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Abstract: Hybrid samples consisting of polymer poly-3(hexylthiophene) (P3HT) and silicon
nanoparticles were prepared. It was found that the obtained samples were polymer matrixes
with conglomerates of silicon nanoparticles of different sizes (10–104 nm). It was found that, under
illumination, the process of nonequilibrium charge carrier separation between the silicon nanoparticles
and P3HT with subsequent localization of the hole in the polymer can be successfully detected
using electron paramagnetic resonance (EPR) spectroscopy. It was established that the main type of
paramagnetic centers in P3HT/silicon nanoparticles are positive polarons in P3HT. For comparison,
samples consisting only of polymer and silicon nanoparticles were also investigated by the EPR
technique. The polarons in the P3HT and Pb centers in the silicon nanoparticles were observed.
The possibility of the conversion of solar energy into electric energy is shown using structures
consisting of P3HT polymer and silicon nanoparticles prepared by different methods, including the
electrochemical etching of a silicon single crystal in hydrofluoric acid solution and the laser ablation
of single-crystal silicon in organic solvents. The results can be useful for solar cell development.
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1. Introduction

Solar cells based on crystalline or polycrystalline silicon are now the dominant technology
globally [1–3]. However, the cost of such batteries is quite high, which is leading to the rapid
development of technologies using amorphous silicon [4,5]. In addition to the low cost of devices,
the use of amorphous silicon can decrease the thickness of solar cells, as well as their weight and
material consumption, due to its higher absorption ability. However, the efficiency of solar cells based
on amorphous silicon remains quite low, at 14%, compared to crystalline solar cells (approximately
25%) [6]. Increasing the efficiency of amorphous silicon-based solar cells is potentially possible
using semiconductor nanocrystals. However, this is a very complex problem because it requires
the development of methods for improving the injection and transport of charge carriers in such
structures. Therefore, the development of cheap photo-electric converters has become a subject
of great interest in the last years [1–4]. One of the perspective directions of the depreciation of
phototransformation is the development of solar elements on the basis of polymers [7,8]. However, at
the moment, the effectiveness of the phototransformation of such solar elements and their stability
are low. The available literary data [7,9] demonstrate the prospects of use of hybrid structures on
the basis of silicon nanoparticles (nc-Si) and organic compounds for transformation of solar energy.
Such devices have the advantage of solution preparation but at the same time are characterized by
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a much broader spectral range of absorption because of inorganic semiconductors. It should be
borne in mind that the absorption coefficient of nc-Si with a diameter of about 10 nm and more is
comparable with that of bulk Si. For small nc-Si with quantum confinement effects, the band gap
strongly increases and the absorption coefficient grows. There have only been a few investigations
of silicon/organic semiconductor heterojunctions for solar cells [7,9–11]. However, many questions
concerning the correlation between the conditions of preparation of nc-Si and the electrophysical and
optical properties of such hybrid structures still have no definite answer. Since point defects in solids
are the centers of capture of charge carriers and limit the transport of charge carriers, their study is an
important problem [12]. A powerful tool for studying the nature and properties of defects is electron
paramagnetic resonance (EPR) spectroscopy [13]. The structure and properties of defects in nc-Si and
other semiconductor nanoparticles have been successfully studied with EPR spectroscopy, taking
advantage of the high specific area of these materials [13,14]. In spite of the different types of nc-Si
structures, different preparation and storage conditions, the dominant type of defect (paramagnetic
centers) in nc-Si is an Si dangling bond at the Si/SiO2 interface or Pb center [14,15]. There are two
types of Pb centers, Pb0 (at the (111), (100) Si/SiO2 interface) and Pb1 (at the (100) Si/SiO2 interface),
which are characterized by different parameters of EPR spectra [14]. The Pb center concentration is
very sensitive to vacuum heating and oxidation [14]. During vacuum heating (at temperatures higher
than 300–400 ◦C), an Si dangling bond similar to that in amorphous silicon is detected in nc-Si [14].
A free electron EPR signal is observed in some samples of nc-Si [14]. EX center defects are detected
in high-temperature oxidized nc-Si [14]. In poly-3(hexylthiophene) (P3HT), the main type of defect
center is a positive polaron [9]. Therefore, in this work, we investigated the properties of defect states
in hybrid samples consisting of polymer P3HT and silicon nanoparticles and in samples consisting
only of polymer and silicon nanoparticles for comparison. We also measured the current–voltage
characteristics of structures containing silicon nanocrystals in a polymeric matrix.

2. Experimental

Silicon nanoparticles were prepared by two methods [15,16]. The first method was the
electrochemical etching of monocrystal plates of silicon of n-type of conduction in a solution of
hydrofluoric acid (HF) and ethanol (C2H5OH). After etching, the samples were dried, and then silicon
particles were removed from the plate mechanically (nc-Si(1)). The second method of manufacturing
silicon nanoparticles (nc-Si(2)) was the pulse laser ablation of a substrate of monocrystal silicon in organic
solvents (C6H5Cl, benzene chloride, and CHCl3, chloroform). For the formation of the structures,
the received nanoparticles were immediately added to the P3HT solution. Then, the resulting mixture
was applied on the glass substrate containing an ITO layer as one of electrical contacts. The second
was the aluminum contact which was sprayed from above onto the P3HT film. The current–voltage
characteristics of the samples were measured using Keithley 6487.

The investigation of structure of the prepared samples was performed using scanning electronic
microscopy (using a Carl Zeiss Supra 40-30-87 microscope, Oberkochen, Germany). The features
of the internal structure of the polymer and the characteristics of the obtained silicon nanoparticles
were determined by means of the Raman technique. For the Raman spectra registration, the Horiba
Jobin Yvon HR800 spectrometer was used. A helium–neon laser (λ = 632.8 nm) was the source of
light excitation. Raman signal recording was made in a configuration of reflection. A digital camera
with a charge-coupled device (CCD) matrix was used as the detector. For the direct detection of
separation processes of photoinduced charges in structures of nc-Si/P3HT, EPR spectroscopy was
used. Measurements were performed using the Bruker EPR-spectrometer ELEXSYS-500, Rheinstetten,
Germany (with a frequency of 9.5 GHz and a sensitivity of 5× 1010 spin/mT). The EPR spectra simulation
was carried out using the EasySpin MATLAB toolbox [17]. Illumination was carried out immediately
in the spectrometer cavity by means of a mercury lamp with high pressure (∆λ = 270–900 nanometers,
power is 50 W).
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3. Results and Discussions

Figure 1 shows an example of the structure of the nc-Si(1)/P3HT. Similar images were observed
also for the other samples, nc-Si(2)/P3HT. According to Figure 1, the samples under investigation
represent conglomerates of nanoparticles of various sizes (10–104 nm) dissolved in a polymeric matrix.
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Figure 1. SEM image of nc-Si(1)/poly-3(hexylthiophene) (P3HT) samples.

Raman spectra were similar for both types of samples. The Raman spectrum of the nc-Si(2)/P3HT
samples is shown in Figure 2. According to the literature data, the peak near 430 and 520 cm−1

in the Raman spectrum corresponds to the C–C deformation mode of the polymer and silicon
nanocrystals [11,18], respectively; the peak near 728 cm−1 corresponds to an antisymmetric C–S–C
ring skeleton deformation in the thiophene ring of the polymer [19]; and the peak near 1390 and
1450 cm−1 can be assigned to the C–C skeletal stretch mode and the C=C symmetric stretch mode of
the polymer, respectively [20,21]. The other less intense peaks observed in the wavenumber range
of 570, 850, 1000, 1100, 1150, 1250 and 1525, 1560 cm−1 can be assigned to the C–C rotational mode,
C=C deformation mode, C–C stretching mode [21], the C–H bending mode [22], the C–C symmetric
stretching mode [23], a combination of the C–C stretching and the C–H stretching mode [21,24,25] and
the C = C antisymmetric stretch mode [20,23], respectively. Thus, according to Figure 2, the Raman
spectrum consists of lines caused by a polymeric matrix and also a poorly resolved peak, which is
characteristic of silicon nanocrystals. The results of a Raman investigation confirmed the data of
electronic microscopy, showing that all samples under investigation represent the non-uniform structure
of a polymeric matrix with the silicon nanoparticles dissolved in it.
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For the direct detection of the separation processes of photoinduced charges in the nc-Si/P3HT
structures, the EPR-spectroscopy technique was used. In Figure 3a, the EPR spectra of nc-Si(1)/P3HT
samples in the dark and under illumination are presented.
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Figure 3. (a) EPR spectra of nc-Si(1)/P3HT samples in the dark (1) and under illumination (2).
(b) Experimental and simulated EPR signals of nc-Si(1)/P3HT samples.

The EPR spectra are characterized by two overlapped signals: one is poorly resolved, with a
g-factor equal to 2.0050 originating from the silicon dangling bonds [26], while the second one has an
anisotropic form and is described by the following parameters: g1 = 2.0030, g2 = 2.0022, g3 = 2.0013,
extracted from computer simulation. The result of the computer simulation is shown in Figure 3b.
According to the literature data, this EPR signal can be attributed to the positive polarons in P3HT [9,21].
Under illumination, an amplitude of a polaron EPR signal increases, pointing to the separation process
of photoexcited charge carriers. To be sure that the positive polarons are localized in P3HT, we have
investigated these structures separately. In Figure 4a, the EPR spectra for P3HT samples in similar
conditions are shown, both in the dark and under illumination.
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Figure 4. (a) EPR spectra of P3HT samples in the dark (1) and under illumination (2). (b) Experimental
and simulated EPR signals of P3HT samples.

According to the computer simulation, the EPR spectrum consists of two EPR signals with
parameters that differ slightly: EPR(I) g1 = 2.0028, g2 = 2.0019, g3 = 2.0009 and EPR(II) g1 = 2.0031,
g2 = 2.0021, g3 = 2.0012. The result of the computer simulation is shown in Figure 4b. The values of
the g-factors show the polaron nature of the EPR-centers [9,21]. Probably, we observe the polarons in
two different orientations. Thus, data from the EPR spectroscopy are direct proof of the formation of
polarons in nc-Si/P3HT structures as a result of the separation of charge carriers with the subsequent
localization of a hole in P3HT. Note that this process takes place under the conditions of indoor light
and are amplified under additional illumination.

The silicon nanoparticles was measured for a comparison of the defects’ natures and properties.
Figure 5 shows the EPR spectra measured under dark conditions and in the presence of illumination.
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As follows from the presented data, the EPR spectrum has an anisotropic structure. The following
values of the g-tensor were obtained from computer simulation: g1 = 2.0021, g2 = 2.0088. The EPR
signal with these anisotropic parameters can be attributed to the paramagnetic centers, which are
Pb centers (a silicon dangling bond at the Si/SiO2 interface) according to the literature data [27,28].
Therefore, an oxidation of silicon nanoparticles takes place in air. Under illumination, the intensity of
the EPR spectrum increases. The effect of illumination was reversible, showing recharge processes in
the samples.

For the determination of the photovoltaic parameters of the samples and qualitative evaluation
of the effectiveness of solar energy conversion, the current density–voltage (abbreviated as
current–voltage [8,9]) characteristics were measured (Figure 6). White light illumination was used
with an intensity of 50 mW/cm2. As can be seen from Figure 6, nc-Si(1)/P3HT samples have a higher
open-circuit voltage (0,2 V) than nc-Si(2)/P3HT samples (0,16 V). Although these open-circuit voltage
values are not a record, it is possible in principle to use nc-Si/P3HT samples for photoconversion.
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samples; dependence 2—nc-Si(2)/P3HT samples.

Although the efficiency of the solar energy conversion of the samples in our study was low (not
exceeding 5%), we have demonstrated that EPR spectroscopy is an effective tool for the detection of
polarons in nc-Si/P3HT prepared by different techniques.
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4. Conclusions

The structures consisting of P3HT polymer and silicon nanoparticles, in which silicon nanoparticles
are prepared by electrochemical etching and the laser ablation of single-crystal silicon, have the
possibility of converting solar energy into electric energy. In nc-Si samples, Pb centers are present
according to the EPR data. A lack of Pb centers in the nc-Si/P3HT structures evidences an absence of
oxygen in the samples. Positive polarons are detected in P3HT samples. Using EPR spectroscopy, it has
been found that it is possible to detect the separation of photoexcited charge carriers in nc-Si/P3HT
samples prepared both by the electrochemical etching of a silicon single crystal in hydrofluoric acid
solution and by using the laser ablation of single-crystal silicon in organic solvents. The obtained data
is useful for solar energy application since they demonstrate the possibility of the preparation of solar
cell samples using simple and cheap methods of sample synthesis (for example, the electrochemical
etching of silicon monocrystals).
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