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Abstract: Efforts in the domain of building studies involve the use of a diverse array of geomatic
sensors, some providing invaluable information in the form of three-dimensional point clouds and
associated registered properties. However, managing the vast amounts of data generated by these
sensors presents significant challenges. To ensure the effective use of multisensor data in the context
of cultural heritage preservation, it is imperative that multisensor data fusion methods be designed
in such a way as to facilitate informed decision-making by curators and stakeholders. We propose a
novel approach to multisensor data fusion using multispectral voxels, which enable the application of
deep learning algorithms as the self-organizing maps to identify and exploit the relationships between
the different sensor data. Our results indicate that this approach provides a comprehensive view of the
building structure and its potential pathologies, and holds great promise for revolutionizing the study
of historical buildings and their potential applications in the field of cultural heritage preservation.
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1. Introduction

Picture a historical building as an enigmatic puzzle, each crack, deformation, and hid-
den corrosion forming the cryptic pieces waiting to be deciphered. As we stand at the
intersection of technology and architectural history, our pursuit is to decode this intricate
puzzle. Multisensor data fusion emerges as our toolkit, seamlessly blending the precision
of laser scanners with the spectral insight of photographic cameras. Here, we introduce a
revolutionary approach, not just to study buildings, but to unravel the mysteries concealed
within their weathered walls.

The state-of-the-art in multisensor data fusion in the study of building pathologies has
undergone significant advances in the last decades. The convergence of various technolo-
gies and sensors has enabled researchers to assess structural conditions and pathologies in
buildings more fully and accurately [1,2].

Studies on potential issues in historical buildings employing geomatic sensor tech-
nology have garnered diverse attention in late years [3,4]. First approaches were dedi-
cated only to generate three-dimensional models with different levels of detail. These
three-dimensional models were complemented by spectral information so that visual
representations could be made to highlight areas that could present some pathology [5,6].

Various studies have focused on different architectural elements and their specific
pathologies. For example, in the study of façades [7–9] or concrete structural elements [10–12].
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The data obtained were sometimes integrated into Building Information Models (BIM) for
further study [13,14].

In turn, different research works have concentrated on the use of singular sensors.
There are research works focused on the use of infrared thermal cameras [15–19], multi-
spectral photographic cameras [20,21] and laser scanners [22–24].

The combined use of active and passive sensors such as terrestrial laser scanners
and photographic cameras with different spectral sensitivities has provided a wealth of
information. This allows the generation of detailed three-dimensional models, point clouds
with spectral information, and visual representations highlighting the affected areas. This
combination of different sensor types provides a complete view of the structure and its
potential pathologies. Terrestrial laser scanners capture highly detailed three-dimensional
point clouds, thereby facilitating the detection of structural deformations and cracks [25,26].
Photographic cameras provide valuable spectral information that can indicate signs of
corrosion, moisture, or other problems that can not be visible to the naked eye.

The use of 3D point clouds requires the management of an immense volume of data,
which requires substantial data-processing infrastructure for handling and visualization.
Additionally, 3D point clouds are inherently unstructured, making the task of locating
specific points within these clouds nontrivial [27]. One consequence of this lack of struc-
ture is that point clouds do not contain topological information, thereby precluding an
understanding of neighborhood relationships among points [28].

Point clouds also exhibit non-uniform densities and distributions. The point density
achieved is not always optimal for the intended applications. Some areas will display
redundant information, particularly in the overlapping zones between scans. Conversely,
other areas will present lower point densities. This results in heterogeneity in both the
density and accuracy of points within the cloud [29].

In terms of analysis, multisensor data fusion has enabled the early detection and
monitoring of structural pathologies, such as cracks, deformations, and corrosion. In ad-
dition, the integration of information from airborne and ground sensors has enabled
more complete coverage of structures, both in terms of physical access and data diversity.
Traditionally, the assessment of structural problems involves visual inspections, manual
measurements, and, at best, the use of a single sensor to capture limited data [30]. Modern
data fusion systems allow the creation of accurate three-dimensional digital models that can
be compared to the original designs to identify discrepancies. This is especially valuable
for assessing the performance of historic structures and monuments where preservation is
critical [31].

The integration of various sensors and techniques also leads to the creation of diverse
point cloud datasets, which in turn contributes to the formation of large data reposi-
tories [29]. This not only affects processing speed but also requires the conversion of
substantial volumes of point data into dependable and actionable insights. Traditional
methods for customizing point clouds for specific applications are becoming increasingly
time consuming and require manual intervention. The growing complexity and volume of
data, often spread across multiple stakeholders or platforms, pose a challenge to human
expertise in effective data management [32]. To facilitate more effective decision making,
it is crucial to efficiently convert voluminous point cloud data into streamlined processes,
thereby heralding a new age of decision-support services. Strategies must be developed
for extensive automation and structuring to eliminate the need for task-specific manual
processing and to promote sustainable collaboration.

Voxels have been used in a variety of distinct fields, including geology [33], forest
inventory [34], and medical research [35]. In the context of their application to point
cloud management, multiple studies [36–40] have substantiated the efficacy of voxels as an
appropriate tool for handling point cloud data.

Voxelization is more beneficial for managing raw 3D point clouds. With the points
being placed in a regular grid pattern, it is now possible to structure the point cloud in a
tree format that allows for significantly reduced computing time. Logical inference is also
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possible from a voxel structure because the known relationship with neighboring points
allows for semantic reasoning [41].

In voxelization of point clouds, one defining parameter of the voxel structure is the
elemental voxel size. This parameter governs the resolution of the phenomena under study
through the data structure, impacting various applications, such as finite elements [42],
structural analyses [43,44], and dynamic phenomena [45]. For instance, if a study or simu-
lation requires a resolution of 5 cm, this would dictate the voxel elemental size established
during the voxelization process. In addition, voxel size determines the extent of element
reduction relative to the number of points present in the original clouds [29].

The application of deep learning algorithms to voxel structures is an active research
area across various fields, such as computer vision, robotics, geography, and medicine.
Within the spectrum of deep learning approaches applied to voxels, some notable method-
ologies as 3D Convolutional Neural Networks (3D CNNs) [46,47], Voxel-based Autoen-
coders [48,49], Generative Networks for Voxels [50–52], and Semantic Segmentation [28,53]
have been used.

However, despite these advances, challenges still exist in terms of accurate calibration,
data correction, and effective integration of the collected information. Additionally, the in-
terpretation of merged data requires expertise in remote sensing and structural analysis to
avoid false diagnoses. Accurate integration of data from different sources requires careful
calibration and correction [54]. In addition, proper interpretation of results remains crucial,
as the presence of detailed data does not always guarantee a complete understanding of
the underlying causes of pathologies.

In this paper, we present a novel approach to multisensor data fusion using multispec-
tral voxels. This data fusion allows for optimal and efficient management of the sensors
information, allowing later applications of deep learning algorithms. With this, a workflow
is determined that allows the study of buildings as well as the possible pathologies that
could be present on them.

This study is organized as follows. Initially, the sensors that were used in a data
acquisition campaign on a prominent Spanish Cultural Heritage building are described.
Subsequently, the methodology that was designed for handling, processing, and fusing
the data using our concept of multispectral voxels is outlined. The deep learning Self-
organizing map algorithm will be applied to our multispectral voxel structure. Finally, we
discuss the results.

2. Materials and Methods

2.1. Sensors

Within the context of multisensor fusion, a data-capture campaign with a range of
different sensors featuring distinct spectral sensitivities and types were chosen. To this
end, active and passive sensors were used. The set of active sensors comprises terrestrial
laser scanners, whereas the passive sensor group encompasses a variety of photographic
cameras deployed in both terrestrial and aerial arrangements using Unmanned Aerial
Vehicles (UAVs). Each camera had distinct spectral sensitivities.

This meticulous selection of sensors encompasses various conventional modalities
of geospatial data capture, which are commonly employed in the analysis of buildings
and architectural structures. The acquired data were subjected to a series of processing
techniques, with photogrammetry as one of the principal methodologies. Consequently,
the final output consisted of multiple point cloud datasets, each characterized by unique
and significant spectral properties.

While developing the data capture strategy, it was acknowledged that not all sensors
were capable of capturing data encompassing the entire built structure. Sensors located
on the ground can only provide information about the lower sections of the building,
while sensors attached to aerial vehicles can capture data covering the entire architectural
unit. This distinction is essential for accurate interpretation and cohesive integration of the
collected data during the analytical process.
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The employed sensors are described herein, including photographic cameras, un-
manned aerial sensors (UAVs), and laser scanners:

• The terrestrial digital imaging device deployed was a Sony NEX-7 photographic
camera (Sony Corporation, Tokyo, Japan), a model equipped with a 19 mm optical
lens of fixed length. This particular sensor captures spectral components within the red
(590 nm), green (520 nm), and blue (460 nm) bands of the visible spectrum. The spectral
response of this camera is illustrated in Figure 1a, and its specific parameters are
outlined in Table 1.

Table 1. Sony NEX 7 camera sensor parameters.

Parameter Value

Sensor APS-C type CMOS sensor
Focal lenght (mm) 19
Sensor width (mm) 23.5
Sensor lenght (mm) 15.6

Effective pixels (megapixels) 24.3
Pixel size (micrometers) 3.92

ISO sensitivity range 100–1600
Image format RAW (Sony ARW 2.3 format)

Weight (g) 350

• A modified version of the digital image camera, the Sony NEX-5N model, was also
employed in terrestrial positions. It was outfitted with a 16 mm fixed-length lens,
accompanied by a near-infrared (NIR) filter and an ultraviolet (UV) filter in different
shot sessions. Detailed information on this sensor is provided in Table 2.

Table 2. Sony NEX 5N camera sensor parameters.

Parameter Value

Sensor APS-C type CMOS sensor
Focal lenght (mm) 16
Sensor width (mm) 23.5
Sensor lenght (mm) 15.6

Effective pixels (megapixels) 16.7
Pixel size (micrometers) 4.82

ISO sensitivity range 100–3200
Image format RAW (Sony ARW 2.2 format)

Weight (g) 269

By removing the internal infrared filter from the Sony NEX-5N camera, the sensitivity
of the sensor was enhanced to encompass specific regions of the electromagnetic
spectrum, including the near-infrared (820 nm) and ultraviolet (390 nm) wavelengths.
The spectral responsiveness of this modified camera is shown in Figure 1b. Notably,
the modified sensor exhibits sensitivity to distinct segments of the electromagnetic
spectrum in contrast to its unmodified counterpart, the Sony NEX-7, which retains
the internal infrared filter (as illustrated in Figure 1a) [55]. This modified camera
was equipped with a collection of filters to obtain data corresponding to ultraviolet
(UV) and near-infrared (NIR) spectral bands. The transmission curves of the filters
employed during the data acquisition process are shown in Figures 2 and 3.

• The terrestrial laser scanner employed in this study was the Faro Focus S350 laser
scanner, developed by Faro Technologies (Lake Mary, FL, USA). It has proven to be an
invaluable tool for archaeological and building studies applications. Its cutting-edge
phase-based laser scanning technology enables it to accurately measure distances and
efficiently gather an extensive dataset of millions of data points in a short span. Partic-
ularly relevant in archaeological studies, this scanner aids in documenting historical
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sites and structures with high precision. The Faro Focus S350 laser beam wavelength
is 1550 nm (Table 3). This allowed us to obtain building spectral information in the
short-wavelength infrared spectral (SWIR) band [56]. Concerning the use of data
derived from the laser scanner, the registered return signal intensity value has been
used as its application has been demonstrated to be effective in buildings made of
stone [22].

(a)

(b)

Figure 1. Spectral responses for Sony NEX cameras, from [55]: (a) Unmodified camera, normalized to
the peak of the green channel. (b) Modified camera, normalized to the peak of the red channel.

Figure 2. Midopt DB 660/850 Dual Bandpass filter light transmission curve (Midwest Optical
Systems, Inc., Palatine, IL, USA).
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Figure 3. ZB2 filter light transmission curve, from Shijiazhuang Tangsinuo Optoelectronic Technology
Co., Ltd., Shijiazhuang, Hebei, China.

• For data collection in the upper regions of the building, where ground-based sensors
lack access, an Unmanned Aerial Vehicle (UAV) was deployed. The chosen instrument
was the Parrot Anafi Thermal (Table 4), which mounts a dual-camera system com-
prising an RGB sensor (for the visible spectrum) and an infrared thermal sensor. This
configuration facilitates the simultaneous capture of conventional RGB and infrared
thermal images within a single flight mission. Referring to the thermal infrared data,
the Parrot Anafi Thermal incorporates a factory-calibrated uncooled microbolometer-
type FLIR Lepton 3.5 thermal module [57], enabling the establishment of an absolute
temperature for each image pixel. Consequently, precise surface temperatures of the
building points were determined. This aids in discerning the discontinuities and
potential pathologies resulting from the heterogeneity of construction materials [19].

Table 3. Faro Focus S 350 Laser Scanner sensor parameters.

Parameter Value

Range 0.6–350 m
Angular FOV (vertical) 300◦

Angular FOV (horizontal) 360◦

Beam Divergence 0.3 mrad
Beam Diameter at Exit 2.12 mm

Laser Wavelength 1550 nm

Table 4. Parrot Anafi Thermal sensor parameters.

Parameter Value

Thermal sensor spectral range 8 µm–14 µm
Thermal sensor size 160 × 120 pixels

Pixel pitch 12 µm
Thermal Sensitivity 0.050 ◦C

2.2. Data Capture Campaign

For data acquisition, an emblematic building of Spanish historical heritage was se-
lected. The chosen structure was the Visigothic Church of the Santa Maria de Melque. Data
from all the described sensors were directly collected on this 7th-century A.D. building [58],
located in the province of Toledo, Spain. The archaeological complex of Santa Maria de
Melque (N 39.750878◦, W 4.372965◦) is located approximately 30 km southwest of the city
of Toledo, in close proximity to the Tagus River [59] (Figure 4).
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The structure of the Visigothic church of Santa Maria de Melque was constructed
using masonry of immense granite blocks assembled without mortar, distinguished by its
barrel vault covering the central nave. The layout of the aisles in the form of a Greek cross,
the straight apse, and the arrangement of architectural elements reveal both Roman and
Byzantine influences, reflecting the rich cultural diversity of the period [60].

Figure 4. Location of the building surveyed.

The data collection campaign was carried out only on the exterior of this building in
February 2022. The campaign covered the entire architectural structure and its ornamental
elements. This location was chosen for its historical and architectural relevance, which
allowed us to obtain precise and detailed information on the current state of the building
and its possible pathologies. Figure 5 shows the studied building.

Figure 5. Visigothic Church of Santa Maria de Melque, seen from the southeast.

Prior to capturing the dataset, a meticulous preparatory phase was undertaken, in-
volving the careful placement of a series of precision targets across the walls surface. These
identified markers collectively formed a robust set of control points that served as pivotal
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anchors for the subsequent data collection process. By ensuring uniformity and accuracy at
these measurement points, a reliable common geometric reference system was established,
effectively standardizing the subsequent data acquisition process across all data collec-
tion sessions. This rigorous methodology not only underscored the accuracy of the data
collected but also facilitated seamless comparability and analysis of the collected visual
information (Figure 6).

Figure 6. Target signals attached to walls and on terrain.

The Terrain Target Signals (TTS) were measured using GNSS techniques. These marks
were materialized by means of a metal nail in the ground, in order to be revisited on future
occasions. Subsequently, a flat black-and-white square sign measuring 30 cm on each side
was adopted (Figure 6).

For the observation, dual-frequency Topcon Hiper GNSS receivers were used, with cal-
ibrated antennas (GPS, GLONASS), tripod and centering system on the point mark, mea-
suring a total of 12 TTS, forming a network of 30 vectors. The observation time at each
point was 15–20 min, with at least a double observation session at each point with different
receivers, thus configured in relative static surveying with high repeatability.

In the subsequent processing of GNSS data, to obtain greater precision in the results,
the precise geodetic correction models of the ionosphere from the CODE (Center for
Orbit Determination in Europe) and precise ephemeris from the IGS (International GNSS
Service) for both constellations were downloaded. Along with these Topcon field GNSS
data, data from continuous CORS (Continuously Operating Reference Stations) of the
Spanish National Positioning System ERGNSS-IGN (Instituto Geográfico Nacional) were
also processed. This was done in order to link the local GNSS measurements to a geodetic
reference frame that guaranteed high precision stability and temporal permanence for
future actions in the environment.

To compute the GNSS vectors, the Leica Infinity version 3.0.1 software was used,
using the absolute antenna calibration models and using the VMF (Vienna Mapping Func-
tions) [61]. Both for the observation and for the adjustment and compensation of the
coordinates of all the TTS points that make up the network, the same methodology used in
the implementation of geodetic precision control networks in engineering was followed [62].
The final adjustment of the network, the calculation of the coordinates and the estimation
of its accuracy (Table 5) was performed with Geolab version px5 software, with a complete
constraint in the ETRS89 (ETRF2000) frame.

Wall Surface Signals (WSS) were placed around the entire building and attached to
the wall. They are intended to tie points supporting the georeferencing process in all point
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clouds. WSS were 12 bit coded precision targets (Figure 7). Thus, each WSS can be clearly
identified by photogrammetry software, almost in automatic mode, and operators.

In Figure 8, we show the distribution of targets on terrain (TTS) and on the walls
(WSS). The coordinates of the precision targets attached to the walls (Wall Surface Signals)
are expressed in Table A1.

Figure 7. Example of four 12 bit coded precision targets used as Wall Surface Signal (WSS).
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Figure 8. Distribution of control points.

Table 5. Terrain Target Signals (TTS) coordinates and their standard deviations. UTM 30N coordinate
system, ETRS89 (ETRF2000) geodetic frame. All values in meters.

Station
UTM 30 Coordinates

Height
Standard Deviations

Northing Easting North East Height

D001 4401021.383 382387.421 567.625 0.004 0.004 0.009
D002 4401007.299 382397.872 566.853 0.002 0.002 0.004
D003 4401011.239 382391.663 566.584 0.021 0.015 0.054
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Table 5. Cont.

Station
UTM 30 Coordinates

Height
Standard Deviations

Northing Easting North East Height

D004 4400996.864 382365.065 568.053 0.003 0.002 0.006
D005 4401011.720 382359.282 568.848 0.003 0.003 0.007
D006 4401021.414 382377.979 565.803 0.014 0.005 0.017
D007 4401014.232 382362.130 567.291 0.007 0.005 0.012
D008 4401021.499 382383.108 565.844 0.010 0.005 0.014
D009 4400998.691 382375.501 567.076 0.007 0.005 0.013
D010 4400990.703 382374.625 568.205 0.002 0.002 0.005
D011 4401024.085 382363.273 567.641 0.005 0.004 0.009
D012 4401028.664 382375.382 566.752 0.006 0.004 0.011

2.3. Point Clouds

In the course of this research, a range of sensors were used for the collection of
geomatic data across multiple spectral bands. The processing of each dataset has been
carried out with great care, resulting in the generation of several georreferenced three-
dimensional point clouds. These point clouds offer a comprehensive and diverse view
of the building under examination from various angles (as presented in Table 6). Each
point cloud, except the laser scanner point cloud, comes from a photogrammetric process.
The photogrammetric software used was Agisoft Metashape version 1.8.5. All derived
photogrammetry point clouds are the result of processing a single sensor in a single process.
Only in RGB point cloud, unmodified terrestrial RGB camera and UAV RGB image datasets
were combined in the same process to obtain the RGB point cloud.

Figure 9 illustrates a subset of the point clouds views resulting from the use of the
aforementioned sensors. First, Figure 9a presents a visualization of the point cloud ob-
tained via RGB sensors using both conventional terrestrial and aerial (UAV) cameras. This
representation unveils architectural details as well as visible features perceptible to the
naked eye, furnishing a meticulous view of the surface of the structure. This point cloud
has been selected as the starting point for the development of the voxelized data structure
of the building in question, which will be subjected to analysis in subsequent stages.

Table 6. Point Clouds.

Band Number of Points

Red, Green and Blue (visible spectrum) 46,512,981
Near infrared 39,472,866

Ultraviolet 352,900,707
Short-Wavelength Infrared (Laser Scanner) 54,735,907

Thermal infrared 6,412,099

Figure 9b shows the point cloud corresponding to the UV spectral band. This view
allowed us to identify elements that are typically imperceptible within the visible range.
In this Figure 9b we also can see that not the entire building has point cloud information in
this band.

Finally, in Figure 9c,d, we depict the point cloud generated by our infrared thermal
sensor. This visual representations highlight the heat distribution on the building surface,
endowing us with an exceptional perspective concerning potential issues related to heat
retention and the variability of construction materials.

Beyond the previously outlined difficulties concerning data structure, heterogeneity,
and inconsistent density, point clouds generated by multiple sensors emanate from dis-
parate data origins and convey unique informational facets. Consequently, it becomes
essential to formulate strategies for the fusion of both geometric and spectral elements with
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the aim of optimizing data processing and extracting valuable conclusions from the varied
information contained within.

(a) RGB point cloud (south façade). (b) Ultraviolet band point cloud (south façade).

(c) Infrared thermal point cloud (south façade). (d) Infrared thermal point cloud (north façade).

(e) Laser Scanner point cloud.

Figure 9. Different point clouds obtained from data adquisition campaing.

2.4. Voxelization

To facilitate an optimal analysis, it is necessary to fuse the numerous point clouds that
have been generated. To accomplish this, we have employed voxels as the data structure,
specifically the multispectral voxel variant developed in our previous research [29].

Voxels, abbreviated from “volumetric elements”, serve as the fundamental abstract
units in three-dimensional space, each having predetermined volume, positional coordi-
nates, and attributes [63]. They offer significant utility in providing topologically explicit
representations of point clouds, thereby augmenting the informational content.

In this study, we examined how the selected elemental voxel size affects the point
distribution within the point clouds. Voxel structures with various elemental sizes (50,
25, 10, 5, and 3 cm) were created. To manage the point clouds and their voxelization, we
used the Open3d open-source library [64]. We used the RGB point cloud as the initial
dataset to create voxel structures, given its comprehensive coverage of the entire building.
After establishing voxel structures based on these sizes, we located the points from each
respective cloud enclosed within individual voxels. In instances where one specific voxel
enclosed multiple points from a particular spectral band, the voxel’s spectral property was
set to the mean value of those enclosed points. Additional statistical metrics, such as the
maximum, minimum, and variance values, were also calculated. Given that the voxel
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adopts the spectral attributes of enveloped points, it effectively becomes a multispectral
voxel [29]. The concept of a multispectral voxel used in this work is illustrated in Figure 10.

Figure 11 illustrates how point clouds are distributed along the 5 cm elemental voxel
structure. For other chosen voxel elemental sizes, please refer to Appendix A, where we
provide the respective distributions. The histograms in Figure 11 show the number of
points per voxel in each spectral band.

We have also carried out an analysis of the influence of the size of the elementary
voxel with respect to the number of points contained. We can observe their distribution
in the form of histograms in Figure 12. We note that the distribution of the spectral bands
contained in the multispectral voxels does not depend specifically on the elemental voxel
size, as the distributions outlines are similar.

Figure 10. Multispectral voxel concept.
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Once the structure of multispectral voxels is established, it is crucial to process this
data to gain insights and draw conclusions about the target building under study. In this
research work, we have opted for the implementation of Self-Organizing Maps (SOMs)
algorithms, due to their multiple advantages in handling voxel data. SOMs provide an
efficient summarization of data, facilitating understanding, especially when dealing with
large datasets, thus excelling in dimensionality reduction tasks. They do not require a
separate training phase and are adept at exploiting spatial attributes while maintaining local
neighbourhood relationships. With a design that is more intuitive than other neural network
types, SOMs ease the interpretation of generated outcomes, making them particularly
suitable for tackling categorization problems.
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Figure 12. Distribution of various spectral bands according to different voxel elemental sizes.

2.5. Self-Organizing Maps

The Self-Organizing Map (SOM) executes a transformation from an input space of
higher dimensionality to a map space of lower dimensionality, using a two-layered, fully
interconnected neural architecture. The input layer comprises a linear array of neurons
and the elementary units of an Artificial Neural Network (ANN), and the number of these
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neurons corresponds to the dimensionality of the input data vector (n). The output layer,
also known as the Kohonen layer, is composed of neurons, each possessing a weight vector
that matches the dimensionality of the input data (n). These neurons are organized within a
rectangular grid of arbitrary dimensions (k). The weight vectors are collectively represented
in a weight matrix configured as an n × k × k array [65]. Figure 13 illustrates the typical
Kohonen map architecture.

Among the various features provided by the use of SOMs are the following:

• Group together similar items and separate dissimilar items.
• Classify new data items using the known classes and groups.
• Find unusual co-ocurring associations of attribute values among items.
• Predict a numeric attribute value.
• Identify linkages between data items based on features shared in common.
• Organize information based on relationships among key data descriptors.

It has been proven that SOMs need complete data records [66]. SOMs are highly
sensitive to Nan values and empty fields in the input layer. For this purpose, only full
voxels, that is, those with at least one point contained in each of the point clouds to be
fused, were classified in our training.

Figure 13. Typical Kohonen map architecture (source: [65]).

SOM Quality Indices

The various parameters that define a SOM can lead to different neural spaces. SOM
quality measures are required to optimize training, such that meaningful conclusions can
be drawn from them. Among these, the most significant quality indices are:

• Quantization error is the average error made by projecting data on the SOM, as mea-
sured by euclidean distance, i.e., the mean euclidean distance between a data sample
and its best-matching unit [67]. Best value of quantization error is zero.

• Topographic product (TP) [68] measures the preservation of neighborhood relations
between input space and the map. It depends only on the prototype vectors and map
topology, and can indicate whether the dimension of the map is appropriate for fitting
the dataset, or if it introduces neighborhood violations, induced by foldings of the
map [67]. Topographic product will be <0 if map size is small and >0 if map size is
big. Best value will be the one with the lower absolute value.

In this work, SOM quality indices have been calculated using an open-source library,
SOMperf [67].

To determine the optimal neuron map size (k), Topographic Product (TP) [68] has been
used. An approximation corresponding to a rule of thumb, according to Equation (1):
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k = 5
√

N, (1)

being N the number of full voxels in the voxelized structure.
In Figure 14 we summarize in a flowchart the handling of the processed data during

our multisensor data fusion strategy.

RGB 
         Point Cloud
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UV 
         Point Cloud

NIR             
       Point Cloud

Laser Scan 
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Thermal 
         Point Cloud

Multispectral 
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SOM Map 
Size

Self Organizing 
MapBMU

Figure 14. Multisensor data fusion with multispectral voxels and SOM flowchart.

3. Results

SOM trainings was performed for each voxel size. For this purpose, the optimal map
size was determined such that the topographic product was minimum (in absolute value).
Table 7 lists the different parameters according to the voxel size, as well as the obtained
topographic product and quantization error.

Table 7. SOM map sizes.

Voxel Size
(m) Num. Voxels Num. Full

Voxels
% Full
Voxels

Map Size by
Equation (1)

Optimal
Map Size

TP (abs)
×10−4

Quantization
Error

0.50 8743 1681 19.22 8 17 0.49 0.161
0.25 23,962 3775 15.75 17 20 0.37 0.148
0.10 105,552 13,038 12.35 24 30 21.33 0.127
0.05 360,371 39,052 10.83 32 34 8.17 0.118
0.03 893,448 89,954 10.06 38 32 6.51 0.123

One of the first steps prior to training is the normalization of the data. Normalization
helps the features to have a similar scale, facilitating the training process and faster conver-
gence. In addition, normalization helps to avoid problems associated with large gradients
during training, which negatively affect model convergence. In our work, we conducted a
Min-max rescale normalization.

To illustrate, we will concentrate on the presentation of the SOM outcomes for a
voxel size of 5 cm (0.05 m). The varied results of the maps according to the voxel size are
organized in Appendix A.
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As shown in Figure 13, the results of the training and classification of a self-organized map
are provided by a matrix of neurons, which are assigned a series of weights given by the input
layer. One way to show the relationships between neurons is to express the distances between
them (Figure 15). The lighter parts in that matrix represent the parts of the map where the nodes
are far away from each other, and the dark parts represent less distance between nodes.

Figure 15. U-Matrix SOM voxel 0.05 m.

Each activated neuron represents a set of voxels. There are also neurons that have not
been activated by any of the vectors given by the multispectral voxels within the input
layer. Figure 16 shows how many patterns (x-axis) have been recognized by how many
neurons (y-axis).

Figure 16. Activated neurons from SOM voxel 0.05 m.

The distribution of activations can be seen in the activation map depicted in Figure 17.

Figure 17. Heatmap of activated neurons from SOM voxel 0.05 m.
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In the same way, we show how the activations of the neurons are distributed within
each codebook vector (Figure 18).

Figure 18. Cont.
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Figure 18. SOM codebooks for voxel 5 cm.

4. Discussion

The use of Self-Organizing Maps (SOM) for the training and classification of multi-
spectral voxel structures results in the generation of a neural map. In this map, each neuron
points towards a group of voxels that exhibit similar characteristics, as indicated by a vector
of weights assigned to each property (spectral band) of the input layer. Every voxel in the
input layer has a Best Machine Unit (BMU). The BMU is the neuron whose weight vector is
closest in the space to the pattern.

In the SOM heat map voxel 5 cm (Figure 17), we can identify which neurons are those
that determine clearer patterns because they have been activated a greater number of times.
We highlight the neurons in the corners of the heat map.

• Neuron (0, 0), activated by 274 voxels. The red band is the predominant band, to-
gether with the laser. The UV and thermal bands have less weight for these voxels
(Figure 19a). These activated voxels are mostly located on the south building façade.

• Neuron (0, 33), activated by 425 voxels. Its most important band is the laser band.
The rest of the bands (RGB and UV) show a medium weight, whereas the thermal
information has little influence (Figure 19b). Its voxels are located on the western
planes not illuminated by the Sun during data acquisition.

• Neuron (33, 0), activated by 621 voxels. Its characteristic band is the thermal band,
with a minimum in the UV band. The red and green bands, along with the NIR have
medium weights. The laser band also has considerable weight (Figure 19c). The voxels
targeted by this neuron are located on the northern façade.

• Neuron (33, 33), activated by 136 voxels. Larger weight of the laser band. The rest of
the bands (RGB, NIR, UV, and thermal) have lower weights (Figure 19d).

However, each neuron does not act in isolation, but interconnects with nearby neurons
(Figure 15). Nearby neurons interrelate similar multispectral voxels. As shown in Figure 18,
neurons can be zoned using cross-band interrelated weights. In our analysis, we have
observed a striking similarity in the distribution of weights of the neurons in the heatmap,
corresponding to the red, green, and blue bands, located in the lower left corner. This
finding can be attributed to the fact that the built-up area of the building, as depicted in
Figure 5, primarily exhibits a red-grayish tone, derived from the granite construction.
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Figure 19. Characteristic Graph on some neurons of SOM voxel 5 cm.

This distribution of weights presents an opportunity for further analysis. Employing a
clustering algorithm, as the K-means method, we have successfully segmented the BMUs.
Using, for example, a 12-zone clustering, we are able to identify similar BMUs in a manner
that considerably streamlines analysis and enhances decision-making (Figure 20).

The primary focus of our methodology is to identify and study building pathologies
through the fusion of geomatic sensor data. We identified an area with dampness in the
building that was examined. This area is located in the lower part of one of the northern
façades (Figure 21). Dampness in buildings can lead to various issues such as the formation
of salt efflorescence. These are white deposits on the surfaces resulting from the migration
of soluble salts in water through the pores of the construction materials. This phenomenon
often occurs when water carries salts from the ground to walls. In addition to efflorescence,
moisture can trigger mold growth, material deterioration, and structural problems [69].

In order to evaluate our hypothesis regarding the potential application of multispec-
tral voxels in multisensor data fusion for the purpose of studying building pathologies
through the use of self-organizing maps (SOMs), we specifically focused on the voxels
that represented areas of the building with pathology present. We then identified the best
matching units (BMUs) for these voxels and discovered that they were located in close
proximity to the neuron (33, 20). To confirm the validity of their weight vector, we obtained
the corresponding characteristic graph, shown in Figure 22. The graph indicates a strong
correlation between the visible spectrum bands and the laser scanner band.
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Figure 20. Clustering of BMU Hits Matrix by K-means algorithm (12 clusters).

Figure 21. Pathology in north façade of the building.

Earlier research in remote sensing building pathologies studies discovered that the
infrared spectral range, particularly the 778, 905, and 1550 nm wavelength bands, is ideal
for detecting dampness. The study [1] found that the best results were obtained using short-
wave infrared data (1550 nm). Visible wave bands can detect efflorescence, as surfaces with
this phenomenon have higher reflectance in these spectral ranges. For chlorides or sulphates
being the cause, the short-wave infrared range is more appropriate. In accordance with the
research conducted by [1], our methodology demonstrates a higher level of effectiveness as
it does not rely on the derivation of information from point clouds to images to localize and
study pathologies. Instead, we work directly with the original 3D point clouds, integrating
geospatial 3D geometry with multispectral data information.
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Figure 22. Characteristic graph of BMU (33, 20).

5. Conclusions

Given the vast amount of data provided by different geomatic sensors and the diverse
nature of the information they offer, it is challenging to manage multisensor data and gener-
ate knowledge from it. Therefore, new approaches are required to effectively and efficiently
express this information from these sensors. Our methodology combines the power of vox-
els in their multispectral character, which is necessary for data fusion, with deep-learning
algorithms. In this case, the methodology was tested in a study of a cultural heritage
building. Using this methodology, we were able to geospatially locate areas (through their
respective voxels) that exhibit certain characteristics, showing pathologies. This allows
to identify, study, and derives information from them about any building that has been
studied with different sensors, regardless of their nature. Our methodology provides a
powerful tool for analyzing architectural structures using various sensors fusing their data.
The use of multisensor multispectral voxels locates possible pathologies such as damp and
efflorescence in buildings. Further studies can verify correlations between the SOM and
different fused sensors, defining their characteristic curves in such a way as to identify the
whole catalogue of the most common pathologies in Historical Heritage buildings.
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Abbreviations
The following abbreviations are used in this manuscript:

TLS Terrestrial Laser Scanner
NIR Near Infrared
RGB Red, green and blue
IR Infrared
UV Ultraviolet
TTS Terrain Target Signals
WSS Wall Surface Signals
GNSS Global Navigation Satellite Systems
CODE Center for Orbit Determination
IGS International GNSS Service
CORS Continuously Operating Reference Stations
IGN Instituto Geografico Nacional
VMF Vienna Mapping Functions
SOM Self Organizing Map
ANN Artificial Neural Network
SWIR Short-Wavelength Infrared
TP Topographic Product
BIM Building Information Modelling
BMU Best Matching Unit

Appendix A

Appendix A.1. Surface Targets Coordinates

Here, we show the coordinates for the signals attached on building surface (Table A1).

Table A1. Wall Surface Signals (WSS) coordinates. UTM 30N coordinate system, ETRS89 (ETRF2000)
geodetic frame. All values in meters.

Target Signal
UTM 30 Coordinates

Height
Northing Easting

target 1 382360.015 440005.730 567.466
target 2 382368.957 4401021.247 566.398
target 3 382387.272 4401026.984 567.755
target 4 382396.179 4400998.666 567.397
target 5 382360.322 4400996.444 568.799
target 6 382388.457 4401003.889 566.041
target 7 382379.653 4400999.527 567.669
target 10 382382.008 4401000.464 568.380
target 12 382385.244 4401004.683 568.189
target 13 382383.552 4401018.785 567.828
target 15 382385.290 4401017.194 566.884
target 16 382367.348 4401015.839 569.020
target 18 382385.407 4401002.420 566.875
target 20 382380.706 4401019.521 567.237
target 21 382378.862 4401018.659 566.457
target 25 382374.552 4401019.167 568.003
target 26 382363.300 4401013.857 569.381
target 27 382391.098 4401011.804 568.204
target 28 382366.036 4401007.650 569.078
target 29 382378.289 4400999.028 568.894
target 30 382363.924 4401014.202 568.630
target 34 382372.581 4401003.133 569.414
target 35 382382.719 4401020.449 567.849
target 36 382370.265 4401017.214 567.388
target 37 382370.390 4401002.189 568.604
target 43 382368.778 4401001.428 569.551
target 45 382388.164 4401010.347 568.259
target 47 382389.463 4401015.952 568.259
target 48 382390.180 4401014.380 568.103
target 50 382385.086 4401001.835 568.112
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Appendix A.2. Points Histograms

In Appendix A.2, we present the distribution of points per voxel through histograms,
based on the voxel’s elemental size.
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Figure A1. Points per voxel. Voxel size: 50 cm.
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Figure A2. Cont.
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Figure A2. Points per voxel. Voxel size: 25 cm.
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Figure A3. Points per voxel. Voxel size: 10 cm.
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Figure A4. Points per voxel. Voxel size: 3 cm.
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Appendix A.3. SOM Codebooks

Here, in Appendix A.3, we express the different heat map codebooks , which allows to
see map distribution of all of its characteristics. Different voxel elemental sizes have been
trained, expressing coherent results within the Results Section 3 and Discussion Section 4.

Figure A5. Cont.
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Figure A5. SOM codebooks for voxel 10 cm.

Figure A6. Cont.
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Figure A6. SOM codebooks for voxel 25 cm.
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