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Abstract: The fringe projection (FP) method is an outstanding tool for reconstructing painted surfaces.
This technique, which has been used for conservation and digitization, does not damage the artwork
and can reach sub-millimeter accuracy. To carry out this type of analysis, it is necessary to achieve
the most accurate measurements possible. Measuring the precision that a projector-camera-object
arrangement can achieve is a complex task. In this paper, we show an experimental method used to
measure the accuracy of this technique with instrumentation within the reach of most conservation
laboratories. The method consists of capturing, as a reference model, a stepped cylindrical Nylamid®

pyramid, as a construction whose shape, size, and manufacturing accuracy are known with high
precision. The pyramid has eight well-defined steps, which are fashioned with an accuracy more
exact than that of the fringe projection method. The height of each step was measured, obtaining the
mean and variance of the height measurements fitted to a Gaussian distribution. In this work, we
show the measured heights of the steps, obtained by varying the period of the fringes. The smallest
detectable step height was less than 44.1 µm; however, this was obtained with a variance in the order
of the step height. The smallest detectable step height with a small variance was 0.1008 mm. In
addition to this accuracy measurement, a qualitative evaluation of a painting was carried out, finding
the presence of possible superimposed thin layers, fabric, and microcracks, which commonly occur
in the drying and aging processes. Further research would provide an experimental measurement of
the method’s accuracy and its variance as essential for obtaining a confidence criterion that could
then be applied to the model of the painting’s surface.

Keywords: digital elevation models; painting surface analysis; structured light; fringe projection
scanner; art conservation

1. Introduction

The best possible reconstruction of the shape of an art piece has been a subject of
great importance since ancient times, when such reproductions could be done only by
mechanical pantograph. Initially, the focus was on obtaining the most precise copy of
the artwork. Today, the possibility of replicating the external aspects and the surface of a
cultural heritage object with high precision allows for various 3D applications [1]. One of
the most common applications is to create digital models of the object for museography and
cataloging purposes. For this type of use, very high precision is not necessarily required,
since a resolution of one millimeter provides acceptable quality [2,3].
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Digital models allow a precise memory of the artifact to be preserved in the event
of deterioration or loss (due to natural or accidental causes). In addition, they enable
databases to be generated that can be used to recognize replicas of original artworks and to
create digital museums. These make art accessible to people all over the world by allowing
virtual tours and observation of objects from different points of view and with a certain
degree of closeness. Lastly, with the advent of 3D printers, the possibility of transforming
three-dimensional models into faithful copies of scanned works is now viable, both for the
public [4,5] and for reconstructing and reintegrating missing pieces [6].

One of the first institutions to use 3D scanner techniques applied to conservation
was the National Research Council of Canada (NRCC). They first utilized this technology
in the 1980s to measure artifacts in order to make replicas of them [7]. Italy began to
explore this field with some interesting and iconic projects, such as the Michelangelo Project
(1998) and the Pietà Rondanini Project (1998), both focused on documenting Michelangelo
Buonarroti’s artworks in Italy. Additionally, other pieces of cultural heritage have been
digitally reconstructed for study, such as relics from the Qin Shi Huang Mausoleum and
the Terracotta Warriors and Horses Museum (1999), “La Minerva di Arezzo” (2001), parts
of the San Giovanni Baptistery in Florence (2001), and some sculptures by Donatello and
San Giovanni Pisano (2004) [7].

The possibility of obtaining 3D models that are faithful to the respective artworks en-
ables virtual restoration of specific works and their reintegration through image processing,
the return of damaged polychrome sculptures to their original appearance, or the relocation
of them virtually to their original architectural context [8,9].

More recent advanced applications of this type of technology in the field of cultural
assets include quantitative morphometric analysis for research purposes in support of
various scientific fields (e.g., archeology, art history, conservation, and restoration). How-
ever, digital models with different resolutions are required for cultural asset applications,
depending on the scale and type of the study to be carried out [10–13]. For example, an
archaeologist or an art historian can carry out studies with models that have precisions
ranging from millimeters to as many as five hundred microns. In contrast, the restorer who
wants to study the deformation of the pictorial surface related to a specific type of lining or
the state of a wall painting before and after chemical treatment requires details of some tens
of microns to at most two hundred microns, an accuracy that not all methods can achieve.

Today, digital scanners based on structured light projection and user-friendly pho-
togrammetric methods are available to many professional laboratories. Structured light
projection involves projecting a known pattern of pixels (horizontal lines, grids, or bars)
onto a scene [14]. The way the pixel pattern deforms when it is projected onto the sur-
face enables computer vision systems to calculate the surface depth of the objects in the
scene [15].

Most people think of paintings as two-dimensional because this is what the eye
perceives at first glance, but they are in fact three-dimensional objects. As a base support,
they may have metal, canvas, or wood panels, or other less common materials such as bone
or stone, on which a preparation base and several layers of paint are applied, creating a
substrate that has its own topography. Artists, either deliberately or unintentionally, create
3D textural effects on the surface by applying the brushstrokes in certain ways [16–18].

Paintings are made up of different layers and materials that significantly influence not
only their appearance, but also their chemical and physical behavior during the drying
process and, later, the aging process, which involves eventual degradation that is reflected
in the surface appearance [18,19]. In order to be able to characterize and quantify these
phenomena, the professional field of restoration has ventured into applying image analy-
sis systems to photographic documentation, obtaining semi-quantitative results for this
purpose [20].

To be able to study these painting surfaces, a three-dimensional model with a very high
resolution must be created, in such a way that we can observe and monitor the topographic
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characteristics of each painting, as well as the potential aging or damage caused by agents
such as chemical cleaners, mechanical abrasion, or relining processes [21,22].

The main goal of the present study was to apply and generate a fringe projection (FP)
system to create a three-dimensional model with an axial and plane resolution of 100 µm in
which the original details and physical characteristics of the objects can be observed. This
is very important in order to be able to monitor the state of conservation of an artwork, as
well as the success of potential treatments applied to solve specific problems, which can
sometimes modify the impasto of the pictorial layer or cause other types of damage. This
paper presents the general method, describes the methodology as applied to an oil painting
on canvas, and shows how the results obtained can be useful in meeting the objectives.

2. Materials and Methods

In this paper, we use fringe projection as a 3D reconstruction methodology to be
applied in the preservation of cultural heritage. This technique has been employed in
various disciplines [23–33] due to its simplicity and measurement accuracy. The general
experimental setup and basic principles are described in the following section.

2.1. Fringe Projection

Fringe projection is a three-dimensional reconstruction method used to generate
a 3D digital model of an object with excellent accuracy and simplicity [29,34–42]. A
typical setup for a fringe projection system consists of a projection unit (projector) and an
image acquisition unit (CCD camera), as shown in Figure 1, as well as an analysis system
(computer). The camera is placed perpendicular to the plane where the object under study
is located at a distance H. The projector must be situated on the camera axis at a distance D
and angle α.
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Figure 1. Typical fringe projection setup for three-dimensional reconstruction of objects.

The 3D reconstruction model begins by projecting a sinusoidal pattern (Figure 2) with
a well-defined frequency onto the reference plane, and then onto the object surface placed
on the reference plane. Images of fringe patterns are acquired with and without the object.
Here, the distribution of the heights of the object modulates the pattern phase (distorted
pattern). The distorted fringe patterns can be modeled as:

I(x, y) = a(x, y) + b(x, y) cos(φ(x, y) + ∆φ), (1)

where a(x, y) is the background light (ambient light), b(x, y) is the modulation of the
fringes (fringe contrast), φ(x, y) is the phase term, and ∆φ is the phase shift produced by
the object’s surface being a certain height above the reference plane. The background and
modulation are adjusted to a gray scale to generate black-and-white theoretical sinusoidal
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fringes (Figure 2). In practice it is difficult to achieve this range of fringes; however, the
optical setup must be adjusted to obtain the result closest to the ideal case. The critical
task is to recover the phase of the fringe image captured, because the phase contains the
information giving the height of the object. There are several techniques for phase recovery,
such as stepping, triangular phase stepping, or π-shift FTP, among others [35–37]. The
phase stepping technique [35] is notable for the small number of images required and for its
excellent precision. Phase stepping involves the capture of N-images (three as a minimum)
with a known N-step of fringe shifting. The N-step images are modeled by the following
equation in which the spatial component is omitted:

In = a + bcos
(
φ+ 2π

n
N

)
, (2)

where n represents the phase-shift index n = 0, 1, 2, . . . , N− 1. Based on the fringe steps,
a system of equations can be solved to obtain the phase. The solution to the system of
equations is expressed as:

φw(x, y) = tan−1 ∑N−1
n=0 In(x, y)sin 2πn

N

∑N−1
n=0 In(x, y)cos 2πn

N

, (3)

where φw(x, y) is the wrapped phase. Figure 2 shows an example of fringe images with
3-step phase shifting, produced using Equation (1).
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Figure 2. Example of fringe images with 3-step phase shifting.

The drawback of this technique is that the phase is wrapped. The main problem
is that an error in unwrapping affects not only a single pixel, but propagates. When
the captured object has edges or abrupt changes, the phase unwrapping process is more
complicated. Fortunately, in most cultural heritage and art objects, there are few cases
where the objects have abrupt changes; therefore, the phase stepping method can be applied
in most cases without difficulty. In this work, we used the unwrapping method proposed
by Barrientos et al. [38].

2.2. Experimental Arrangement

In the previous section, we described the geometrical arrangement of the method; here,
we describe the specific configuration used in our experiments. Following the geometry
shown in Figure 1, the distance between the reference plane and the camera lens was 24 cm,
the illumination angle of the projector was 30◦ (α), and the distance between the projector
lens and the object was 39 cm. Figure 3 shows the equipment used. In this arrangement,
we used a Lumenera® LW11057M high-resolution camera (4008 × 2672 pixels) with a
Nikon 60 mm focal length lens and a multimedia Epson EH-TW6100 high-resolution video
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projector (1920 × 1080 pixels). The fringe periods varied from 0.5 to 8 mm. For all images,
we employed four equally spaced phase shifts: 0, π/2, π, and 3π/2.
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2.3. Processing of Captured Images

Once the fringe stepping images are captured without and with the object, the phase
needs to be recovered and unwrapped, and the phase units converted to height (calibrated).
The expression for recovering the phase from captured images, which in this work was
four, can be obtained from Equation (3), as follows:

φw(x, y) = tan−1 I4 − I2

I1 − I3
, (4)

where I1, I2, I3, and I4 correspond to displacements of 0,π/2,π, and 3π/2, respectively.
The phase-recovered φw is involved. Fortunately, the pictorial surfaces do not present
discontinuities, and drift is low. The algorithm we employed in this work was that proposed
by Barrientos et al. [38]). They developed a robust method for 2D phase unwrapping using
the fast cosine transform. Once the phase is unwrapped, φu, it is necessary to convert from
phase to metric units. The conversion expression is as follows:

∆z =
∆φ

2π
T′cosα

sinα+ (D−Lcosα)x
LD

, (5)

where ∆φ is the phase difference and T′ the equivalent period, calculated using

T′ = T
(

1 +
xsinα

L

)2
. (6)

In the case of paint on canvas, it is necessary to separate the deformation of the
canvas from the paint strokes. For this, regional minima of the whole model are detected
and interpolated with a fourth-order polynomial. The interpolation contributed by the
polynomial represents the overall shape of the canvas. Subtracting the shape of the canvas
from the model yields the texture map corresponding to the painting. For more details
on the deduction of formulas 1–3 and a description of the phase-stepping technique, we
suggest the work published by Zuo et al. [43].

2.4. Resolution Tests on Reference Figures with Known Geometry

Accuracy is a crucial issue in the metrology of paintings on canvas. A high-accuracy
3D map is helpful for the conservation and restoration of works of art. To understand
the precision of our digital models, it is necessary to compare them with objects whose
dimensions and surface irregularities are perfectly known. For this reason, to calibrate
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the fringe projection method and make a reliable estimate of the accuracy obtained in the
reconstruction of the models, a physical model was constructed as a reference, with the
shape, size, and manufacturing accuracy known with high precision.

The model in question was a stepped cylindrical pyramid which was used to test the
resolution of the out-of-plane FP method. At the pyramid’s top surface, three slots were
made, each with a specific width and depth, to test the in-plane resolution. To minimize
alterations produced by scattering, the material used to fabricate this model was dark
gray Nylamid®.

The circular pyramid was fabricated with highly accurate step heights. The pyramid is
shown in Figure 4C. It had eight steps, with heights of 2.0993 mm, 1.0895 mm, 0.5855 mm,
0.3151 mm, 0.1836 mm, 0.1008 mm, 0.0441 mm, and 0.0141 mm. At the top step, there
were three concentric channels with widths of 0.9267 mm, 0.4327 mm, and 0.2325 mm.
These channels were used for the “x” and “y” calibration. A detailed diagram is shown in
Figure 4A. The heights of the steps and the roughness were accurately confirmed using a
high precision digital 3D-touch BFWA 10–45–2/90◦ roughness meter probe. The accuracy
of the height of the pyramid was 25 µm. A profile of the roughness is shown in Figure 4B.
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2.5. Case Study: The Rooster

The painting used in the experimental procedure, The Rooster, is an oil painting on
linen canvas painted in part using a spatula technique. It was painted by Pablo Gonzales in
2001 and is 30 cm wide by 40 cm tall. Figure 5 shows a color image of The Rooster.
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This painting presents a number of complex issues in terms of color, with both very
dark and very bright areas. The surface of the painting has areas where the paint was
applied with a soft-bristled brush, generating a very thin layer, as well as areas with random
apices and thickly plastered oil paint, which are typical of the application of oils with a
spatula. Thus, the painting covers a variety of possible scenarios.

3. Results and Discussions

This section presents and discusses the results obtained from testing, in different ways,
the fringe projection method. The quantitative results obtained by analyzing the reference
object whose dimensions and roughness were known with high precision are presented.
In addition, a qualitative description of how the method performed on an oil painting
with different fringe periods is provided, noting its limits and potential. Typologies of real
details of pictorial surfaces that can be observed and measured at the resolution achieved
by the method are also described.

3.1. FPS Resolution Limit Test Using a Stepped Cylindrical Pyramid as Reference

In order to test the FP resolution limit and the influence of resolution on the accuracy
of the DEM, the pyramid (Figure 4C) was captured, varying the optical sensitivity. Five
fringe periods were used: 0.5 mm, 1 mm, 2 mm, 4 mm, and 8 mm. The maximum resolution
achieved with the experimental setup was obtained using the 0.5 mm fringe period. Figure 6
shows a capture of the pyramid. Figure 7 shows the reconstructions and profiles of the
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reference piece using different fringe periods. It can easily be observed that using small
periods decreases the residual noise.
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The image of the three-dimensional model was processed by level sets that corre-
sponded to the steps. At each level set the distribution of heights was obtained. Figure 8A
shows an example. This distribution, as expected, has a Gaussian behavior, which enables
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the degree of uncertainty of the measurements to be determined. Figure 8B shows the mean
and standard deviation of the Gaussian distributions of each step.
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As seen in Figure 8B, for the five highest steps (≥0.1836 mm), the mean value of the
measurement is consistent with the real value, and the standard deviation is smaller when
the period is smallest. The 0.0141 mm and 0.0441 mm steps are detectable, but unfortunately
the variance is in the order of the step height. This fringe projection setup was able to detect
up to 0.1008 mm with high precision and with a degree of uncertainty up to 0.0125 mm.

In addition, to provide the actual resolution of the method, this analysis included an
evaluation of how the variation in the period of the fringes influences the resolution of
the method. It can be observed that, while a fringe width of 0.5 mm allows all the steps to
be perceived and accurately measures the 0.1008 mm step with a fringe period of 1 mm,
it is only possible to measure the 0.1813 mm step. Moreover, upon observing the errors
associated with the measurements, it can be clearly seen how the uncertainty increases as
the period of the fringes become progressively larger.

3.2. Result of the Experimental Arrangement Applied to the Rooster

In the previous section, the results of the quantitative measurement of the reference
objects were presented from a methodological point of view. Now, we will show the results
from the application of the same techniques to the painting we chose for our case study,
giving a qualitative description of how the method performs, its scope, and its potential
applications. As we mentioned, The Rooster is an oil painting on linen canvas, painted using
in part a spatula technique. This technique generates thick applications of paint with a
strong relief that provides a greater dynamic to the painting. Figure 9A is a real color image
of the work.

To show the application of the method, we captured the complete work with two fringe
periods: 2 mm, as shown in Figure 9B, and 1 mm, as shown in Figure 9C. We discuss the
process at two scales: analyzing the complete model (global) and analyzing a region (local).
In the global analysis, we can see that both photographs clearly show where there is thicker
paint, applied with a relief effect that results from the angles of the spatula. The texture is
relatively thick, for example, in the tail of the rooster. With respect to these characteristics,
at the scale considered, there are no distinguishable differences. However, if we perform
an analysis focused on certain regions of the painting, we can observe a notable difference
between the models. An example can be seen in the upper left corner of the painting.
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Figure 10A again shows the original painting. The green frames indicate regions
of interest in the chart that have been digitized with fringes of different periods: 1 mm
(left-hand column) and 2 mm (right-hand column). These are described below.

Figure 10B shows how changing the fringe period, which corresponds to a change
in resolution, produces a significant difference in the image. The changes in the elevation
pattern are evident. In Figure 10B with 1 mm stripes (higher resolution), coarse details
are not recognized, and a slightly lowered vertical zone (dark stripe) can be noted in the
center. It can be seen that this corresponds to a smooth area with little relief. In contrast, in
the lower resolution image (2 mm stripes), the deeper central area is completely lost and
artifacts appear on the right and left margins of the image where raised areas are indicated
that do not actually exist. The reason for these apparent differences is the presence of details
below the resolution limit being merged together, creating fictitious detail. In Figure 10C,
significant differences can be observed between the images using the 1 mm and those
using the 2 mm fringe period. As the period of the fringe increases, a general decrease in
resolution is noted, with the disappearance of minute linear details and the appearance of
broader, blurred features. Fictitious black crater-like structures, which do not exist in reality,
appear in the center of the image along a narrow vertical band. A change in the overall
dynamics of the image is also noticeable. It is interesting to note that in the 2 mm fringe
image, periodic vertical bands related to the fringes appear. In the image with 1 mm stripes,
the vertical bands can be discerned, but they are much less evident. In Figure 10D (1 mm
period), very fine details are observed as aligned ridges, with a tendency to verticality, and
tiny peaks on the edges of the impasto, which are probably due to irregularities on the edge
of the ridges, generated by the spatula and/or the brushstrokes of the base paint which is
applied as a base prior to the addition of the figure. Very slight ripples appear against an
almost perfectly flat background, as seen in the large smooth gray area at the top left of the
image. In the 2 mm fringe image, these very fine details lose their definition and become
blurry fringes, hidden by black shadows that are not present in the higher-resolution image.
The change in the sharpness of the image is striking. Figure 10E is a typical example
whereby, upon decreasing the resolution (2 mm fringes), the pinpoint details become wider
and more blurred, and black spots (craters) appear that do not exist in reality. The effect
of the longer period is also noticeable in the appearance of a vertical stripe pattern due to
the fringes. In Figure 10F, captured in a very darkly pigmented area of the painting, the
limit of the fringe projection method is clearly seen. The pattern of vertical lines due to the
fringes is visible in both images (1 mm and 2 mm fringe). However, the higher-resolution
image (1 mm period) has finer details and the stripes are slightly less visible.
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4. Conclusions

In this work, we presented a high-precision experimental method to estimate the
accuracy of a capture system based on the fringe projection technique. A reference object
with well-defined height levels was fabricated, and an instrument verified the levels with a
resolution greater than 10 µm. To estimate the error, a Gaussian distribution was fitted to
the heights of the points at each level. Using the best experimental setup (fringe period of
0.5 mm), the lowest detectable level was 0.0441 mm; however, the standard deviation was
in the order of step height. The second measurable step was 0.1008 mm with a standard
deviation of 0.0125 mm. In this way, it was confirmed that the precision of the method
is of the order of one-tenth of a millimeter, a resolution capable of characterizing and
measuring most of the details of the technical characteristics of a pictorial surface and
conservation state. Some examples of these include the thickness of the paint layers,
direction of the brushstrokes, and the variations in relief of the impasto throughout the



Heritage 2023, 6 3472

pictorial surface. In terms of the conservation state, various alterations of the pictorial
layer can be observed in close detail, such as microfractures, craquelure pattern, or effects
of metal soaps, among others. A resolution of this order of magnitude also makes it
possible to perform quantitative measurements of deformations in the painting’s support
or to evaluate the effects of conservative interventions (such as consolidating or lining the
pictorial surface) in terms of loss of the relief dynamics of the artwork.

Statistical analysis also provided quantitative data concerning the effect of the fringe
period on the resolution. Our study showed that increasing the fringe period from 0.5 to
1 mm worsens the resolution from 0.1008 to 0.1813 mm, respectively. Increasing the period
of the fringes also considerably increases the uncertainty of the measurements.

A qualitative analysis of the 3D reconstruction of the oil painting The Rooster was
carried out as a case study to explore the potential of the method for art restoration.
Although it was a challenge to capture this painting with a fringe projection system since
it displays a large color dynamic range and areas with high contrast tones, the resulting
digital model was of good quality. Visual inspection of the 3D model confirmed that with
the resolution used, it is possible to measure, and eventually quantify, thin layers of paint,
brushstrokes, fillings, paint detachment, craquelure, metal soaps, state of the fabric, or
microfractures in the paint layers generated by the drying or aging processes. In addition, it
was possible to learn through visual inspection how the increase in the period of the fringes
not only produces a loss of resolution, but also introduces fictitious details, which do not
exist in reality and produce appreciable changes in the apparent topography of the paint.

This method has some limitations, such as the appearance of fictitious features due
to subsampling, and the presence of bands that appear in the direction of the grid of the
fringe. This is a problem that is always present in models obtained by the fringe projection
method, although it is significantly reduced by using small fringes or by post-processing
with de-striping algorithms. This method may also suffer significant loss of resolution in
strong lighting conditions, such as outdoors or in paintings that have very dark, absorbent
areas or strong color contrasts.

The experimental estimation, with measurement of the precision error, enabled us to
establish a degree of objective certainty in capturing the characteristics and the deterioration
of the surfaces of the paintings. This may prove to be of great utility and importance for
conserving cultural heritage.

The fringe projection method is very effective for producing digital models of paint-
ings with high precision and in a reasonably short time (minutes to hours, depending
on the size and complexity of the artwork). This method is within the reach of any
conservation laboratory.

5. Future Developments

This work represents the basis of a series of studies that are being carried out using
this methodology. At present, our group is working on a comparative study of the inva-
siveness of different relining methods. The detailed study of the DEM of the surfaces of
four quasi-identical paintings (copies of the same subject and size, produced by the same
artist), captured by the fringe projection method before and after the conservative interven-
tion, will be very useful for evaluating the changes introduced by different lining materials
to the surfaces of paintings. Another future study will concern the state of conservation
of easel paintings. We plan to create a DEM database of the common alteration state of
oil painting surfaces. The final goal of this research will be to explore the possibility of
automatically recognizing alteration typologies through the use of deep learning methods.
Many other studies, in addition to these, could be carried out, taking advantage of the
potential of fringe projection methodology.
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