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Abstract: An electrochemical sensor, based on a graphene paste electrode (GPE), was modified with
a polymerization method, and the electrochemical behavior of catechol (CC) and hydroquinone (HQ)
was investigated using electroanalytical methods like cyclic voltammetry (CV) and differential pulse
voltammetry (DPV). The effect of CC at the modified electrode was evidenced by the positive shift
of the oxidation peak potential of CC at the poly (rosaniline)-modified graphene paste electrode
(PRAMGPE) and the nine-fold enhancement of the peak current, as compared to a bare graphene
paste electrode (BGPE). The sensitivity of CC investigated by DPV was more sensitive than CV
for the analysis of CC. The DPV method showed the two linear ranges of 2.0 × 10−6–1.0 × 10−5 M
and 1.5 × 10−5–5 × 10−5 M. The detection limit and limit of quantification were determined to be
8.2 × 10−7 and 27.6 × 10−7 M, respectively. The obtained results were compared successfully with
respect to those obtained using the official method. Moreover, this sensor is applied for the selective
determination of CC in the presence of HQ. The high sensitivity, good reproducibility, and wide linear
range make the modified electrode suitable for the determination of CC in real samples. The practical
application of the sensor was demonstrated by determining the concentration of CC in water samples
with acceptable recoveries (97.5–98%).

Keywords: poly (rosaniline); graphene paste electrode; catechol; hydroquinone; cyclic voltammetry;
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1. Introduction

Isomeric benzenediol compounds, for example, hydroquinone (HQ) and catechol (CC),
show notable antagonistic impacts on human health and the environment. Such compounds, for the most
part, begin from creating solutions in the photography, paper, and rubber industries [1]. From these
industrial routes, in addition to some other natural sources, hydroquinone and catechol discover
their way to the environment [2]. The poisonousness of phenols produced from bioremediation,
for example, fertilizing the soil, can likewise welcome on bothersome environmental impacts and
genuinely harm evacuation efficiencies [3–7]. These modern uses of the two compounds not withstanding
their poisonousness in the environment demand simple, accurate, precise, sensitive, and selective
determination of the two compounds. A few methods have been proposed to determine CC and
HQ such as spectrophotometric [8,9], liquid chromatography [10,11], synchronous fluorescence [12],
chemiluminescence [13], capillary electrophoresis [14], and gas chromatography/mass spectrometry [15].
Those methods are time-consuming and expensive, they also have low sensitivity. Electrochemical
methods are extensively used due to their good sensitivity, reproducibility, and low cost [16–24].

As of late, various sorts of monomers have been utilized as surface modifiers in electrochemical
sensors. Diverse supporting carbon materials, for example, carbon paste, glassy carbon [25–28],
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carbon nanotubes [29–33], graphite [34–37], and graphene [38,39], have been utilized to stabilize
electron transfer mediators, essentially because of their low background currents and wide potential
windows. The subsidiaries of the modified carbon electrodes show unrivaled electrochemical properties
and exhibit synergist movement toward numerous chemical reactions. Among working electrodes
in electrochemical frameworks, the carbon paste electrode (CPE) is generally utilized due to having
a few advantages, for example, simple modification, regenerable surface, low background current,
outrageous potential window, low ohmic resistance, and minimal effort [40,41]. The graphene
paste electrode (GPE) can be widely used in the determination of drugs, biomolecules, and other
organic species because of its easy preparation and simple modification. In experimental conditions,
GPE has a wider potential window, and its residual currents are lower than those of the glassy carbon
electrodes or noble metallic electrodes. Graphene can be fabricated in various effective ways [42–44].
Here, in this research work, graphene was used for the construction of a novel working electrode for
the simultaneous determination of CC and HQ. Thus, we report, for the first time, the development
of a new electrochemical sensor utilizing rosaniline to fabricate a polymer-modified graphene paste
electrode for the simultaneous determination of CC and HQ. The proposed strategy displays numerous
favorable circumstances, for example, quick reaction, low detection limit, large dynamic range,
and great selectivity. Using the developed technique, the determination of CC and HQ is completed
effectively in real samples. Furthermore, with the improvement of the interest in environmental quality,
there ought to be a lot of quick and proficient identification strategies to coordinate the correlative
standard of environment protection.

2. Materials and Methods

2.1. Chemicals

Graphene powder was attained from Tokyo Chemicals, Tokyo, Japan. CC and HQ were purchased
from Sisco Research Laboratories, Mumbai, India. Silicone oil was bought from Nice Chemical, Cochin,
India. Rosaniline (RA), Disodium hydrogen phosphate, and monosodium dihydrogen phosphate were
procured from Himedia, Bangalore, India. The analytes 0.1 mM CC and 0.1 M HQ were prepared by
suspending known quantities of the analytes in distilled water. PBS was ready by mixing an appropriate
quantity of 0.1 M disodium hydrogen phosphate and 0.1 M monosodium dihydrogen phosphate in
a known amount of distilled water.

2.2. Apparatus

The electro-analysis of CC was done through a tri-electrode arrangement attached to a CHI 6038E
electrochemical workstation (CH Instruments, Austin, TX, USA). Here, the tri-electrode system was
made up ofa saturated calomel electrode (reference electrode), platinum electrode (counter electrode),
bare graphene paste electrode (BGPE), and poly (rosaniline)-modified graphene paste electrode
(Poly(RA)MGPE) (working electrode). The EQ-610 digital pH tool was used for the preparation of
different pH PBS. A VITSIL-VBSD/VBDD water purifier was utilized to get distilled water. FE-SEM was
obtained with a device from DST-PURSE Laboratory, Mangalore University, Konaje, India).

2.3. Electrode Preparation

BGPE was equipped by combining graphene powder (60%) and silicone oil (40%) in an agate-mortar
through hand mixing till a homogeneous paste was achieved. Afterward, a bit of homogenous paste
was packed into the hole of a Teflon tube and electrical connection was completed by a copper wire.
The electrode surface was smoothed with a weighing paper and rinsed carefully with distilled water
initial to each experiment. Poly(RA)MGPE was prepared by electropolymerization of 1.0 mM RA on
the surface of BGPE by running ten cyclic voltammetry (CV) cycles at the potential gap of −0.2 to
1.0 V with a 0.1 V/s scan rate in 0.01 M sodium hydroxide via pre-treatment with sulphuric acid. Then,
the prepared electrodes were just washed with distilled water.
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3. Results and Discussion

3.1. FE-SEM Inspection

The superficial properties of BGPE and Poly(RA)MGPE were explicated by field emission scanning
electron microscopy (FE-SEM) analysis. The inset in Figure 1 picturizes the surface morphology of
BGPE (Figure 1a) and Poly(RA)MGPE (Figure 1b). In Figure 1a, the unsystematically distributed
flakes of graphene represent the surface of the BGPE material. Conversely, Figure 1b displays
the regularly arranged electrochemical polymer layers on the surface of graphene flakes,
characterizing the Poly(RA)MGP material. The Poly(RA) layer increases the catalytic activity, active sites,
and rate of electron transfer during the redox behavior of CC.
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Figure 1. (a) FE-SEM image of BGPE. (b) FE-SEM image of Poly(RA)MGPE.

3.2. Electro-Polymerization of RA at BGPE through Pre-Treatment Process

The electro-polymerization of rosaniline on the exterior of BGPE needs two stages [45].
In the primary stage, the BGPE was pre-treated with 1.0 mM RA in 0.1 M Sulphuric acid by ten CV cycles
in the potential gap of −0.2 to 1.0 V with a 0.1 V/s scan rate. In the second stage, electro-polymerization
of RA was achieved on the pre-treated BGPE surface using 1.0 mM rosaniline in 0.01 M sodium
hydroxide. Figure 2 displays the ten cyclic voltammograms (CVs) for the electro-polymerization of
RA in 0.01 M sodium hydroxide at BGPE with a −0.2 to 1.0 V potential gap at a 0.1 V/s scan rate.
During the electrochemical polymerization, the rosaniline monomer was transformed to an RA polymer
and was deposited on the exterior of BGPE, and also the peak current of RA intensified at some
certain CV cycles. Subsequently, the peak current of the RA polymer declined due to the saturation of
the electrode surface and hindered electron transfer rate, hence the number of CV cycles was fixed to
ten. The obtained Poly(RA)MGPE was rinsed with distilled water to eradicate the impurities.Surfaces 2020, 3 FOR PEER REVIEW  4 
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3.3. Impact of Sustaining Electrolyte pH

The influence of sustaining electrolyte pH on the redox action of 0.1 mM CC was described on
the surface of Poly(RA)MGPE in altered pH in the range from 6.0 to 8.0 of 0.1 M PBS by CV having
the potential window of −0.3 to 0.6 V at a 0.1 V/s scan rate. Figure 3a discloses that the escalation of
sustaining electrolyte pH shifts the redox peak potential of CC towards a less positive side. On the basis
of the achieved result, the anodic peak potential V/s solution pH graph was plotted (Figure 3b) and
presents a decent linear response with a linear regression relation of Epa (V) = 0.5855–0.049 pH (V/pH)
and the correlation coefficient (R2) of 0.980. Here, the slope of 0.049 V/pH is approximately nearer
to the theoretical value, which describes that the electrode redox reaction mechanism of CC is done
with a like number of protons and electrons [46]. Further, Figure 3b shows that the peak current of
CC is low at pH 6.0, 6.5, 7.5, and 8.0 with a lower rate of electron transfer, but pH 7.0 provides a high
current response with elevated stability and electron transfer rate. Therefore, pH 7.0 was selected as
an optimum electrolyte pH for this analysis.
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Figure 3. (a) Cyclic voltammogram for 0.1 mM CC in different pH values from 6.0 to 8.0 of 0.1 M PBS
at Poly(RA)MGPE at a 0.1 V/s scan rate. (b) The plot of Epa versus pH. (c) The plot of Ipa versus pH.

3.4. CV Response of CC at Poly(RA)MGPE and Surface Area

Figure 4 shows the CVs for the presence and absence (curve c) of 0.1 mM CC at Poly(RA)MGPE
(curve a) and BGPE (curve b) in 0.1 M sustaining electrolyte having 7.0 pH at a 0.1 V/s scan rate.
On BGPE, the oxidation current of CC was lower with a high oxidation potential of 0.244 V, which
is due to the less catalytic nature of BGPE and shorter rate of electron transfer in the CC redox
reaction. Nonetheless, at Poly(RA)MGPE, CC designates an enhanced oxidation current of 13.35 µA at
0.185 V of peak potential. Further, the modified electrodes do not disclose any electrochemical action
in the absence of the analyte CC. These outcomes reveal that the modified Poly(RA)MGPE is very
stable and specific for the CC redox nature and also it reduces the over-potential and fouling nature
of the electrode material. The dynamic surface area of Poly(RA)MGPE and BGPE is calculated by
following the Randles–Sevcik equation [47,48]:

Ip = 2.69 × 105 n3/2 A D1/2 C ν1/2 (1)

where “Ip” designates the peak current of the analyte, “n” describes the number of electrons,
“A” designates the active surface area, “D” defines the diffusion coefficient, “C” entitles the concentration
of the analyte, and “ν” designates the scan rate. The deliberated values of the dynamic surface areas
for BGPE and Poly(RA)MGPE were found to be 0.0204 and 0.0445 cm2, respectively.
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Figure 4. (a) Cyclic voltammograms (CVs) for the presence and absence (curve c) of 0.1 mM CC at
Poly(RA)MGPE (curve a) and BGPE (curve b) in 0.1 M PBS (pH 7.0) at a 0.1 V/s scan rate, (b) relation
between current response at BGPE and Poly(RA)MGPE, and (c) relationship between current obtained
potential at BGPE and Poly(RA)MGPE.

3.5. Scan Rate Impact on Electrode Reaction, Peak Current, and Peak Potential of CC

The scan rate influence on the electrode reaction, peak current, and peak potential for 0.1 mM CC
on Poly(RA)MGPE was examined at optimal circumstances. Figure 5a displays the CVs for 0.1 mM CC
at Poly(RA)MGPE in 0.1 M PBS of 7.0 pH at a variable scan rate in the range of 0.1 to 0.3 V/s. The plot
of the anodic peak current against the scan rate (Figure 5b) illuminates that the peak current of CC was
amplified by amplifying the scan rate with a high rate of electron transfer in each increment and shows
a fine linear relationship and the linear regression relation of Ipa (µA) = 6.044 + 68.68 ν (V/s) (R2 = 0.997).
These data disclose that the redox reaction mechanism of CC at Poly(RA)MGPE was accomplished
through adsorption-controlled phenomena [49]. Figure 5c denotes the fine linear relationship among
the anodic potential and the logarithmic value of the scan rate with a linear regression relation of
Epa(V) = 0.2910 + 0.0908 log ν (V/s) (R2 = 0.995), and it displays that the electro-catalytic redox
reaction of CC ensues through the electron transfer step. The obtained slope of 0.0908 was applied for
the assessment of the participated electrons number in the redox reaction of CC by following Laviron’s
relationship [50,51]:

Ep = E0 +
[2.303RT

αnF

]
log

[
RTk0

αnF

]
+

[2.303RT
αnF

]
logν (2)

where “n” indicates the number of electrons, “E0” designates the standard potential, “α” indicates
the charge transfer coefficient, “Ep” defines the peak potential, “k0” specifies the heterogeneous rate
constant, and the remaining terms represent their respective physical meanings. The value of the charge
transfer coefficient was measured by the following equation:

α =
47.7

Ep − Ep/2
(3)

where “Ep/2” denotes the peak potential at exactly half peak current. The premeditated value of α is
0.70 and the transferrable electrons in the CC redox reaction at Poly(RA)MGPE are 2.19 (approximately
2.0). The possible redox reaction mechanism of CC at Poly(RA)MGPE is presented in Scheme 1.
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3.6. Limit of Detection and Quantification

The analyzing capability of the modified senor was investigated by the differential pulse
voltammetry (DPV) method at a much lower CC concentration ([CC]) range. The differential pulse
voltammograms (DPVs) for altered [CC] are in the range from 2.0 to 50 µM in 0.1 M PBS (7.0 pH)
(Figure 6a). Further, all the attained DPVs show an enhanced peak current as there is an increase in [CC].
Figure 6b displays the [CC] against an oxidation current plot with two linear ranges. Here, the secondary
linear growth provides a fine linear association between the oxidation current and [CC] in the range
15.0 to 50.0 µM with the linear regression relation of Ipa (A) = 1.240 × 10−6 + 0.133 C (M) (R2 = 0.998).
The LOD and LOQ for CC at Poly(RA)MGPE were calculated by LOD = 3 S/M and LOQ = 10 S/M
relations (where S is the standard deviation of the blank and M is the slope of the calibration plot).
The calculated LOD and LOQ values were found to be 0.82 and 2.76 µM, respectively. The comparison
of the presently achieved LOD values with previously reported works are tabulated in Table 1 [52–56].
The tabulated results conclude that the proposed Poly(RA)MGPE and DPV method deliver an improved
sensitivity with a lower LOD than listed reports.
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Table 1. Comparison of different LOD values with the present work.

Method Sensor LOD, µM Reference

DPV Poly(calmagite) MCPE 2.550 [52]
DPV Zn/Al layered double hydroxide film MGCE 1.200 [53]
DPV Graphene oxide and multiwall carbon nanotubes 1.800 [54]
DPV Silsesquioxane-modified carbon paste electrode 10.000 [55]
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3.7. Oxidative Response of CC at Poly (RA)MGPE and BGPE via DPV

The oxidative response of CC in 0.1 M PBS (pH 7.0) on the surface of Poly(RA)MGPE and BGPE was
scrutinized through DPV having the potential gap of −0.05 to 0.35 V. Figure 7 displays the DPVs for CC
oxidation at Poly(RA)MGPE (curve b) and BGPE (curve a). The proposed Poly(RA)MGPE specifies the
fine and distinctive oxidation CC peak at the peak current and peak potentials of 14.10 µA and 0.146 V,
respectively. Nonetheless, BGPE reveals a less sensitive oxidation peak for CC at the peak potential of
0.154 V. This achieved outcome deduces that the projected Poly(RA)MGPE imparts higher sensitivity
and a more rapid response than BGPE. Additionally, Poly(RA)MGPE shows some significant properties
over BGPE such as a fast rate of electron transfer, its antifouling nature, and reduced over-potential.Surfaces 2020, 3 FOR PEER REVIEW  8 
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3.8. Selective DPV Analysis of CC with HQ at Poly(RA)MGPE

The selectivity of the projected Poly(RA)MGPE and BGPE towards the electro-oxidation of CC
(0.1 mM) with HQ (0.1 mM) in 0.1 M PBS (7.0 pH) was evaluated by cycling DPV in the potential range
of −0.05 to 0.7 V. Figure 8 parades the DPV curves for CC in the presence of HQ on the exterior of
Poly(RA)MGPE (curve b) and BGPE (curve a). Here, BGPE shows weak electro-oxidation peaks for
CC and HQ at the peak potentials of 0.10 and 0.54 V, respectively. Nevertheless, at Poly(RA)MGPE,
CC and HQ molecules exhibit distinctive and fine resolved electro-oxidation peaks with the oxidation
currents of 7.92 and 5.31 µA at the oxidation potentials of 0.138 and 0.535 V, respectively. The attained
result clarifies that the highly sensitive electro-catalytic activity of the modified sensor for the oxidation
of CC in the appearance and nonappearance of HQ is virtually identical, therefore the oxidation nature
of CC and HQ at Poly(RA)MGPE is different and consequently selective.
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3.9. Reproducibility, Repeatability, and Stability

The reproducibility, repeatability, and stability of the projected Poly(RA)MGPE were analyzed by
the CV method at optimal circumstances. The Poly(RA)MGPE exposes fine reproducibility during
five successive CV cycles having 3.8% of relative standard deviation (RSD). Further, the repeatability
was checked by running five sequential CV cycles and provides a fine RSD of 1.28%. Furthermore,
the steadiness of Poly(RA)MGPE was revealed by cycling thirty continual CV sequences with 95.25% of
the retained initial peak current. These achieved data reveal that the adopted sensor shows acceptable
reproducibility, repeatability, and stability for the detection of CC.

3.10. CC Analysis in Water Samples

The examined voltammetric technique was implemented for the inspection of CC in water samples
at Poly(RA)MGPE. The concentration, quantity, and recovery rate of CC in water samples (in 0.1 M
PBS of 7.0 pH) at Poly(RA)MGPE were detected by a standard addition procedure. The obtained result
revealed that the equipped electrochemically stable Poly(RA)MGPE proves a robust electro-catalytic
activity towards the redox nature of CC, even in the existence of further electroactive molecules or ions
in water samples. The percentage recovery of CC shows that Poly(RA)MGPE is the best alternative for
CC detection. Table 2 gives the information about the recovery of CC in water samples.

Table 2. Data of CC recovery in water samples.

Environmental Sample Added Concentration (µM) Found Concentration (µM) Recovery (%)

Water
0.120 0.117 97.50
0.160 0.155 96.87
0.200 0.196 98.00
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4. Conclusions

CC inspection was excellently performed on the surface of electrochemical catalyst Poly(RA)MGPE
via CV and DPV methodologies. The suggested working electrode reveals some imperious applications
such as fine reproducibility, repeatability, high stability, environmentally friendly, easily approachable,
low priced, and these applications provide a good platform in the sensor field. Additionally,
the proposed sensor exhibits enhanced stability for the electro-reduction of CC in the occurrence of HQ.
Poly(RA)MGPE displays a superb linear response, reliability, selectivity, sensitivity and rapid response,
and a lower LOD towards CC detection. The suggested voltammetric technique was efficiently applied
for CC analysis in water samples.
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