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Abstract: In recent years, the investigation and 3D documentation of architectural heritage has made
an efficient digitalization process possible and allowed for artificial intelligence post-processing on
point clouds. This article investigates the multilevel multiresolution methodology using machine
learning classification algorithms on three point-cloud projects in China: Nanchan Ssu, Fokuang
Ssu, and Kaiyuan Ssu. The performances obtained by extending the prediction to datasets other
than those used to train the machine learning algorithm are compared against those obtained with
a standard approach. Furthermore, the classification results obtained with an MLMR approach are
compared against a standard single-pass classification. This work proves the reliability of the MLMR
classification of heritage point clouds and its good generalizability across scenarios with similar
geometrical characteristics. The pros and cons of the different approaches are highlighted.
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1. Introduction
1.1. Three-Dimensional Documentation and Artificial Intelligence in Cultural Heritage

Thanks to the rapid development of laser scanners and photogrammetric techniques,
3D modelling post-processing is conducted to make use of the digitized spatial data. This
mostly consists of manual and time-consuming operations. Furthermore, these operations
reduce the metric quality of the data, as the simplification is not always dictated by the
purpose but rather by the limitations of the software and is subjective depending on the
technical skills and personal interpretation of the operator. A potential solution able to
minimize the time consumption and thus the costs of these modelling processes is using
the point clouds directly during the production process [1]. Previous research has focused
on developing strategies that allow these point models to be used as triangular meshes,
enabling their use inside augmented-reality (AR) and mixed-reality (MR) applications in
cultural heritage (CH) [2–4]. However, point models, being rich in metric content, lack
semantic meaning in their parts. This is an essential feature for allowing their use as
“real” 3D models. The semantic classification and segmentation of the 3D dataset are
mandatory steps that assign semantic meaning to each point through their classification
into predetermined classes.

Manual segmentation requires an expert operator to visually interpret the dataset,
subdividing it into relevant elements and grouping together points belonging to the same
element. This process is as difficult, time-consuming, and subjective as the modelling
phase itself. Recent advancements in artificial intelligence (AI), machine learning (ML),
and deep learning (DL) provide a solution for managing point cloud datasets in a more
rational and semi-automatic way. Their potential has already been proved in many other
fields, such as in natural language processing and image classification (computer vision),
with examples such as AlexNet [5] and ResNet [6]. Algorithms have been developed to
classify the datasets distributing semantic meaning to each segment. Indeed, the labour
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involved in defining each item one by one can be largely reduced. Actual applications
of different techniques on the point cloud have varying performances and have proved
essential to completing the classification task. Depending on the scenes analysed, neither
of the methods (DL or ML) could generally outperform the other [7,8].

While the production of the 3D point cloud has become increasingly convenient, with
precise and reliable results, AI is expected to play an important role in dealing with trillions
of points (samples) collected from a complicated real scene.

1.2. Aim and Content

In this study, we apply and evaluate a classification method based on multilevel
multiresolution (MLMR) combined with ML algorithms, testing its competence on singular
databases and its generalizability from one to another.

Three ancient wooden structures were selected to test the validity and generalization
of the approach: the great hall of Nanchan Ssu (China), the East Great Hall of Fokuang Ssu
(China), and the Bell Tower of Kaiyuan Ssu (China). Different scales, similar architectural
styles, and different building types can be helpful when discussing relevant classification
topics: approaches, features, and, in particular, the generalization test, which is more
efficient when it is controllable. In the section “Case studies”, a brief description of the
three architectures is given. In the Methodology, the MLMR classification approach and
its results on the three cases studies are illustrated. In the Discussion, the behaviour of
the MLMR approach compared with the non-hierarchical approach, the generalization
test results, and the effect of the selection and computation of geometrical features are
discussed. This work attempts to empirically evaluate the general pre-trained model for
the MLMR classification of unseen datasets.

2. State of the Art

Based on segmentation and classification techniques, point clouds can be successfully
exploited and better comprehended [9]. To classify and segment a point cloud model refers
to the action of grouping points in subsets (commonly called segments) characterized by
sharing one or more characteristics (geometric, radiometric, etc.). Segmentation methods
could be grouped into edge-based, region growing, model fitting, hybrid, and AI (ML and
DL). The last either relies on a set of provided training examples with manually annotated
labels to learn how to perform the classification tasks (supervised learning) or seeks to
build models that automatically understand how the data are organized (unsupervised
learning). These approaches are generally robust against noise and occlusions but require a
large amount of training data and high computing power to run the algorithm. As a result
of the classification process, points were predicted for specific architectural elements, each
being assigned a specific label that belongs to a set of previously defined classes.

In a supervised ML approach, including support vector machines (SVM) [10], random
forest (RF) [11,12], and naïve Bayes [13], semantic categories are learned from a subset
of manually annotated data that are used to train the classification model. This trained
model is then used to spread the semantic classification to the entire dataset. Normally, it
is not necessary to provide a large amount of annotated data for the training process to
be effective.

More traditional methods, instead, typically rely on a range of hand-crafted shape
descriptors as feature vectors from which to learn the classification pattern. These descrip-
tors include local surface patches, spin images, intrinsic shape signatures, and heat kernel
signatures [14]. A multiscale and hierarchical feature extraction method was introduced
to obtain robust and discriminative characteristics [15]. Grilli et al. tested the extraction
and the importance of geometric covariance features within the classification process; tests
proved their validity in different case studies [16].

Unsupervised approaches differ from supervised learning approaches in that features
themselves are learned as part of the training process. In recent years, the use of big
data has made these methodologies, especially DL, accessible and popular. Among many
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other methods, convolutional neural networks (CNNs) constitute the most representa-
tive approach in DL. Developed for 2D image analysis, CNNs have proved effective in
different fields, e.g., object detection and model matching in street-view scenarios [17].
The progress made with 2D images acts as a foundation upon which to develop many 3D
learning algorithms.

Among the different DL approaches, the main models for feature learning with the
raw point cloud as input can be generally divided into point-based and tree-based ap-
proaches [18]. The first directly takes the raw point cloud as the input for training the
DL network. The second employs a k-dimensional tree (Kd-tree) structure to transform
the point cloud into a regular representation (linear representation afforded by the group
action) and then feeds this into DL models.

Classification in CH

When dealing with a specific point cloud model in CH, it is necessary to meet the
specific needs of that particular heritage. The performance of classification techniques for
singular unique objects varies with their mass, material, color, surface variation, etc., and
these features are used to train the classification model.

A 2.5D approach utilizes features and labels from 2D images, projecting them onto 3D
models to perform classification. Texture-based classification [19,20] works with 2D data.
The classification is performed on the texture image and on orthoimages obtained from
the model. The results are then reprojected on the 3D model. For each case under study,
optimized models, orthoimages, and UV maps are created. Semantic photogrammetry [21]
uses the DL results of 2D images for 3D reconstruction to obtain a labelled 3D model.

HERitAge by point Cloud procESsing for Matlab (M_HERACLES) [22] performs
segmentation from the scale of a historical neighbourhood up to that of the architectural
element. The toolbox performs segmentation from the scale level of a neighbourhood to
that of individual buildings using GIS shapefile data to assist the process. Afterwards,
segmentation is performed from a building’s scale level to that of architectural elements
such as pillars and beams, utilizing several Euclidean geometry-based rules and slicing to
identify clusters.

AI approaches that directly work on the 3D CH point model have only started to
appear in recent years. An example of an ML approach that can work directly on the
point cloud model is presented in [23]. This approach is based on the use of the RF
algorithm and works on a set of manually labelled samples, with computed geometric
covariance features. The model to be trained is fed with a manually defined training set,
and it generates predictions on the previously segmented evaluation set to calculate its
performance. Afterwards, the classification is spread to the whole dataset.

Starting from this point, a MLMR approach [24] works hierarchically on specific por-
tions of the whole dataset, classifying it at different resolutions with increasing detail as
the number of classes increases; this method has proved to be computationally economic
and has allowed higher accuracy to be achieved on more complex architectural heritage
buildings. Initially, the dataset is subsampled to a lower resolution (depending on the di-
mensions of the considered case study). Training a specific RF classifier, big macro-elements
are classified. The result is then back interpolated on a point cloud of higher resolution so
as to subdivide the elements that require higher geometric accuracy. The process iterates
up to the classification of the full-resolution dataset (initial resolution). In contrast to
the non-hierarchical approach, specific RF models are trained for each classification, but
only a small number of labelled samples are required. The data are hierarchically split
into sub-classes, while the level of geometric detail increases, allowing the discernment
of architecture components processed on a limited portion of the dataset at a relevant
resolution. The validity of the approach has been previously proved on Chinese wooden
architecture [25]. The application of a single machine learning model across large and
variable architectural datasets has been extensively tested, but the generalization ability



Heritage 2022, 5 3973

in the hierarchical approach requires further discussion, continuing from that discussed
in [8,26].

In contrast to ML approaches, and based on the prospering of point cloud datasets, re-
cent years have seen the application of DL networks to point model classification; examples
include PointNet [27], PointNet++ [28,29], PCNN [30], and DGCNN [31]. DL frameworks
based on these neural networks have been applied to the digital cultural heritage domain.
Consequent applications, such as the improved DGCNN [32,33], support features such
as normal and HSV colours coupled with the x, y, and z coordinates of the points. These
approaches have proved to be effective, and the ArCH (Architectural Cultural Heritage)
dataset [34] has been used to gather different pre-classified examples to train the network.
A limitation is that the number of classes must be predetermined and constant across all
models in the training dataset. However, due to the uniqueness and vastness of different
heritage building examples, it is currently still very difficult, if not impossible, to define a
dataset that has an adequate number of pre-classified examples to cover a complete range of
heritage buildings. However, some studies have used transfer learning [35,36] against this
deficiency. Cao et al. developed a DL approach that, using a pretrained example, is able to
reduce the need for a bigger pre-segmented dataset, obtaining encouraging results [37–39].

3. Case Studies

Nanchan Ssu (NCS) and Fokuang Ssu (FKS), together with other temples and monas-
teries in Wutai Monti in the middle of China, constitute a UNESCO site, which was inserted
into the World Heritage List in 2009. They date back to the late VIII, mid-VIII century. The
bell tower of the Kaiyuan Ssu (KYS) could date back to the XI century. All three cases share
the architectural style of the Tang dynasty.

All of the cases were surveyed with TLS (Trimble TX8) and UAV (DJI Phantom 4 Pro,
DJI FC6310) by the members of the Archaeology Centre for Architecture, Settlement and
Landscape (ACASL), Tianjin University, China.

The NCS temple was surveyed in 2017. The dataset of the great hall consists of a
point cloud project produced from 78 scan stations (13 of which were inside the building).
The entire dataset contains 1026.4 million points. The portion of the great hall (at 5 mm
resolution) selected from the surroundings was subsampled to an average and uniform
resolution of 15 mm (Table 1).

Table 1. Three-dimensional heritage point cloud data.

Scene Classes Points * (mil) Points Used (mil) Mean Res. (mm) Subs. Res. (mm)

NCS 18 1026.4 354,229,166 5 15–60
FKS 18 2670.8 24,238,232 30 30–120
KYS 19 516.9 156,697,160 5 15–60

* Points number is referring to the whole monastery area.

The FKS temple was surveyed several times from 2015 to 2020. The dataset of the
east great hall is obtained from a point cloud project of 2670.8 million points, resulting
from 179 scans, among which 51 are interior scans. Due to the fact that the data acquisition
method, the terrestrial laser scan (TLS), is highly limited within this project, especially
within the roof structure, the used dataset is subsampled into one with a mean resolution
of 30 mm, containing 24.2 million points (Table 1).

The KYS temple was surveyed from 2006. The dataset consists of a point cloud
project produced from 39 scan stations (11 inside the building). The entire dataset contains
516.9 million points, and the portion of the bell tower is of 5 mm resolution (Table 1).

3.1. The Great Hall of Nanchan Ssu

Nanchan Ssu (NCS) (Figure 1) is located in Lijiazhuang, south-east of Wutai in Shanxi
Province. The great hall, built in the Tang dynasty on a 1.2 m-high platform within the
complex, is known as the earliest existing wooden structure in China. The earliest recording
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written under the west beam of the central bay proves that the hall was reconstructed in
782 AD.
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It is a one-floor building, 9.2 m high, with a rectangular (10.5 × 11.7 m) floor plan
divided into nine bays marked by pillars and beams. An altar of 0.7 m was built in the
central bay, above which originally stood 17 painted statues (of which 14 statues remains
today). The roof is supported by 10 wooden pillars, sealed with brick walls, in which two
wooden windows and a door have been opened. During the intervention in the 1980s, two
additional poles were placed inside to support the beams.

3.2. The East Great Hall of Fokuang Ssu

Fokuang Ssu (FKS) (Figure 2) is located northeast of Wutai County, Shanxi province,
6 kilometres from the town of Doucun, under the mountain of Fokuang (the west foot of
the south part of the Wutai mount). From the inscription on the stone column in front of
the great hall, the founding of the east great hall dates back to 857 AD.
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The east great hall was built on a 1.2 m high platform. It is a single-level construction,
15.4 m high, with a rectangular (34 × 17.66 m) floor plan. The 0.9 m high altar was carved
from the stone mountain body under the five central bays, above which stand 35 painted
tall statues that reach from 1.95 to 5.3 m in height. In the surrounding bays, it is possible to
find other 296 statues. The roof is supported by 32 wood pillars, sealed with brick walls
and with four wooden windows and five doors.
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In a recent intervention, two additional poles were added to support the rear corners
of the roof. The elements of the ‘Dougong’ (bracket sets) that hold up the roof have a cross
section measuring 0.21 × 0.3 m, stretching the roof out from the main body of the hall of
approximately 4 m.

This structure is one of the earliest architectures above ground that is still standing,
being of great value to the Chinese nation and the East Asian cultural zone of architecture.

3.3. The Bell Tower of Kaiyuan Ssu

Kaiyuan Ssu (KYS) (Figure 3) is located in the southwest of the historical centre of
Zhengding county, Hebei province. The temple could date back to 540AD; the bell tower
shows strong features of the Tang dynasty, although there is no evidence to provide an
accurate build time.

Heritage 2022, 5, FOR PEER REVIEW  6 
 

 

The east great hall was built on a 1.2 m high platform. It is a single-level construction, 
15.4 m high, with a rectangular (34 × 17.66 m) floor plan. The 0.9 m high altar was carved 
from the stone mountain body under the five central bays, above which stand 35 painted 
tall statues that reach from 1.95 to 5.3 m in height. In the surrounding bays, it is possible 
to find other 296 statues. The roof is supported by 32 wood pillars, sealed with brick walls 
and with four wooden windows and five doors. 

In a recent intervention, two additional poles were added to support the rear corners 
of the roof. The elements of the ‘Dougong’ (bracket sets) that hold up the roof have a cross 
section measuring 0.21 × 0.3 m, stretching the roof out from the main body of the hall of 
approximately 4 m. 

This structure is one of the earliest architectures above ground that is still standing, 
being of great value to the Chinese nation and the East Asian cultural zone of architecture. 

3.3. The Bell Tower of Kaiyuan Ssu 
Kaiyuan Ssu (KYS) (Figure 3) is located in the southwest of the historical centre of 

Zhengding county, Hebei province. The temple could date back to 540AD; the bell tower 
shows strong features of the Tang dynasty, although there is no evidence to provide an 
accurate build time. 

 
Figure 3. The bell tower of the KYS (photo provided by ACASL, China). 

The east great hall was built on a 0.69 m high platform. It is a two-storey construction 
14.5 m high, with a rectangular (9.8 × 9.8 m) floor plan divided into nine bays marked by 
four rows of pillars. Two stories are supported by 12 wooden pillars each. The ground 
level is sealed with brick walls with three wooden doors, while the upper level is 
mounted, with four doors and eight windows. Characteristically, between and under the 
bracket sets lay small windows on both levels. On the upper level stands a bronze bell of 
the Tang dynasty, hanging delicately on a wood frame, which is partly placed upon the 
main structure of the tower. In a recent intervention, the upper level was reconstructed 
following the Tang style. 

4. Methodology 
The projects under documentation have very large dimensions. They are rich in de-

tail and have a high variety of architectural elements. The complexity and uniqueness of 
the three cases cause the unsupervised classification approach, especially the DL one, to 
not be applicable. It would be difficult and time-consuming to prepare enough representa-
tive samples upon which to train the model. Additionally, the conditions are the same in 

Figure 3. The bell tower of the KYS (photo provided by ACASL, China).

The east great hall was built on a 0.69 m high platform. It is a two-storey construction
14.5 m high, with a rectangular (9.8 × 9.8 m) floor plan divided into nine bays marked by
four rows of pillars. Two stories are supported by 12 wooden pillars each. The ground level
is sealed with brick walls with three wooden doors, while the upper level is mounted, with
four doors and eight windows. Characteristically, between and under the bracket sets lay
small windows on both levels. On the upper level stands a bronze bell of the Tang dynasty,
hanging delicately on a wood frame, which is partly placed upon the main structure of the
tower. In a recent intervention, the upper level was reconstructed following the Tang style.

4. Methodology

The projects under documentation have very large dimensions. They are rich in detail
and have a high variety of architectural elements. The complexity and uniqueness of the
three cases cause the unsupervised classification approach, especially the DL one, to not
be applicable. It would be difficult and time-consuming to prepare enough representative
samples upon which to train the model. Additionally, the conditions are the same in the
non-hierarchical ML classification approach; the processing of such huge datasets requires
many computational resources, both to extract the necessary geometric features for training
and to make predictions on the whole dataset. Furthermore, a non-hierarchical classification
with a large number of semantic classes would easily result in low accuracy.
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In this work, an MLMR approach, as presented by Teruggi et al. [24], is applied
in the study of three Chinese CH architectures (NCS, FKS, and KYS). The behaviours
were compared with those of the non-hierarchical approach. In order to further test
the generalization of the classifier, the RF model was trained by manually extracting
annotated samples from the datasets of NCS and FKS. The model was later used to apply
the classification to KYS.

In the MLMR approach, firstly, a set of multilayered semantic classes organized into
a tree-like cornice is designed. Each class that defines macro-architectonic elements is
subdivided into classes that can better describe every portion of these objects. In this
way, the classification work is distributed across different levels, where a corresponding
and relatively lower resolution diminishes the burden on the extraction of geometric
features and training. The classification results are interpolated back to the same portion
of the point cloud at higher resolution, which depends on the amount of geometric detail
needed to discern the architectonic elements of this level. The segments allow the iterative
classification and interpolation of the whole dataset, until specific portions reach full
resolution. Compared with other common classification solutions, the MLMR approach is
more accurate and computationally efficient for large-scale datasets.

For each MLMR classification, the datasets were first pre-processed (“noise” manually
removed, elements not pertaining to the building cleaned, and the original point clouds
subsampled), then geometric features were computed and appended to the datasets. After-
wards, and the training sets and evaluation sets were manually extracted and annotated
with labels following the designed categories in order to train and evaluate the model. If
performances were acceptable, then the model was used to predict classification on the
whole dataset.

In the generalization tests, the same features at the same search radii were computed
for two datasets, A and B. The test uses training sets and evaluation sets from dataset A to
perform prediction on dataset B. The prediction results were compared with the ground
truth, evaluating the performance of the model (Figure 4).
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Figure 4. Classification scheme regarding the generalization process.

Covariance geometric features are required by the ML RF classifier in order to dis-
tinguish different elements. These features were computed using CloudCompare’s [40]
functions. Anisotropy, planarity, linearity, surface variation, sphericity, verticality, and nor-
mal vectors in the X and Y directions were the parameters used. It has been demonstrated
that these are the geometric covariance features that most strongly affect the classification
process [24]. These parameters were computed at different radii, which were chosen based
on the measures of under-defining elements, depending on the case study being classified,
as highlighted in Figure 5.
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4.1. The Great Hall of Nanchan Ssu

The classification of Nanchan Ssu’s great hall is divided into three different levels,
considering the monitoring requirements (from the overall composition to architectonic
elements) as well as the original point cloud resolution (Figure 5).

The first level refers to the basic framework of the hall—roof, support, statue, and
ground—vertically dividing the whole dataset into four classes. To recognize these cate-
gories, the classification was performed on a 60 mm resolution version of the entire dataset.
The second level deepens these categories. The roof part was divided into tile set and
truss. The support category comprises pillars, windows, and wall subsets. The ground was
divided into altar, platform, steps, and earth. At this level, all elements were processed
from a 30 mm resolution subsampled point cloud. The third level of classification was
performed to classify the truss into longitudinal, transversal, and diagonal elements, using
the dataset at its initial resolution.

The first level of classification consisted of 428,963 points, of which 78,655 (18.3%)
were manually annotated to be used as the training set and 77,663 (18.1%) as the evaluation
set. The training of the model produced good results with a weighted average F1 score up
to 0.96 (Table 2). Applying the classification to the whole dataset, approximately 22% of
points under the support category were misclassified as statues. In the same way, some
parts of the exposed pillars around the corner of the wall were misclassified (Figure 6 left);
this is due to the fact that statues share a similar anisotropy feature (at a radius of 30 mm)
with these elements.
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Table 2. Classification metrics at level 1 for NCS.

Roof Wall Statue Ground WGT. Average

PREC. 1.0 0.97 0.77 0.99 0.97
RECALL 1.0 0.78 0.97 0.99 0.96

F1 1.0 0.86 0.86 0.99 0.96

The second level of classification on the roof, wall, and ground achieved satisfying
results (Figure 6 right), with F1 scores up to 0.99, 0.93, and 0.99, respectively.

Classification level 3 makes use of normal vectors computed in the X and Y directions
(at a search radius of 60 mm) as features to distinguish architectural elements, following
their orientation. The scalar field of normal vectors in the x direction shows that they are
associated with the corresponding labels (Figure 7). Scores from the evaluation set achieved
a weighted average F1 score of 0.87 and generalized well to the whole dataset.
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Figure 7. Normal vectors in the x direction (left) and labels (right) for the truss of the great hall
of NCS.

4.2. The East Great Hall of Fokuang Ssu

The classification of the great hall is separated into three different levels (Figure 8).
The first level refers to the basic framework of the hall, dividing the whole dataset into
the roof, support, ceremonial object, and ground. The classification was carried out at a
resolution of 100 mm in order to identify these categories.
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Figure 8. Point cloud classes for the FKS project.

The second level deepens these categories. The roof part is divided into tile set, truss,
and ceiling. The support category comprises wall, thin wall, pillar, opening, and fence. The
ceremonial objects include statues, steles, and some ritual objects. At this level, all datasets
are processed at a 60 mm resolution.

This project uses the same geometric features calculated for the NCS dataset. These
covariance features show, once more, satisfying correlations with the labels.



Heritage 2022, 5 3979

Classification level one consists of 624,049 points, with 51,028 (8.1%) points being
manually annotated as the training set. The training model, tested on an evaluation set of
57,868 (9.2%) points, achieved satisfactory results (Figure 9).
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Figure 9. Classification result at level 1 for the east great hall in FKS.

The ground truth for the roof category contains 400,946 points, representing two-thirds
of the dataset; this is why the classification model gives height-related features such as the
Z coordinate high importance, in the order of 0.4235. The result is improved by adjusting
the training sets (adding representative points from the nimbus part of the statue to the
training set, not relying on Z coordinates to indicate the label), resulting in the importance
of the Z coordinate being reduced to 0.3992 and F1 scores of up to 0.97 (Table 3).

Table 3. Classification metrics at level 1 for FKS.

Roof Support Ceremonial Ground WGT. Average

PREC. 0.99 0.96 0.85 0.98 0.97
RECALL 1.0 0.84 0.91 0.96 0.97

F1 0.99 0.90 0.88 0.97 0.97

Classification level 2 (Figure 10 left) on the roof achieved an F1 score of 0.92 (Table 4).
The model accurately illustrates how the roof structure is composed: below the tile sets, the
wooden ceiling is mounted between the trusses.
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Table 4. Classification metrics at level 2 for FKS.

Tile Set Upper Truss Ceiling Lower Truss WGT. Average

PREC. 0.94 0.92 0.92 0.87 0.92
RECALL 0.92 0.82 0.96 0.93 0.92

F1 0.93 0.87 0.94 0.90 0.92

Classification level three is aimed at distinguishing transversal from longitudinal and
diagonal trusses. These architectonic components can be differentiated by their orientation.
Using only geometric covariance features, it is impossible to tell which element is which
inside the point model, as they all have the same geometric characteristics. However,
normal vectors can distinguish the elements based on their orientation. Appending nor-
mal vectors in the X and Y directions, the classification model gains an accuracy of 0.89
when distinguishing diagonal, transversal, and longitudinal elements, and the result is
visually clear (Figure 10). Providing a better scanned point cloud dataset of higher quality,
classification could be performed to further recognize constructive components.

The classification performed on the supports at 30 mm resolution achieved an F1 score
of 0.86. Pillars (including those partly laid in the wall), walls, slabs, ceilings, windows, and
doors were distinguished. Some horizontal reinforcement rods behind the door slabs were
misclassified, due to sharing the approximate surface of the wall.

4.3. The Bell Tower of Kaiyuan Ssu

Considering the monitoring needs and the original point cloud resolution and quality,
the classification of the bell tower of Kaiyuan Ssu is subdivided into three different levels
(Figure 11).
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Figure 11. Point cloud classes for the KYS project.

The first level divides the whole dataset into roof, support, bell and stairs, and ground.
To recognize these categories, the classification is performed on a 60 mm resolution sub-
sampled version of the original dataset. The second level deepens these categories. The
roof part is divided into the tile set and truss. The support category comprises the lintel,
pillar, wall, brick wall, and opening subsets. The ground is divided into pillar bases and
well, platform, steps, and earth.

The process at this intermediate step is performed on a 30 mm resolution copy of the
full-resolution dataset. The third level of classification is performed to classify the truss
into diagonal, longitudinal, and transversal elements and bells. The geometric features
used to classify the dataset at this level comprise normal vectors in the X and Y directions,
anisotropy, planarity, linearity, surface variation, sphericity, and verticality.

The first level of classification consists of 415,007 points, of which 100,366 (24%) and
106,085 (25%) were manually annotated to be used as the training set and evaluation set.
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The training of the model produced good results (Figure 12, left), with a weighted average
F1 score up to 0.91. The recall on the bell and stairs is 0.48. The second level of classification
on the roof, support, and ground achieved satisfying results (Figure 12, middle), with
F1 scores up to 0.95, 0.96, and 0.99, respectively. The last level of classification (level 3)
distinguishes components belonging to diagonal, longitudinal, and transversal elements
and small bells (Figure 12, right). The model achieved an overall accuracy of 0.90.
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Figure 12. MLMR classification result at level 1 (left), level 2 on the roof (middle), and level 3 on the
truss (right) for KYS.

5. Discussion

In most cases, numeric values are essential in order to mathematically evaluate
the performance of a classification model, and visual representations of the results are
irreplaceably illustrative.

Accuracy provides the direct score of the model and is commonly used to describe its
performance. In addition, the confusion matrix, precision, recall, F1 score, and intersection
over union can be calculated. These metrics are very important in highlighting the defi-
ciencies of the trained model, especially in the case of overfitting. Weights of classes are
commonly unbalanced, and therefore, visual presentation of the labels can be intuitive. It
indicates the positions and portion of mis-classified points, where elements share similar
geometric feature values of the mistaken labels. Through observing the scalar field of the
results, the deficiency of the representative points or problems of features can be seen,
especially when the weighted average F1 score is high while the recall score is low, or when
the overall behaviour does not match the evaluation set score.

5.1. Approaches

The non-hierarchical classification approach is the most direct and is commonly used.
It trains the model once with a training set that contains all of the labels necessary to
describe the entire dataset. Since the features should be consistent with the categories,
the training and prediction are performed on complicated and large datasets with feature
computation ranging from small to large search radii. Under the same depth of trees, the
performance is largely limited. The demand for computational power is high, and the final
prediction presents great errors and misclassifications.

When applied to the great hall of Nanchan Ssu, a precision of 0.9332 is obtained
(Figure 13). It took 21 s to train the model with 273,663 points, and 7 s to predict the dataset
of 1,472,351 points. The results are encouraging, with an average F1 score of 93%. However,
it cannot overcome the low score on the pillars (Table 5), as seen in the level 2 MLMR
classification. When it is applied to predicting detailed and large datasets such as the east
great hall of Fokuang Ssu, the performance is not optimal (Figure 13). Many points are not
correctly predicted (Table 6). The prediction on the bell tower of Kaiyuan Ssu, having 20
classes, reaches 78% precision; however, a quarter of all categories cannot reach 0.50 recall.
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Set
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Table 6. RF non-hierarchical classification metrics for FKS.

Fence Diag.
Truss

Long.
Truss

Transv.
Truss Ceiling Tile

Set Wall Sculpt. Open. Thin
Wall Cerem. Pillar Ground Statue WGT

AVG

PREC. 0.93 0.48 0.62 0.29 0.87 0.92 0.87 0.93 0.79 0.73 0.52 0.76 0.98 0.77 0.79
REC. 0.90 0.04 0.45 0.52 0.90 0.92 0.88 0.52 0.89 0.52 0.31 0.53 0.98 0.88 0.77

F1 0.92 0.08 0.52 0.38 0.89 0.92 0.88 0.67 0.84 0.61 0.39 0.63 0.98 0.83 0.77

The MLMR approach performs classification at different levels and at different reso-
lutions. The categories are distributed to each level following a predetermined tree-like
structure. At each specific level, a particular model is trained using the training and evalua-
tion sets as well as geometric features that are created and computed on the point model
of that particular level. This avoids the heavy and redundant demand for representative
points and features computation in the training process. After inheriting results from
the prior classifications, each consequent work predicts merely part of previous datasets.
Eventually, points gain labels that indicate layers of semantic meaning.

The cost of the two approaches (MLMR and non-hierarchical) differs based on the
demand for computational resources. The post-processing for the point cloud in most
cases demands a high-resolution dataset to achieve full detail. The computational cost of
extracting geometric features for a full-resolution dataset is relatively high. Furthermore,
these appended features will make the dataset even larger, resulting in a heavy burden
for the training and prediction steps. In contrast to the non-hierarchical approach, in the
MLMR approach, the computation of features, training, and prediction is conducted only
on part of the original full-resolution dataset (where needed) or its subsampled copy. This
avoids the generation of redundant geometric information and predictions. To be more
specific, the computation of particular geometric features that highlight the edges and
points that define tile sets is not necessary in distinguishing the roof part from other main
parts of the building (e.g., walls, floors, etc.). The macro-category “roof” can be predicted
at a relatively low resolution, where the roof objects appear geometrically homogeneous.

The time cost varies depending on the complexity of the projects. A lower number of
categories or a less complex case study (which leads to less hierarchical levels nested) result
in a similar duration for the training of the model and the prediction on the whole dataset for
both multilevel multiresolution and non-hierarchical approaches. The manual intervention
required from the user is in both cases quick and simple. Dealing with a simple, small-scale
project, a non-hierarchical approach proves to be more effective. On the contrary, when
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applied to a complex dataset with numerous layers of categories, the duration required
for computing geometric features, training the model, and making predictions on the rest
of the dataset increases exponentially. Therefore, the MLMR approach is more profitable,
saving operational and computational costs in the training process, including preparing
representative points, adjusting training features, and other manual adjustments.

5.2. Generalization

The MLMR approach brings with it another advantage. By splitting the classification
labels over different layers with increasing detail, similar architectures with similar char-
acteristics will have homogeneous representations of macro architectural components at
the first level of classification, where only the main geometrical traits are important for
the individuation of such elements (i.e., detailed elements are disregarded at this step and
their classification is delegated to subsequent classification levels with higher resolution
point models). A generalizability in the classification task is therefore not only possible
but encouraged by the approach, leading to time and cost efficiency in the management of
CH datasets. On the contrary, a single-step, non-hierarchical classification approach must
recognize all elements at once, including enough samples for each representative element.
It is impossible to find two different CH buildings with two identical elements when high
accuracy must be maintained.

In order to test the generalizability of the approach, the point cloud models from
NCS and FKS are used to create the training and evaluation sets on which the RF model is
trained. Afterwards, the resulting classifier is used to spread the classification on the bell
tower dataset (Kaiyuan Ssu).

A certain degree of pre-processing of the point cloud datasets is mandatory for focusing
on the generalization tasks. The first step consists of defining the labels that are required to
classify the unseen dataset of the belltower. Generalising the classification requires that
the labels selected for the level 1 classification in the FKS and NCS datasets be the same of
those in the KYS. Afterwards, all points not related to the construction itself (noisy points,
moving peoples, and points not belonging to any defined label) are cleaned manually. In
addition, NCS, FKS, and KYS datasets have all been subsampled at the same resolution
(60 mm; the smallest resolution that allows to represent the smallest elements among level 1
classification objects, lowering the computational demands), and finally, they are translated
in a similar local coordinate system (the x, y, and z coordinates have the same magnitude).
Normal vectors in the x and y directions and covariance geometric features are computed
on each dataset with the same search range radii.

5.2.1. Incompatibility of Classes and Representative Points

Usually, different datasets are represented by different groups of labels (classes of
elements). At worst, the dataset to be classified features a different number and different
types of classes than those included in the training set. If this is the case, trying to make a
prediction on the unseen dataset, with a model trained with a different number of classes,
will result in misclassified points. The model must assign a specific label to each point, and
every label included in the model must be used. If that class is not present in the test set,
this will result in a classification error (e.g., portions of walls classified as columns). As a
result, recall and accuracy will undoubtedly be lowered. The same is true if the training
set features fewer classes than the test set. It is therefore mandatory to define a standard
set of labels that must be kept consistent among all datasets for which the classification
(generalized) is performed.

Following the MLMR approach, the level 1 classification on the whole tower is first
performed by the model trained with the training set (78,655 points, representing 18% of
the dataset at 60 mm resolution) from the level 1 classification of the great hall of NCS. The
categories of the training set comprise the roof, support, statue, and ground. The model
obtained an accuracy of 0.95 on the evaluation set from NCS; however, it had an F1 score
of only 0.62 on the bell tower of KYS (Figure 14 left). The problem is attenuated by not
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using the Z coordinates (Figure 14 middle), a geometric feature which could be of high
importance (0.4255). The obtained F1 score is 0.75. Visually, the results show that much
of the error is due to the lack of representative points belonging to the pillar class in the
training set built on NCS. For example, using the training set tailored on the FKS dataset,
which contains individual instances of pillars, improves the performance of the model,
gaining an accuracy of 0.75 (Figure 14 right); however, the model still cannot attribute
pillars to the correct class (Tables 7 and 8).
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Table 7. Classification metrics for the generalization test on KYS at level 1 using the training set from
NCS without a Z coordinate.

Roof Support Bell and Stair Ground WGT. Average

PREC. 0.83 0.81 0.14 0.74 0.77
RECALL 0.81 0.57 0.22 0.94 0.74

F1 0.82 0.67 0.17 0.83 0.75

Table 8. Classification metrics for the generalization test on KYS at level 1 using the training set from
FKS without a Z coordinate.

Roof Support Bell and Stair Ground WGT. Average

PREC. 0.81 0.77 0.24 0.80 0.77
RECALL 0.85 0.65 0.20 0.92 0.65

F1 0.83 0.70 0.22 0.85 0.77

The level 2 generalization test on the roof part is performed with a training set gener-
ated from the Nanchan Ssu (NCS) roof part, which comprises 147,708 points (taking up
15% of the roof dataset at 30 mm resolution). The model gains an accuracy of 0.95 on the
evolution set of the same building and reaches promising results (Figure 15 left) on the roof
part of KYS with an accuracy of 0.85 (Table 9).

Table 9. Classification metrics for the generalization test on the roof part of KYS at level 2 using the
training set from NCS without a Z coordinate.

Tile Set Truss WGT. Average

PREC. 0.80 0.94 0.86
RECALL 0.96 0.72 0.85

F1 0.87 0.82 0.85
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from NCS.

The level 3 generalization test on the truss is performed by the model trained with the
training set, selected from the truss part of NCS (130,344 points, 10% of the truss dataset at
15mm resolution). The result (Figure 15 right) on the evaluation set of the same building is
0.88, while on the test dataset (Kaiyuan Ssu, KYS), it is 0.74 (Table 10).

Table 10. Classification metrics for the generalization test on the truss part of KYS at level 3 using the
training set from FKS without a Z coordinate.

Long. Transv. Bell Diagonal WGT. Average

PREC. 0.70 0.79 0.98 0.73 0.75
RECALL 0.83 0.76 0.52 0.43 0.74

F1 0.76 0.77 0.68 0.54 0.74

5.2.2. Regarding Resolution

Different datasets also differ by their resolution. This affects the results mainly in the
process of computing geometric features. Datasets at a higher resolution can perform com-
putation with a wide range of search radii, starting from a tolerable least mean resolution
(an average local neighbourhood radius). Computation at a lower resolution and with a
relatively smaller search radius will generate many NaN (not a number) values, which will
be redundant and confusing for the random forest algorithm. If the trained model is based
on a training set with a higher resolution, the prediction cannot rely on these features with
NaN values. When the training set is at a much lower resolution than the dataset to be
predicted, the behaviour will not be optimal.

Generalization tests were conducted using the level 1 training set and evaluation
set from the NCS MLMR classification, at a 60 mm resolution (Figure 16, Table 11). Six
test sets were subsampled from the KYS dataset at resolutions of 30, 40, 60, 90, 120, and
150 mm (resolutions upon which labels are still definable, while halving or doubling the
number of points starting from the initial resolution). Geometric features were computed
separately for each test set. The model appeared to have slightly better results when
the resolution was closer to that of the training set. In the same way, six test sets from
FKS were tested (Table 12), and the results showed the same trend, with performance
increasing as the resolution of the test set becomes closer to that of the training set. While
comparing the time costs of this generalization test, the computation of geometric features
on a 30 mm resolution test set will take six times the duration of a 60 mm resolution set,
and four times for prediction. Considering minor differences in the overall behaviour, the
higher-resolution datasets are subsampled so as to achieve efficient processing time and
computational resources (Figure 17).
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Table 12. Generalization tests of resolution on FKS.

Reso. Points Acc. on Eval. Set Acc. on FKS Mac. Avg. F1 WGT. Avg. F1
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5.2.3. General Pre-Trained Model

A general pre-trained model might be able to maximize the applicability of the MLMR
approach. Being trained with representative points selected from various datasets, the
pre-trained model is expected to recognize corresponding elements. A combined training
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set could outperform a single-source set, due to the fact that the combined supplement can
help to better define the categories, compensating for any deficiency.

In the MLMR level 1 generalization test, appending the representative points of pillars
from FKS to the training set of NCS can improve the model behaviour on the bell tower
of KYS (Figure 18). This means generating a completely new training set, which takes
representative elements for each label from different datasets to classify an unseen point
model. The accuracy increased to 0.77 (Tables 13 and 14), and most importantly, the points
of the pillars were classified under the correct categories (Figure 19).
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Table 13. Classification metrics for the generalization test on KYS at level 1 using a training set of
NCS and combining points of pillars from FKS.

Roof Support Bell and Stair Ground WGT. Average

PREC. 0.86 0.79 0.14 0.75 0.78
RECALL 0.80 0.71 0.18 0.94 0.77

F1 0.83 0.75 0.16 0.83 0.77

Table 14. Classification metrics for the generalization test on FKS at level 1 using a training set of
NCS and combining points of pillars from FKS.

Roof Support Statue Ground WGT. Average

PREC. 0.99 0.82 0.39 0.82 0.90
RECALL 0.97 0.80 0.38 0.97 0.90

F1 0.98 0.81 0.38 0.89 0.90
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The test indicated the applicability of a general pre-trained model by combining the
annotated portion of the point clouds with the corresponding geometric features. The test
demonstrated that, if provided with more specific representative points of similar elements
of the bell and stairs, the results on KYS will be improved (Table 15); however, the model
will have a lower score on the original datasets, as the training set is not specifically tailored
to fit them (Table 16).

Table 15. Classification metrics for the generalization test on KYS at level 1 using a training set of
NCS and combining points of the pillars from FKS and the bell and stairs from KYS.

Roof Support Bell and Stairs Ground WGT. Average

PREC. 0.90 0.91 0.24 0.78 0.84
RECALL 0.75 0.59 0.85 0.94 0.75

F1 0.82 0.72 0.38 0.85 0.77

Table 16. Classification metrics for the generalization test on FKS at level 1 using a training set of
NCS and combining points of the pillars from FKS and the bell and stairs from KYS.

Roof Support Statue Ground WGT. Average

PREC. 1.00 0.87 0.28 0.85 0.91
RECALL 0.90 0.75 0.57 0.96 0.86

F1 0.94 0.80 0.38 0.90 0.88

5.3. Features

Features address the heterogeneity in point clouds; after training, they gain correlations
with labels. High-quality features allow the better interpretation of the models and the
enhancement of the algorithm performance concerning both speed and accuracy.

The coordinates in the training process are the most basic for point clouds. The X and
Y coordinates suggest the horizontal planar projections of points, and the Z coordinate
suggests the height. In most training processes, the three coordinates gain high importance,
which results in overfitting. However, in cases where elements are non-repetitive in the
vertical direction, such as single-floor architectures (e.g., the NCS great hall) and projects
for which the elements vary with verticality, the Z coordinate is the most profitable feature.
However, when the same model is generalized on multistorey objects (such as the KYS bell
tower), this feature will result in overfitting (as mentioned in the section Generalization).

Geometric covariance features represent the inter-point correlation in a certain radius,
and their computation is indispensable for the classification approach described. Apart
from certain types of numerical correlation, an equally essential property is the search
radius. This represents the local neighbourhood; computation with a too-large search radius
will exclude detailed geometric information, while a small one will produce non-numeric
results (points out of reach for each) depending on the dataset resolution. Different radii
should be considered in the computation of geometric features, the combination of them
helping the algorithm to make better decisions and to better generalize the results.

Normal direction vectors can help when distinguishing the objects that are highly
dependent on their orientation. When it comes to the classification of roof trusses in Chinese
wooden architectures, even if other geometric features are confusing, normal directions
contribute to the improvement of the results. When performing prediction on points from
large ranges of planar areas (for instance, the MRML level 2 classification of the wall and
ground of the KYS bell tower at 30 mm resolution), using normal vectors in X and Y
direction in the training process results in overfitting.

6. Conclusions and Future Works

This study presents and discusses the behaviour of a hierarchical classification proce-
dure, multilevel multiresolution (MLMR), on singular projects and its generalization across
different Chinese CH complexes: the great hall of NanChan Ssu (NCS), the east great hall
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of FoKuang Ssu (FKS), and the bell tower of Kaiyuan Ssu (KYS). The three buildings vary
in terms of scale, complexity, and architecture type.

The experiments demonstrate that a classification performed following a non-hierarchical
approach is effective when the project is relatively small and simple and has a low number
of class subdivisions. The one-step classification reaches similar results to those obtained
with the MLMR approach, but it requires less manual labour and less elaboration time.

The hierarchical approach (MLMR) shows its true potential on the types of architecture
that encompass different materials and scales among the elements of the buildings, and
whose dimensions are monumental. The dataset is subdivided into a hierarchy of nested
class labels with increasing detail, and a specific classification step is performed at each
layer. The approach requires more manual adjustment in terms of the preparation of the
dataset and training set for each classification task, but computational resources used for
extracting geometric features are largely saved, as only a portion of the dataset is processed
at full resolution. In addition, MLMR allows manual adjustment on each level, providing a
hierarchical semantic label tree for point cloud management.

Generalization tests may indicate that the MLMR approach has a wide range of
applicability, if the provided categories are instructively clear. The performance of a
machine learning classification depends both on the training set (in terms of quality) and on
how the model is trained. These two aspects are decisive and highly influence the results,
with regard to labelled classes, accuracy, etc.

From the tests above, given clearly identified tasks, the model produces promising
results. However, generally, the training set and the test set do not match in terms of
categories. This is to say, two different datasets have different sets of semantic labels. When
it comes to a great variety of architecture projects, it is demanded that the categories in each
corresponding level are consistent and have a corresponding resolution. In the meantime,
the training set should always include an adequate number of representative points for the
classifier to be able to correctly label all architectural elements.

MLMR classification can achieve satisfying results in specific conditions. The approach
generalizes well when testing and training sets are collected from the same type of architec-
ture. It can discern common architectonic components following a semantic hierarchy. The
manual adjustments are both allowed and necessary, for removing irrelevant points and
reassigning misclassified points.

Expert intervention is still mandatory to design label categories and to prepare rep-
resentative training sets to pre-train the model. The 3D documentation process should
guarantee that the quality of the point cloud can meet the classification needs (completeness,
resolution, and noise). In this work, the pre-trained model achieved a weighted average F1
score of least 0.74, and is expected to gain higher F1 scores, ranging from 80% to 90%, with
the combined training sets. Considering the operational cost, this approach is effective for
practical use in point cloud post-processing.

Future works should be based on more datasets, testing the categories, and general-
ization, with the creation of a generic framework of categories that may be used with the
models to perform corresponding predictions. The MLMR and generalization processes
will benefit from instructively clear categories, which can be used to train the model prop-
erly and to recognize elements without ambiguity. The naming of labels should be built
upon further ontological and empirical studies of geometric features, reducing information
discrepancies, inconsistencies, and errors [20].

Geometric features, normal vectors, and Z coordinates prove efficient in classification.
However, the choice of which feature to use during the training of the model is very
important. The model could easily overfit its training set, resulting in a totally incorrect
prediction. Improving the quality of the point cloud in terms of physical attributes and
mean resolution will allow more advanced classifications. Specifically, a fully covered
point cloud (roof top, truss, and narrow spaces) with colour information would make the
architectural elements more distinguishable.
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In general, the MLMR approach is a useful machine learning tool dealing with clas-
sification works on single point cloud dataset. In this approach, it is demonstrated that
the pre-trained model has satisfying generalization capability and can be used to process
unknown test sets.
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