vbsz −u + ξ− b2ε

f
k + λ

 (17)

The eigenvalues of this matrix are given by

∈
(ζ)
α (k)= −

(
εd

k + b2ε
f
k − λ

)
2

+ α

√√(
2ξ + εd

k − b2ε
f
k + λ

)
4

2

+ 4V2b2(s2
x + s2

y + s2
z), (18)

εd
k = [2td1c1(k) + 4td2c2(k) + 8td3c3(k)

]
, (19)

ε
f
k =

[
−ε f + 2t f 1c1(k) + 4t f 2c2(k) + 8t f 3c3(k)

]
, (20)

The energy eigenvectors corresponding to these eigenvalues
(
∈
(ζ)
α (k)

)
are given by

Ψ(ζ=−1)
kα = N1

−1/2


E(ζ = −1)
α (k)

2Vbsz

0
2Vb

(
sx + isy

)
,

ψ
(ζ = +1)
kα = N2

−1/2


0

−2Vb
(
sx − isy

)
−E(ζ = 1)

α (k)
2Vbsz

.

(21)

where (N1, N2) =
[
E(ζ = ∓1)2

α (k) + 4V2b2
(
s2

x + s2
y + s2

z
)] 1

2
correspond to the normalization rms

and E(ζ)
α (k) = ξ − b2ε

f
k + λ − ε

(ζ )
α (k). Our aim in this section is to examine the surface plasmons of

the system under consideration. The plasmons are defined as longitudinal in-phase oscillation of all
the carriers driven by the self-consistent electric field generated by the local variation in charge density
on the surface. We require surface state single particle excitation spectrum for this purpose. To study
the surface states, we first consider a thick slab limited in z ∈ [−d/2, d/2], with open boundary conditions,
where d is the thickness of the slab in z direction. In this case kz is not a good quantum number, and should
be replaced by −i∂z. The Hamiltonian ℵslab

(
kx, ky

)
for the slab geometry under consideration can be

obtained from the Hamiltonian ℵbulk
(
kx, ky,− i ∂z

)
considering the orthonormal function | ϕn(z)〉 =

ψ_n(z), where

ψn(z) =
(2

d

) 1
2

sin

nπ
(
z + d

2

)
d


(n = 0, 1, 2, 3, . . . ),

ensuring ψn
(
z = − d

2 , d
2

)
= 0. With this ansatz, the matrix elements may be written as

ℵmn
slab

(
kx, ky

)
=

∫ d/2

−d/2
〈ϕm(z)

∣∣∣∣ℵmn
bulk

(
kx, ky,−i ∂z

)
| ϕn(z)〉dz. (22)
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The eigenstates of ℵmn
slab

(
kx, ky

)
are the so called edge states. Equation (17) yields ℵmn

slab as


Γ1 −

16iVba
3d 0 0

16iVba
3d Γ2 0 0
0 0 Γ1

96iVba
7d

0 0 −
96iVba

7d Γ2

 (23)

where
Γ1(K) = −µ − ξ − 6td1 + td1K2,

Γ2(K) = −µ + ξ + b2ε f − 6b2t f 1 + b2t f 1K2 + λ.
(24)

Since two blocks involve zeros in Equation (23), we definitely require a better version of surface
state Hamiltonian by guessing an improved ansatz. The work is under way in this direction. Now upon
noting that λ = −6t f 1 + 6b2t f 1 and ξ ≈ −3td1, the eigenvalues of this matrix is given by

∈
(ζ)
α, sur f ace (K) = −µ +

(
−3td1 − 3t f 1 + b2

2 ε f
)
+

td1+b2t f 1
2 (Ka)2 + α

×

√
(CVb)2 +

(
3t f 1 −

b2

2 ε f
)2
+ v∗F(ζ)

2(Ka)2 + O
(
(Ka)4

)
,

(25)

where α = +1 (−1) for conduction (valence) band, and K =
(
kx, ky

)
. The term v∗F(ζ) will be

interpreted as the Fermi velocity where v∗F(ζ) =
√(

td1 − b2t f 1

)(
3t f 1 −

b2

2 ε f
)
. The constant

C =
(

16a
3d

)
and

(
96a
7d

)
, respectively, for the up and down quasi-particle spins. The graphical

representation of Equation (25) is shown in Figure 3. The thin curves (solid and dashed) and
the thick curves in both the figures correspond to spin-split conduction and valence bands. The
chemical potential is taken to be zero and represented by a thick horizontal straight line in this figure.
The eigenvectors corresponding to the eigenvalue ∈(ζ = +1)

α, sur f ace (K) are

Y(ζ = +1)
kα = N1

−1/2


−ξ − b2ε f + 6b2t f 1 − b2t f 1K2

− λ + ∈
(ζ = +1)
α,sur f ace (K)

16Vbai/3d
0
0

, (26a)

and those corresponding to the eigenvalue ∈(ζ = −1)
α,sur f ace (K) are

Y(ζ = −1)
kα = N2

−1/2


0
0

ξ + b2ε f − 6b2t f 1 + b2t f 1K2 + λ − ∈
(ζ = −1)
α,sur f ace (K)

96Vbai/7d

. (26b)

where (N1, N2) correspond to the normalization terms. We notice that if the f -electrons somehow

satisfy the condition (3t f 1 −
b2

2 ε f +
(CVb)2

3t f 1 −
b2
2 ε f

) small compared to
(
td1 − b2t f 1

)
× (aK)2, one obtains

gapless surface state bands at (0,0) wavevector

∈α, sur f ace (K) ≈ [−µ +

(
−3td1 − 3t f 1 +

b2

2
ε f

)
+αv∗F | aK | +

td1 + b2t f 1

2
(Ka)2] (27)

for the insulating bulk. For this to happen, the severe restrictions are

| ε f |>
6 | t f 1 |

b2 ≈ 6.5 | t f 1 | . (28a)
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with b2 = 0.9890
(
i.e., | t f 1 | should be less than | ε f | by one order of magnitude

)
an the high

symmetry point (0,0) is unapproachable as

| aK | >

√√√√
3t f 1 + v − b2

2 ε f(
td1 − b2t f 1

) . (28b)

1. Here v =
( 96a

7d Vb)
2

3t f 1 −
b2
2 ε f

. The Fermi velocity v∗F is given by

√(
td1 + b2 | t f 1 |

)(
−3

∣∣∣∣t f 1

∣∣∣∣+ b2

2

∣∣∣∣ε f
)
.

With the parameter choice akF = 0.01, td1 = 500 meV, | t f 1 | = 5 meV, td2 = td3 = t f 2 =

t f 3 = 0, b2 = 0.9890, and | ε f | = 50 meV, we find the estimated value v∗F ≈ 104 m/s.
The hybridization parameter V cannot contribute here as we have chosen an ortho-normal
function to obtain the Hamiltonian for the slab structure fromthe bulk Hamiltonian. It must be
noted that Legner et al. [27] have found an expression of the Fermi velocity which with the same
set of parameter values as above and V = 100 meV yields v∗F nearly the same value as obtained
by us. (In fact, they derived the surface state dispersion and found that the Fermi velocity for
the electrons is vF = 4|V | (|tf1 td1|(td1 − tf1)2)1/2. This result implies that the effective mass of the
surface electrons m∗ = pF/vF is quite heavy since the hybridization amplitude is small compared
to other relevant energy scale, while the expression under the square root is of the order O(1)).

The Kondo screening length ξ (=
h̄v∗F

kBTK,s
) for the surface states will be, therefore, be one order of

magnitude higher than the lattice constant(a) for the surface Kondo temperature TK,s ∼ 25 K.Surfaces 2020, 3 FOR PEER REVIEW  11 
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dimensionless wave vector for chemical potential µ = 0. It is represented by the unbroken thick
straight line indicated in figures above. The other parameters are b = 0.95, td1 = 1, ε f = −0.02, V = 0.10;

Vp =
(

Vab
d

)
= 0.04. Since the conduction bands are partially empty, the surface state will be metallic

in both (a) and (b). In (a), the hopping integral t f 1 = 0.31 is positive and therefore it corresponds to
metallic bulk (Figure 1a). In (b), t f 1 = −0.31 is negative and therefore corresponds to insulating bulk
(Figure 1b). The thin lines (solid and dashed lines) and thick lines in both the figures correspond to
spin-split conduction and valence bands (see notes below Equation (25)).

We note that, with the exchange field introduced in the previous section, the eigenvalues of the
matrix (23) is given by

∈
(ζ)
α,sur f ace (K) = −µ+

(
−3td1 − 3t f 1 + b2

2 ε f + ζM
2

)
+

td1 + b2t f 1
2 (Ka)2 + α

×

√
(CVb)2 + b4

4 ε
2
f +

(
3t f 1 + ζM

2

)2
− b2ε f

(
3t f 1 + ζM

2

)
+ v∗F(ζ)

2(Ka)2 + O
(
(Ka)4

)
,

(29)
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where v∗F(ζ) =
√(

td1 − b2t f 1

)(
3t f 1 + ζM

2 −
b2

2 ε f
)

will now be interpreted as the Fermi velocity. It is
thus demonstrated that the exchange field can be used to open an additional gap at the surface state
dispersion.

We now consider the problem of the TKI surface plasmonics. The local variation in charge density
in materials gives rise to an electric field. The quanta of in-phase longitudinal density oscillation of
charge carriers at the surface of materials driven by this electric field are defined as the surface plasmons
(SPs). Inside the bulk, SPs evanesce severely owing to the heavy energy loss. These collective density
oscillations can be excited in the conventional metal surfaces. It is clear from the plot of Equation (25) in
Figure 3b that the surface could be metallic, even when the bulk is insulating, owing to the conduction
bands being partially empty. This is, therefore, an appropriate case to investigate the possibility of
the SPs. Equation (27) is expected to yield unconventional q1/2 plasmons [32,33] obtainable under
very stringent conditions given by Equation (28). Since the calculation of surface metallicity is in the
zero–temperature limit, a prediction of the previous works [7–10] stating that “when temperature is
lowered a Kondo insulator may turn into a topological insulator with a metallic surface state” remains
unverified. However, our finding of surface states with gapless Dirac dispersion albeit under very
stringent conditions corroborates an important experimental finding of Xiang et al. [27]. They have
found that, in the case of the prototypical TKI SmB6, there is a broken rotating symmetry in the
amplitude of the main de Haas–van Alphen oscillation branch consistent with Lifshitz-Kosevich theory
confirming a 2D nature of the surface electronic state. The finding is similar to quantum oscillation
experiments [34,35] for the conventional TIs to probe the surface Dirac fermions. The transport
measurements [35] in the past have also demonstrated the insulating bulk and metallic surface
separation. For potential applications toward scalable quantum information processing [36], this bulk
and surface separation is especially important.

3.2. Plasmon Frequency

The plasmons are defined as longitudinal in-phase oscillation of all the carriers driven by the
self-consistent electric field generated by the local variation in induced charge density ρ (r,ω). In a
linear-response approximation, we have ρ(r,ω) = e2

∫
d2r ′χ(r, r ′,ω)Φ(r ′,ω), where Φ is induced local

potential and χ is the fermion response function or the dynamic polarization. This is a quantity
of interest for many physical properties, since it determines e.g., the plasmon and phonon spectra.
Assuming plasmon oscillation for the 3D system under consideration entirely a surface phenomenon,
in the random phase approximation (RPA) [37,38], we write the dynamical polarization function χ
(aq,ω) in the momentum space, as

χ(aq,ω) =
∑

K,ζ ,ζ ′ ,α ,α′

∣∣∣〈Ψζ,α(a(K− q))
∣∣∣Ψζ ′ ,α′ (aK)〉

∣∣∣2[ nζ,α(aK− aq) − nζ ′ ,α ′ (aK){
}ω + ∈ζ,α,sur f ace (aK− aq)− ∈ζ ′ ,α ′ ,sur f ace (aK) + iη

} ] (30)

The symbol ∈ζ,α,sur f ace (aK) stands for the surface state single-particle excitation spectrum given by

Equation (25) and
∣∣∣〈Ψζ,α (a(K− q))

∣∣∣Ψζ ′,α′(aK)〉
∣∣∣2 for the band-overlap of wave functions. This part of

the paper leans on the previous investigations [32,33]. Since we are presently interested in intra-band
plasmons only, we write down the explicit expression for the intra-band overlap. In view of (26), this is
given by Fα,α,ζ,ζ ′ (K,q) =

(
1
2

)[
1 + ζζ ′ cosθα,α,K,q

]
, where

cosθα,α,K,q, =


(aq)

(
∂∈α,sur f ace(K)

∂K −
∂Γ2(K)
∂K

)(
∈α,sur f ace (K) − Γ2(K)

)
{(
∈α, sur f ace (K) − Γ2(K)

)2
+ (CVb)2

}
 (31)

In the long wavelength limit and ζζ ′ = +1. The Fermi function with the band index α
is given by nζ,α(aK) = 1/[exp(β (∈ζ,α,sur f ace (aK))− βµ) + 1]. Upon using the Sokhotski-Plemelj identity
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(x ± iη)−1 = P
(
x−1

)
∓ iπ(x) with P as the principal part, the real-part of the polarization function

appears as

χ1(aq,ω) = P
∑

K,α,α′, ζ, ζ′

 (nζ,α(aK − aq) − nζ′,α′ (aK))Fα,α′,ζ,ζ′ (K, q){
}ω + ∈ζ,α,sur f ace (aK− aq) − ∈ζ′,α ′,sur f ace (aK)

} . (32)

The imaginary part is given by

χ2(aδq,ω ′) = −π
∑

K,α,α′, ζ, ζ′ (nζ,α(aK− aq) − nζ ′,α ′ (aK))Fα,α′,ζ,ζ′ (K, q) × (}ω

+ ∈ζ,α,sur f ace (aK− aq)− ∈ζ ′,α ′,sur f ace (aK)) .
(33)

Since we have chosen td1 to be the unit of energy before, the quantity }ω is also in the same unit.
In the long-wavelength limit, the band structure in Equation (24) yields

∈ζ,α,sur f ace (aK− aq)− ∈ζ,α,sur f ace (aK) ≈

a2
(
q2
− 2q.K

)
2λζ,α


,

(34)

where

λζ,α ≈

2
t d1 1 +

b2t f 1
td1

+
α v∗F(ζ)

2

2td1

[
(CVb)2 +

(
b2
2 ε f − 3t f 1

)2
] 1

2


≈

2
t d1

1 −
b2t f 1

td1

. (35)

Within the random phase approximation (RPA), the plasmon dispersion is obtained by finding
zeros of the dynamical dielectric function, which is expressed in terms of Coulomb’s potential as
eζ,α

(
a
∣∣∣q∣∣∣, ω′) = 1−V (q)χζ ,α

(
a
∣∣∣q∣∣∣,ω′) where ω′ = ω − iγ, γ is the decay rate of plasmons, and the

expression V(q) is the Fourier transform of the Coulomb potential in two dimensions. For weak
damping, the equation Re e

(
ω, a

∣∣∣q∣∣∣) = 0 yields the plasmon frequency }ωpl. In the intra-band case,
from Equation (32), in the high frequency limit we obtain

eζ,α
(
a
∣∣∣q∣∣∣, ω)

= 1 − V0

∑
K,α, ζ


(}ω)−1 ∂nζ,α

∂µ
∂∈ζ,α,sur f ace(aK)

∂(aK) Fα, ζ (K, q){
1 −

{
(aq.ak)
}ω λζ,α

}}
, (36)

where V0 =
(

e2

2ε0εr

)
, ε0 is the vacuum permittivity, and εr is the relative permittivity of the

surrounding medium. The denominator of the summand in Equation (36) involves a scalar product.
We make use of the standard integral∫ 2π

0

dϕ{
a− x cosϕ

} = 2π(2θ(a) − 1)
(
|a| 2 − x2

)−1/2
, for |a| > x, (37)

and zero, for |a| ≤ x. Here θ(a) is the Heaviside step function. We can write
∫ 2π

0
dϕ{

a −
{

a|q|a|k|)
}ωλζ,α

}
cosϕ

} =

2π
{

1−
(

a|q|a|k|
}ω λζ,α

)2
}

.−1/2. This integral allow us to write Equation (36) as

eζ, α
(
a
∣∣∣q∣∣∣, ω)

= 1− 2πV0

∑
K,α, ζ


(}ω)−1 ∂nζ,α

∂µ
∂∈ζ,α,sur f ace(aK)

∂(aK) Fα, ζ (K, q){
1 −

(
a|q|a|k|
}ω λζ,α

)2
}

.1/2

. (38)
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The denominator of the summand in Equation (38) can be expanded using the Binomial theorem.
We obtain then the following implicit equation as the Plasmon dispersion for the system:

(}ω)3
− (}ω)2

{
πV0

∫
dK

∑
α,ζ

∂nζ,α
∂µ

∂∈ζ,α,sur f ace(aK)

∂(aK) (1 + (aq)FFK)
}
=

1
2πV0(aq)2 ∫

dK
∑
α, ζ

∂nζ,α
∂µ

∂∈ζ,α,sur f ace(aK)

∂(aK)

(
a| K |
λζ,α

)2
( 1 + (aq)FFK) ,

(39)

where dK =
(

d2(aK)

(2π)2

)
and

FFK =


(
∂∈α,sur f ace(K)

∂K −
∂Γ2(K)
∂K

)(
∈α,sur f ace (K) − Γ2(K)

)
{(
∈α, sur f ace (K)Γ2(K)

)2
+ (CVb)2

}
. (40)

It may be noted that we have put ζζ ′ = +1 in Fα,α,ζ,ζ ′(K,q) =
(

1
2

)[
1 + ζζ ′ cosθα,α,K,q

]
and

written it as ( 1 + (aq)FFK) in Equation (39), as we are presently considering the intra-band case.

The integrals in Equation (39) are trivial as ∂nζα,(aK)

∂µ could be replaced by a delta function at T = 0 K.
Equation (39) may further be written as

(}ω)3
− (}ω)2πV0(I1+(aq)I2) −

1
2
πV0(aq)2(I3+(aq)I4) = 0, (41)

where

I1 =

{∫
dK

∑
α, ζ

∂nζ,α
∂µ

∂∈ζ,α,sur f ace(aK)

∂(aK)

}
,

I2 =

{∫
dK

∑
α, ζ

∂nζ,α
∂µ

∂∈ζ,α,sur f ace(aK)

∂(aK) FFK

}
,

I3 =
∫

dK
∑
α, ζ

∂nζ,α
∂µ

∂∈ζ,α,sur f ace(aK)

∂(aK)

(
a| K|
λζ,α

)2
,

I4 =
∫

dK
∑
α, ζ

∂nζ,α
∂µ

∂∈ζ,α,sur f ace(aK)

∂(aK)

(
a| K|
λζ,α

)2
FFK .

(42)

Upon solving Equation (41), one finds unconventional dispersion relation, viz.

}ω ≈ 3 − 2
1
3

9
πV0(I1+(aq)I2), (43)

in the long wavelength limit. To the leading order, I1 and I2 are positive as In ∼
td1(aKF)

n+2

n+2 . It is to
be noted that, though the relation is linear, the group velocity (vg) and the phase velocity (vp) are
not equal. The former, given by vg = (0.6075 V0I2) is several orders of magnitude smaller than
the speed of light whereas the latter is positive and much larger than unity. Thus, considering the
intra-band transitions only, we have found possibility of only one collective mode exhibiting linear
dispersion which could be triggered into an excited state with very low levels of energy input–less
than 1 electron-volt. It corresponds to charge plasmons and not spin plasmons as its origin does not
lie in the gapless Dirac spectrum. The linear behaviour of the dispersion implies that signals can be
transmitted undistorted along the surface. The finding has significant importance in extremely low
loss communications.

As regards the inter-band plasmons corresponding to a pair of spin-split bands, we shall
have ζζ ′ = −1. The band-overlap of wave functions Fα,α,ζ,ζ ′ (K,q) =

(
1
2

)[
1 + ζζ ′ cosθα,α,K,q

]
may be

written as
(

1
2

)
( 1− (aq)FFK). Furthermore, the quantity εr is the relative permittivity of the surrounding

medium and it is positive (negative) for a meta-material (negative dielectric constant medium).
We assume the surrounding medium to be a meta-material. Thus, we may write V0 = −| V0 |.

Equation (43) in this case may be written as }ω ≈
3 − 2

1
3

9 πV0(−I1 + (aq)I2). As in the case of
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frequency dispersion in groups of gravity waves on the surface of deep water, we encounter the exotic
possibility of the group velocity being positive, while the phase velocity is negative. Our analysis
demonstrates that the same plasmonic system can support both type of solutions, viz. (vg, vp) > 0 and
(vg > 0, vp < 0), depending on parameters.

3.3. Surface Spectrum with Rashba Coupling

In the previous sub-section we have obtained the gapless Dirac spectrum Equation (27) under
the severe restrictions of Equations (28a) and (28b). If this is true, we expect to have the well-known
q1/2 spin-plasmons [32,33]. Since the restrictions are ironclad, we look for other means to obtain
gapless spectrum. None other than the spin-orbit coupling is more suitable for the purpose. We,
therefore, propose the consideration of an additional (Rashba) term [2b2λR

(
ky + ikx

)
+ H.C] in the

surface state Hamiltonian. It is imperative to assume that there must be deposition of particles with
considerably high Rashba spin-orbit (RSO) interaction strength λR, such as Au(111), on the surface of
material. The effect of this intrinsic coupling is to be included in the band-structure only. To start with,
we consider Equation (23) for ℵmn

slab and add Rashba term to it. We obtain ℵmn
modi f ted as

Γ1 −
16iVba

3d 0 0
16iVba

3d Γ2 0 2b2λR
(
ky + ikx

)
0 0 Γ1

96iVba
7d

0 2b2λR
(
ky − ikx

)
−

96iVba
7d Γ2

, (44)

where
Γ1(K) = −µ − ξ − 6td1 + td1K2,

Γ2(K) = −µ + ξ + b2ε f − 6b2t f 1 + b2t f 1K2 + λ.
(45)

Upon noting that λ = −6t f 1 + 6b2t f 1 and ξ ≈ −3td1, the eigenvalues ε of this matrix is given by
the quartic

(ε2
− (Γ1 + Γ2)ε +Γ1Γ2 −

(
96Vba

7d

)2
) × (ε2

− (Γ1 + Γ2)ε + Γ1Γ2 −
(

16Vba
3d

)2
)

−

(
2b2λR

)2
(ε − Γ1)

2K2 = 0,
(46)

where K =
√(

ky2 + k2
x

)
. After lengthy algebra, Equation (46) yields the following roots in view of the

Ferra-ri’s solution of a quartic equation:

εs,σ(K) = σ

√
z0(K)

2
+

(Γ1(K) + Γ2(K))
2

+ s

b0(K) −
(

z0(K)
2

)
+ σc0(K)

√
2

z0(K)


1
2

, (47)

where σ = ±1 is the spin-index and s = ±1 is the band-index. The other functions appearing in
Equation (47) are defined below:

z0(K) =
2b0(K)

3
+

(1
2

∆
1
2 (K) − A0(K)

) 1
3
−

(1
2

∆
1
2 (K) + A0(K)

) 1
3
, (48)

A0(K) = (
b3

0(K)
27 −

b0(K)d0(K)
3 − c2

0(K)),

b0(K) =
3B2(K) − 8C(K)

16 ,

c0(K) =
−B3(K) + 4B(K)C(K) − 8D

32 ,

(49)

d0(K) =
−3B4(K) + 256E(K) − 64B(K)D(K) + 16B2(K)C(K)

256
, (50)
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∆(K) = (
8

729
b6

0 +
16d2

0b2
0

27
+ 4c4

0 −
4d0b4

0

81
−

8c2
0b3

0

27
+

8c2
0b0d0

3
+

4
27

d3
0), (51)

B(K) = −2(Γ1(K) + Γ2(K)), (52)

C(K) = [(Γ1(K) + Γ2(K))
2 + 2Γ1(K)Γ2(K) −

(
96Vp

7

)2

−

(
16Vp

3

)2

−

(
2b2λR

)2
K2], (53)

D(K) = −(Γ1(K) + Γ2(K))(2Γ1(K)Γ2(K) −
(

96Vp

7

)2

−

(
16Vp

3

)2

) + 2
(
2b2λR

)2
Γ1(K)K2, (54)

E(K) = (Γ1(K)Γ2(K) −
(

96Vp

7

)2

) (Γ1(K)Γ2(K) −
(

16Vp

3

)2

) −
(
2b2λR

)2
Γ1

2(K)K2. (55)

Moving over to Equation (47), we notice that the first term
√
(z0/2) acts as an in-plane Zeeman

term gbµBB (where B is the magnetic field, and gb is the Lande g-factor, and µB is the Bohr magneton).
The pseudo-Zeeman term of the spectrum in Equation (47) comes into being due the presence of the

term
(
2b2λR

)2
(ε− Γ1)

2K2 in Equation (46). Without this term, the spectrum reduces to a bi-quadratic
(with no Zeeman term) rather than a quartic. Thus, the role of Rashba SOI as the polarization-usherer
could be easily understood.

We have plotted the surface state single-particle excitation spectrum Equation (47) as a function of
the dimensionless wave vector (aK) in Figure 4 for the considerably high Rashba coupling ( λR

td1
∼ 0.5).

The influences of the coupling on the spectrum is quite conspicuous if one compares this figure
with Figure 3. The ‘gaplessness at wave vector K = 0’ is the striking feature of the spectrum
in Figure 4a. In contrast, for the insulating bulk in Figure 4b, this feature is also manifested at K = ±1.
The wider spin-splitting under the influence of the Rashba interaction are basically responsible for
prominent gapless Dirac spectrum including the cones. The TKI surface, therefore, comprises of ‘helical
liquids’ [39] in the presence of the Rashba impurities. The access to the gapless Dirac spectrum leads
to spin-plasmons with the usual wave vector dependence q1/2. As we have noted above, the Rashba
coupling does not impair the Kondo screening and does not affect the QCP for the bulk.
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Figure 4. The plots of surface state single-particle excitation spectrum given by Equation (47) versus
dimensionless wave vector for the chemical potential µ = 0. It is represented by unbroken thick
straight line indicated in figures above. The other parameters are b = 0.95, td1 = 1, ε f = −0.02, V = 0.10;

Vp =
(

Vab
d

)
= 0.04. Since the conduction bands are partially empty, the surface state will be metallic in

both (a) and (b). In (a), the hopping integral t f 1 = 0.31 is positive and therefore corresponds to metallic
bulk (Figure 1a). In (b), t f 1 = −0.31 is negative and therefore corresponds to insulating bulk (Figure 1b).
The Rashba coupling strength (a) λR = 0.80 and (b) λR = 0.40. The thin lines (solid and dashed lines)
and thick lines in both the figures correspond to spin-split conduction and valence bands.

4. Discussion and Concluding Remarks

In the present communication, we have started with PAM—a model for a generic TKI. We have
used the slave boson approximation (SBA) and then taken the limit U→∞ to treat the strong interaction
between f -electrons in this model. For almost filled f -bands this corresponds to projecting out the states
with two or more f -particles per site. This constraint of “no double occupancy”, together with the
application of a mean-field approximation on the bosonic fields, leads to an effective PAM Hamiltonian
that is quadratic in creation and annihilation operators. The quadratic Hamiltonian makes the
calculation of the relevant Matsubara propagators extremely simple as one needs to simply solve linear,
algebraic simultaneous equations of the Fourier transforms of these propagators and take inverse
Fourier transform thereafter. Once this is done, every property of the system (e.g., thermodynamic,
transport, optical, thermoelectric, and so on), in principle, could be calculated. In a sequel to this paper,
we, in fact, plan to determine the phase diagram of a generic TKI using this approach. Thus, SBA seems
to carry great relevance for the PAM. We have also initiated the application of the slave-fermion
method to PAM in order to ascertain whether the results obtained here are somehow related to the
method used. The initial outcomes are interesting. Furthermore, Equation (28a), which demands that
“| t f 1 | should be less than | ε f | by one order of magnitude”, is hard to get satisfied unless f -electrons
are strongly localized and, therefore, a Dirac-type surface spectrum is possible for a system where
NN hopping parameter for f -electrons is smaller than corresponding on-site energy. In fact, the direct
evidence [40] of SmB6 hosting metallic spin helical surface states has been reported recently.

The PAM itself and its extensions are still relevant for the theoretical condensed-matter physics.
The examples of extension are those including the on-site repulsion between d- and f -electrons given by
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Ud, f
∑

d†i.ζ di,ζ f †i.ζ ′ fi,ζ ′ and thecoulomb interaction
∑

Vi j f †i.ζ fi,ζ f †j.ζ ′ f j,ζ ′ , between on the nearest-neighbor
(NN) sites. For Ud, f � td1, the Kondo singlet state will be destroyed, and the valence fluctuations are
enhanced [5]. On the other hand, it was found that, in an investigation [6] of nonmagnetic and magnetic
ground states of PAM in the presence of Vi j, the magnetic ground state of the PAM in the Kondo regime
is unstable for a critical value of Vi j. In other words, some Vi j

critical affects the stability of the magnetic
ground state in the Kondo regime in the investigation [6]. We have also introduced an extension to the
model here by way of involving the magnetic exchange interaction. The interaction is introduced in the
most direct route using only the spin degrees of freedom. We have demonstrated that the exchange field
can be used to open a gap at the surface state dispersion. The field, in fact, is expected to play a bigger
role, such as in the efficient tuning of the bulk band gap, the plasmon frequency, and so on. Looking
backward, we observe there are many unsettled issues. For example, the problem of hybridization of
plasmons with optical surface phonons that is likely to occur when TKI is surrounded by a material
other than air has not been addressed. We need to suggest the ways and means to curb such a loss.

In conclusion, the inclusion of Rashba impurities in TKI surface gives rise to surface helical states
where spin and momentum directions are locked to each other. In the proximity of a superconductor
or a magnet, several interesting phenomena, such as the appearance of Majorana anyons, topological
Faraday/Kerr effect, fractional charge for the quantum spin Hall effect in 2D, etc., may occur. These offer
promising prospects for spintronic applications. Though immense progress has been made in this
area over the past decade, never-the-less, we believe that our work may cast new light onto the
investigations of how electron correlations and magnetic disorder influence the helical liquid. There are
many challenges in the processing of these exotic materials to use the metallic/insulating states in
functional devices, and they present great opportunities for the materials science research communities.
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Appendix A

The scheme to calculate the averages 〈d†k.ζ dk,ζ〉, 〈bs†k.ζ bsk,ζ〉, etc., have been shown in this appendix.
For this purpose, we proceed with finite-temperature formalism. Since the Hamiltonian is completely
diagonal one can easily write down the equations for the operators {dk.ζ(τ), sk,ζ(τ)}, where the
time evolution an operator O is given by O(τ) = exp(ℵτ) O exp(−ℵτ), to ensure that the thermal
averages in the equations above are determined in a self-consistent manner. The Green’s functions
Gsb(kζ, kζ, τ) = −〈Tτdk.ζ (τ)d†k,ζ(0)〉, Fsb(kζ, kζ, τ) = −b2

〈Tτsk,ζ(τ)d†k,ζ(0)〉, etc., where Tτ is the
time-ordering operator which arranges other operators from right to left in the ascending order of
imaginary time τ, are of primary interest. We find

Gsb
(
k ↑, k ↑, τ→ 0+

)
= u(−)2

k ,+ (eβ(∈
(−)
−

(k) − µ) + 1)−1 + u(−)2

k ,− (e
β(∈

(−)
+ (k)−µ) + 1)−1, (A1)

Gsb
(
k ↓, k ↓, τ→ 0+

)
= u(+)2

k ,+ (eβ(∈
(+)
−

(k)−µ) + 1)−1 + u(+)2

k ,− (eβ(∈
(+)
+ (k)−µ) + 1)−1, (A2)

Fsb(k ↑, k ↑, τ→ 0+) = (u(+)2

k ,+ − v(+)2

k )(eβ(∈
(+)
−

(k)−µ) + 1)−1

+
(
u(+)2

k ,− + v(−)
2

k )(eβ(∈
(+)
+ (k)−µ) + 1)−1

+ v(+)2

k (eβ(∈
(−)
+ (k)−µ) + 1)−1

− v(−)
2

k (eβ(∈
(−)
−

(k)−µ) + 1)−1,

(A3)

Fsb(k ↓, k ↓, τ→ 0+) = (u(+)2

k ,− + v(+)2

k )(eβ(∈
(−)
+ (k)−µ) + 1)−1

+
(
u(+)2

k ,+ − v(−)
2

k )(eβ(∈
(−)
−

(k)−µ) + 1)−1
−v(+)2

k (eβ(∈
(+)
−

(k)−µ) + 1)−1

+ v(−)
2

k (eβ(∈
(+)
+ (k)−µ) + 1)−1.

(A4)
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For the averages 〈d†k↑ bsk,↓〉 and 〈bs†k,↑ dk↓ 〉, respectively, we obtain

V
(
sx + isy

)
ε_(k, b,λ, ξ)

[
(eβ(∈

(−)
−

(k)−µ) + 1)
−1
− (eβ(∈

(−)
+ (k)−µ) + 1)

−1
],

and
V
(
sx + isy

)
ε+(k, b,λ, ξ)

[
(eβ(∈

(+)
−

(k)−µ) + 1)
−1
− (eβ(∈

(+)
+ (k)−µ) + 1)

−1
].

These averages involving hybridization parameter V are ultimate signature of the Kondo
insulating state, where there is precisely one conduction electron paired with an impurity spin.

In the zero-temperature limit the Fermi functions (eβ(∈(k)−µ) + 1)
−1

will be replaced by the Heaviside
step function θ(µ− ∈ (k)). Here

u(ζ)2

k ,± =
1
2
[1 ±

(
2ξ + εd

k − b2ε
f
k + λ

)
2{

√ (
2ξ + εd

k − b2ε
f
k + λ

)
4

2

+ 4V2b2(s2
x + s2

y + s2
z)}

], (A5)

v(σ)
2

k =
−2V2b2s2

z√ (
2ξ + εd

k − b2ε
f
k + λ

)
4

2

+ 4V2b2(s2
x + s2

y + s2
z )[

(
2ξ + εd

k − b2ε
f
k + λ

)
2 + σ

√ (
2ξ + εd

k − b2ε
f
k + λ

)
4

2

+ 4V2b2(s2
x + s2

y + s2
z )]

(A6)

ε(k,b,λ,ξ) =

√√(
2ξ + εd

k − b2ε
f
k + λ

)
4

2

+ 4V2b2(s2
x + s2

y + s2
z), (A7)

ε+(k, b,λ, ξ) =

√√(
2ξ + εd

k − b2ε
f
k + λ

)
4

2

+ 4V2b2(s2
x + s2

y + s2
z), (A8)

∈
(ζ)
α (k)= −

(
εd

k + b2ε
f
k − λ

)
2

+ α

√√(
2ξ + εd

k − b2ε
f
k + λ

)
4

2

+ 4V2b2(s2
x + s2

y + s2
z), (A9)

εd
k = [2td1c1(k) + 4td2c2(k) + 8td3c3(k)

]
, (A10)

ε
f
k =

[
−ε f + 2t f 1c1(k) + 4t f 2c2(k) + 8t f 3c3(k)

]
, (A11)

and α = 1 (−1) for upper band (lower band), ζ = ±1 labels the eigenstates (↑, ↓ ) of ζ z.
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Direct observation of the spin texture in SmB6 as evidence of the topological Kondo insulator. Nat. Commun.
2014, 5, 1–5. [CrossRef] [PubMed]

13. Weng, H.; Zhao, J.; Wang, Z.; Fang, Z.; Dai, X. Topological Crystalline Kondo Insulator in Mixed Valence
Ytterbium Borides. Phys. Rev. Lett. 2014, 112. [CrossRef] [PubMed]

14. Deng, X.; Haule, K.; Kotliar, G. Plutonium Hexaboride is a Correlated Topological Insulator. Phys. Rev. Lett.
2013, 111, 176404. [CrossRef] [PubMed]

15. Alexandrov, V.; Dzero, M.; Coleman, P. Cubic Topological Kondo Insulator. Phys. Rev. Lett. 2013, 111, 226403.
[CrossRef]

16. Cooley, J.C.; Mielke, C.H.; Hults, W.L.; Goettee, J.D.; Honold, M.M.; Modler, R.M.; Lacerda, A.; Rickel, D.G.;
Smith, J.L. Magnetic field dependence of correlation gap in SmB6. Physica B 1995, 206, 377–379. [CrossRef]

17. Kim, D.J.; Xia, J.; Fisk, Z. Topological surface state in the Kondo Insulator Samarium Hexaboride. Nat. Mater.
2014, 13, 466–470. [CrossRef]

18. Hewson, A.C. The Kondo Problem to Heavy Fermions; Cambridge University Press (CUP): Cambridge, UK, 1993.
19. Coleman, P. New approach to the mixed-valence problem. Phys. Rev. B 1984, 29, 3035–3044. [CrossRef]
20. Goswami, P. Investigation of extended Hubbard model by slave-boson method. Phys. B Condens. Matter

2008, 403, 999–1001. [CrossRef]
21. Lee, H.C.; Choi, H.-Y. Slave-boson approach to the infinite-U Anderson-Holstein impurity model. Phys. Rev. B

2004, 70, 085114. [CrossRef]
22. Kou, S.P.; Qi, X.L.; Weng, Z.Y. Mutual Chern-Simons effective theory of doped anti-ferromagnets. Phys. Rev. B

2005, 71, 235102. [CrossRef]
23. Xu, C.; Sachdev, S. Majorana Liquids: The Complete Fractionalization of the Electron. Phys. Rev. Lett.

2010, 105, 057201. [CrossRef] [PubMed]
24. Neupane, M.; Alidoust, N.; Xu, S.-Y.; Kondo, T.; Ishida, Y.; Kim, D.J.; Liu, C.; Belopolski, I.; Jo, Y.J.;

Chang, T.-R.; et al. Surface electronic structure of the topological kondo-insulator candidate correlated
electron system SmB6. Nat. Commun. 2013. [CrossRef] [PubMed]

25. Legner, M.; Rüegg, A.; Sigrist, M. Topological invariants, surface states, and interaction-driven phase
transitions in correlated Kondo insulators with cubic symmetry. Phys. Rev. B 2014, 89, 085110. [CrossRef]

26. Zheng, Z.; Zou, X.-B.; Guo, G.-C. Synthetic topological Kondo insulator in a pumped optical cavity
(cond-mat.quant-gas). New J. Phys. 2018, 20. [CrossRef]

27. Xiang, Z.; Lawson, B.; Asaba, T.; Tinsman, C.; Chen, L.; Shang, C.; Li, L. Bulk Rotational Symmetry Breaking
in Kondo Insulator SmB6. Phys. Rev. X 2017, 7, 031054. [CrossRef]

28. Hasan, M.Z.; Kane, C.L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067. [CrossRef]
29. Goswami, P. Some useful relations to derive the thermodynamic potentials of Fermi and Bose systems using

spectral-weight functions. Phys. Rev. B 1994, 49, 1600–1607. [CrossRef]
30. Kadanoff, L.P.; Baym, G. Quantum Statistical Mechanics; Benjamin: New York, NY, USA, 1962; Volume 14.
31. Doniach, S. The insulator-metal transition. Adv. Phys. 1969, 18, 819–848. [CrossRef]
32. Goswami, P. Optical properties of uniaxially strained graphene on transition metal dichalcogenide substrate.

Int. J. Mod. Phys. B 2018, 32. [CrossRef]
33. Goswami, P. Strong confinement of unconventional plasmons and optical properties of graphene-transition

metal dichalcogenideheterostructures. J. Phys. Commun. 2018, 2, 065012. [CrossRef]
34. Qi, X.-L.; Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057–1110.

[CrossRef]

http://dx.doi.org/10.1103/PhysRevLett.104.106408
http://www.ncbi.nlm.nih.gov/pubmed/20366446
http://dx.doi.org/10.1103/PhysRevB.85.045130
http://dx.doi.org/10.1103/PhysRevB.88.035113
http://dx.doi.org/10.1103/PhysRevB.89.245119
http://dx.doi.org/10.1103/PhysRevB.90.081113
http://dx.doi.org/10.1038/ncomms5566
http://www.ncbi.nlm.nih.gov/pubmed/25074332
http://dx.doi.org/10.1103/PhysRevLett.112.016403
http://www.ncbi.nlm.nih.gov/pubmed/24483913
http://dx.doi.org/10.1103/PhysRevLett.111.176404
http://www.ncbi.nlm.nih.gov/pubmed/24206507
http://dx.doi.org/10.1103/PhysRevLett.111.226403
http://dx.doi.org/10.1016/0921-4526(94)00464-7
http://dx.doi.org/10.1038/nmat3913
http://dx.doi.org/10.1103/PhysRevB.29.3035
http://dx.doi.org/10.1016/j.physb.2007.10.076
http://dx.doi.org/10.1103/PhysRevB.70.085114
http://dx.doi.org/10.1103/PhysRevB.71.235102
http://dx.doi.org/10.1103/PhysRevLett.105.057201
http://www.ncbi.nlm.nih.gov/pubmed/20867950
http://dx.doi.org/10.1038/ncomms3991
http://www.ncbi.nlm.nih.gov/pubmed/24346502
http://dx.doi.org/10.1103/PhysRevB.89.085110
http://dx.doi.org/10.1088/1367-2630/aaaa50
http://dx.doi.org/10.1103/PhysRevX.7.031054
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/PhysRevB.49.1600
http://dx.doi.org/10.1080/00018736900101397
http://dx.doi.org/10.1142/S0217979218501643
http://dx.doi.org/10.1088/2399-6528/aac7a1
http://dx.doi.org/10.1103/RevModPhys.83.1057


Surfaces 2020, 3 504

35. Kim, D.J.; Thomas, S.; Grant, T.; Botimer, J.; Fisk, Z.; Xia, J. Surface Hall Effect and Nonlocal Transport in
SmB6: Evidence for Surface Conduction. Sci. Rep. 2013, 3, 3150. [CrossRef] [PubMed]

36. Ivanov, A.D. Non-Abelian Statistics of Half-Quantum Vortices in p -Wave Superconductors. Phys. Rev. Lett.
2001, 86, 268–271. [CrossRef] [PubMed]

37. Giuliani, G.; Vignale, G. Quantum Theory of the Electron Liquid; Cambridge University Press (CUP):
Cambridge, UK, 2005.

38. Hwang, E.H.; Das Sarma, S. Dielectric function, screening, and plasmons in two-dimensional grapheme.
Phys. Rev. B 2007, 75, 205418. [CrossRef]

39. Raghu, S.; Chung, S.B.; Qi, X.-L.; Zhang, S.-C. Collective Modes of a Helical Liquid. Phys. Rev. Lett.
2010, 104, 116401. [CrossRef]

40. Kim, J.; Jang, C.; Wang, X.; Paglione, J.; Hong, S.; Lee, J.; Choi, H.; Kim, D. Electrical detection of the
surface spin polarization of the candidate topological Kondo insulator SmB6. Phys. Rev. B 2019, 99, 245148.
[CrossRef]

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/srep03150
http://www.ncbi.nlm.nih.gov/pubmed/24193196
http://dx.doi.org/10.1103/PhysRevLett.86.268
http://www.ncbi.nlm.nih.gov/pubmed/11177808
http://dx.doi.org/10.1103/PhysRevB.75.205418
http://dx.doi.org/10.1103/PhysRevLett.104.116401
http://dx.doi.org/10.1103/PhysRevB.99.245148
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Periodic Anderson Model 
	Model 
	Slave-Boson Protocol 

	Surface State 
	Surface States 
	Plasmon Frequency 
	Surface Spectrum with Rashba Coupling 

	Discussion and Concluding Remarks 
	
	References

