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Abstract: The transition from Building Information Modelling (BIM) to Heritage Building Informa-
tion Modelling (H-BIM) is intended to pursue an adequate knowledge of the artefact that is to be
preserved, progressively replacing the traditional methods of restoration and structural reinforcement
projects with new tools for the management of both existing information and new interventions. The
aim of the paper is to show the application of the H-BIM method to a stone pavement road located in
the Archaeological Site of Pompeii. In detail, starting from a laser scanner-based survey, juxtaposed
with coordinated points georeferenced through a total station, point clouds were handled by means
of several BIM-based tools to perform the road design process, starting from the digital elevation
model (DEM) and proceeding to the corridor representation. Subsequently, a visual programming
application based on Python language was adopted to update the corridor information by means of
the object property set. As preliminary results, a tool, complete with graphical and non-graphical
information, is proposed to be used in conservation, maintenance and restoration projects.
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1. Introduction

Digitization and computerized processes are an effective answer to cost reduction and
production time issues, and therefore BIM, defined as “a process involving the generation
and management of digital representation of the physical and functional characteristics
of a facility” [1], represents the best-fitting result of the continuous search for new meth-
ods and approaches to increase process efficiency in the Architecture, Engineering and
Construction (AEC) industry. BIM is recognized as the most appropriate methodology
for the undertaking of building and infrastructure projects [2,3], having revolutionized
the field of architecture and construction for some years now [4], being both a technology
and a methodology [5]; even though it remains a challenge for the AEC industry, as it
requires a shift to a new way of working, there is a strong legislative endeavour to flatten
any differences in its adoption level among the various EU states [6].

The increasingly widespread adoption of BIM for new projects has been accompanied
by the application of the BIM methodology to reverse-engineering processes of existing
civil works. In the case of buildings with historical or cultural value, this approach is
known as H-BIM, defined as “a new way of modeling the existing structures, generating
intelligent models that can contain and manage information, and concern all components of
the project, including their geometric and identification information described in detail” [7].

The reverse engineering process mentioned, yielding a three-dimensional (3D) geomet-
ric model enriched with semantic information, comprises three fundamental steps, includ-
ing acquisition, segmentation, and modeling [8]. Remote sensing technologies—such as
Terrestrial Laser Scanning (TLS) [9], Unmanned Aerial Vehicle (UAV) photogrammetry [10],
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Mobile Terrestrial LiDAR Scanning (MTLS) [11] and Structure from Motion (SfM) [12]—are
a fundamental part of the process itself, as they allow for the smart geometric surveying of
historical sites. SfM photogrammetry employs overlapping images acquired from multiple
viewpoints. It is a low-cost technique which can be carried out with cameras within the
reach of everyone, including smartphones [12]. TLS operates by emitting a laser beam and
calculating the distance from the object detected by measuring the round-trip time of the
laser pulse itself [9]; it is a more expensive technique that also requires more experienced
staff. MTLS applies LiDAR technology installed on moving terrestrial vehicles [11]. UAV
represents perhaps the most elaborate technique, involving vehicles that move by remote
control, such as aerial drones [10].

Many studies in the literature have focused on such techniques, and on methodologies—
often used together [13]—which are intended to achieve digital information models of
heritage assets from intelligent surveying systems [14,15].

The experience in the architectural field is well consolidated. Indeed, many case
studies have been carried out to develop systematic approaches to historical–cultural
heritage sites, such as for the Cathedral of Parma and the Ducal Palace of Mantua (Italy) [16];
the Pisa Charterhouse (Italy) [17]; the House of Pilatos in Seville, Spain [18]; St. Bernard’s
Chapel in the Plasy Monastery (Czech Republic) [19]; the Porticoes of Bologna (Italy) [20];
the Cathedral of Christ the King, in the municipality of Huejutla de Reyes (Hidalgo,
Mexico) [21]; and St. Herakleidios Monastery in Cyprus [22].

For example, Moyano et al., (2020) evaluated the accuracy of SfM point clouds against
TLS for large architectural spaces with a symmetrical configuration, with the main court-
yard of Casa de Pilatos in Seville, Spain, as a case study [23]. Four representative cases
of different urban facades’ typologies were selected in the historic center of Santiago de
Compostela by Peña-Villasenín et al. [24], focusing on the photoshoot arrangement.

A key issue that characterizes this field of research is that of the creation of libraries of
objects [25], because the elements of the models tend to be quite peculiar and often unique.
Murphy, among others, has led many research efforts on the topic [26], integrating H-BIM
with a Geographic Information System (GIS) [27], considering the dynamic construction of
parametric objects to constitute an architectural heritage purpose library [28].

In order to obtain libraries of parametric objects, the possibility of using automation
tools was also explored [29].

As important aspects in H-BIM, the appropriate level of detail depends on the intended
use of the model itself and the type of analysis to be performed [30].

In this sense, the level of graphic rendering of the objects inserted into the intelligent
digital model also depends on the LOD, and the designer will have to assess which
technique to apply, considering that in the field of digitization in the service of cultural
heritage conservation, research has defined methodologies based on increasingly refined
algorithms and methodologies [31].

The level of information can be highly varied, and may not relate only to architectural
aspects [32]. The H-BIM also provides a tool to support structural analysis, through the BIM-
to-Finite Element Model (FEM) process. The latter defines an FEM, starting from a surface
mesh obtained by BIM, and allows us to consider the loads, material quality and geometric
variability of the resistant sections [33,34]. Other interesting case studies have proven
that H-BIM is also suitable for infrastructure, such as the Giorgini Bridge in Castiglione
della Pescaia (Grosseto, Italy) [35]. The authors addressed the problem of the geometric
simplification of as-built model. The Carlo III Bridge of the Carolino Aqueduct (Benevento,
Italy) [36], was also examined by integrating the use of laser scanning, photogrammetry,
and traditional survey methods to maximize the effectiveness of the data acquisition phase.
The Azzone Visconte Bridge (Lecco, Italy) [37] was modeled with H-BIM as well, and the
authors tried to overcome some limitations of commercial BIM software packages with
parametric algorithms.

H-BIM is also suitable for the development of Virtual Reality (VR) and Augmented Re-
ality (AR) projects, serving to create digital worlds which are able to represent recorded real
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places, enabling the improvement of new immersive experiences faithfully and accurately
for experts and non-experts [38–44].

Considerable efforts are currently underway to develop the automatic reconstruction
of geometry and information models from laser-scanned point clouds of cultural heritage
elements [45], and also through the use of Deep Learning (DL) techniques based on
Convolutional Neural Networks which are able to implement automatic segmentation to
help us to recognize historical architectural elements [46]. Among these developments, the
process has also been applied to analyses of stone pavement patterns [47,48] in order to
retrieve precise measurement data on irregular surfaces, such as those of historical paved
roads, with a high degree of automation [49]. Most of historical urban areas in western
countries are paved with stone elements [50]; in particular, the Italian road network is
among the world’s greatest heritage complexes, given that Italy has the highest number
of UNESCO Heritage Sites. Examining these in the case study of Via Duomo, the main
cardo of the ancient Neapolis, an H-BIM approach considering road infrastructure was
developed [51]. Some cases of H-BIM approaches for archaeological sites are the following,
which were used to examine the Hierapolis in Phrygia (Turkey) [52] and Curium (or
Kourion, Cyprus) [53], where Laser Scanning and UAV technology were combined, as well
as Staffarda Abbey (Cuneo, Italy) [54] and the Crypt of St. Sergius and Bacchus Church
(Rome, Italy) [55], where the authors performed the inclusion of stratigraphic analysis in
an H-BIM workflow to overcome the 3D modelling limitations of BIM software with a
free-form modeler based on a NURBS algorithm.

Referring more in particular to archaeological roads, the work carried out in the
archaeological site of Pompeii by Biancardo et al. [56] realized H-BIM focusing on the
modular elements of the road pavement section of the Via del Vesuvio. This workflow
process began with data acquisition by photogrammetry, and only later involved modeling
via point clouds.

From the review of the literature given above, it may be observed that H-BIM is a topic
of strong interest in the fields of engineering, remote sensing, and IT technology. While it
seems that the technique and research favor the architectural domain, some exemplary case
studies have been performed on linear infrastructure. Nonetheless, reverse-engineering
operations tend to find very peculiar results when examining historical and archaeological
road pavements. In fact, the high irregularity that characterizes ancient historical pave-
ments raises important questions about the suitability of the currently available software,
and involves additional difficulties related to the remote sensing work phases.

Therefore, this study aims to address this gap by establishing a workflow for the
implementation of an H-BIM methodology by means of non-conventional data association,
and using automatic algorithms for semantic enrichment. In order to validate the proposed
workflow, we applied it to a stretch of an archaeological road in the Archaeological Site
of Pompeii.

BIM is a methodology which has been successfully used in the different life phases of
architectural and infrastructural works. The multidimensional model supports profession-
als in the planning, design, operation and disposal of the work, providing a continuous
flow of information, made dynamic by the possibility of being continuously updated
by professionals with different skills. The question arises: can BIM play the same role
in archaeology?

By their nature, archaeological finds are not affected by the planning, design, con-
struction and disposal phases. Indeed, conservation agencies are entrusted with the task
of managing archaeological assets and safeguarding their preservation. Still, research is
focusing on the ways in which BIM can be exploited for the asset management phase, as
well as a basis for the development of further analysis. A perfect example is the work
of Garagnani et al. [57], which focused on the case study of the Etruscan temple of Uni
in Marzabotto.

This work falls into line with other previous research, such as that of Bosco et al. [58],
which focused on the case study of insula 4–6 in Paestum (Italy), and it showed how the
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Archaeological BIM approach provides a complete system which is useful for different
purposes, from documentation to interpretation and management.

The main novelty of this research work is that it would like to bring to general attention
the archaeological road artefact, pointing out H-BIM (or ABIM) as a tool to support agencies
in their aims, specifically for the management of the archaeological roads, as well as a tool
for sharing information related to materials and ancient construction techniques that still
exert fascination for experts and non-experts.

2. Methodology

The research study aims to define a new approach to the use of the H-BIM methodol-
ogy for the analysis and the management processes of archeological sites, focusing on the
terminal part of Via Stabiana on Porta di Stabia in the Archaeological Site of Pompeii.

The pivotal methodology shown in Figure 1 is built around the so-called Scan-to-BIM
workflow, which allows for the generation of a 3D BIM from a point cloud, involving
two main work phases: 3D surveying through a laser scanner and the processing of the
information surveyed with several pieces of BIM-authoring software.

Figure 1. Methodology workflow.

The surveying phase of the Scan-to-BIM process relies on Terrestrial Laser Scanner
(TLS) technology, electro-optical instruments capable of surveying the surface of any object
by mapping the points in 3D.

In order to perform the reverse engineering of 3D objects using a CAD program,
both polygon mesh and Non-Uniform Rational Basis Spline (NURBS) algorithms have
been previously implemented to address the representation and conservation of heritage
assets [37,54,59]. While polygon meshes are easier to model, they also provide rougher
images compared to NURBS, and are highly dependent on the degree of simplification of
the mesh itself [60]. In the present work, the road surface was modelled through a mesh.
Due to the extreme irregularity of the stone-paved surface under analysis, a comparison
between the geometry obtained from the point cloud survey and that of the final rendered
model is discussed in Section 5.

The final step of the 3D modeling was the assignment of customized textures to the
mesh surfaces using source images taken during the survey, allowing use to obtain a more
realistic simulation. Once the model of the three-dimensional surfaces had been recreated
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on the trace of the point cloud, it was possible to manage the information of the model
itself and interrogate it using tools which are able to develop semi-automatic algorithms.

Autodesk BIM-based tools were used to ensure the 100% interoperability and perfect
success of the Scan-to-BIM methodology just described: (i) Recap Pro, for survey data
management; (ii) Infraworks, for the BIM creation preparation phase and final render;
and (iii) Civil 3D, to create the BIM, for which it was necessary to create from scratch
a customized typological road section with its add-on Subassembly Composer, and to
develop algorithms by means of its add-on Dynamo.

3. Case Study
3.1. Pompeii Case Study

Once a thriving and sophisticated Roman city, Pompeii was buried under meters
of ash and pumice by the catastrophic eruption of Mount Vesuvius in 79 AD. Pliny the
Younger, an eyewitness to the eruption from his family’s villa in Miseno, described the
pyroclastic mushroom as a “prodigious pine tree, here shining white, there soiled with
gray from the ashes and the raised earth” [61]. Because the ashes protected the structures
from historical processes of destruction, Pompeii is one of the best-preserved Roman cities.
Therefore, Pompeii is one of the most important archeological sites in the world, attended
by major scholars of international renown. As the excavations continue, new discoveries
are still found, such as the Thermopolis of Regio V [62].

Because any H-BIM application should include an informed preliminary analysis of
the construction criteria, previous research works were investigated in order to obtain an
in-depth picture of the knowledge on the case study [63], such as for Roman road building
technologies and practices [64], and their design criteria [65]. Particularly significant is the
study conducted in the archaeological site of Pompeii by Poehler and Crowther (2019) [66]
on the paving techniques hypothesized from the surveys carried out.

Pompeii stands on a buttress about 40 m high, formed by the flow of lava from
Vesuvius in prehistoric times. The land on which the city was built is therefore considerably
irregular, with a steep slope towards the south. The roads, almost all straight and crossing at
right angles, are divided into main arteries, corresponding to the cardines, with directions
from north to south, and to the decumans, with directions from west to east, and in
secondary arteries, of variable width; they are flanked by more- or less-high sidewalks,
made with construction waste and paved by private individuals [56].

The H-BIM workflow was applied to the terminal part of the Via Stabiana on Porta di
Stabia in the Archaeological Site of Pompeii (Figure 2). It is a road stretching 12 m long,
with a 5.20% average slope that guarantees the outflow of the water into an underground
canal on the right side (North–South direction) and then outside the walls, thanks to a
change of the road’s cross-slope.

3.2. Surveying Phase

A Leica RTC360 model laser scanner was used to perform the survey. After setting the
resolution parameter, connected to the precision and scanning speed, a single 360◦ scan
was performed in one minute and 50 s, obtaining a point cloud composed of 2 million
points. Each point position was identified by coordinates [X,Y,Z], that were the distance
of the point from the instrument, the inclination angle formed by the conjunction of the
point and the instrument with respect to the vertical axis of the instrument itself, and the
azimuth angle formed by the conjunction of the point and the instrument with respect to a
horizontal axis taken as the reference.

A TLS survey process should be supported by multiple scans, to survey the same
objects from different perspectives. Indeed, a common problem is that of “laser beam
occlusion”, or the inability of the laser beam to overcome opaque obstacles, which results in
some areas of shadow in which the cloud is devoid of points. It is therefore good practice to
perform multiple scans to overlap the resulting clouds, thus obtaining a final one without
shadowed areas. We performed several scans of the same object produced as a result
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overlapping data, which were later manipulated with a dedicated software package, Leica
Cyclone. This software was used to view and check every scan, to coordinate several scans
into one, to georeference the project in the Gauss–Boaga system, and to export the project
to a common format file to ensure its interoperability.

Because the area subject of this study was not excessively wide or irregular, three
scans was found to be the satisfactory.

Figure 2. Geographical overview.

3.3. Database Managing and Point Cloud Editing

The management of the scanned point cloud database was carried out within Leica
Cyclone. When finished, a single point cloud derived from the coordination of the three
scans performed was exported to a PTX format to import it into Autodesk Recap Pro. The
latter was then leveraged to clean up the cloud and export it to an RCP file format in order
to enable it to be used by Autodesk Infraworks.

3.3.1. Leica Cyclone Database Management

The first operation in Cyclone was to add and configure an empty database, to which
the data derived from the RTC360 laser scanner was subsequently associated.

The software allowed us to automatically align the different scans through the built-in
smart alignment function; subsequently, ambiguous, mixed-pixel, and overloaded points
were removed.

Once the import process was completed, each scan was referred to as a scanworld,
denoting a visualization environment of a single scan, isolated from the others and with
a fixed viewpoint corresponding to the position of the scanner at the time of the survey.
Eventually, it was possible to merge the three scans into a unique registration.

In order to georeference the project, a Control file was used, i.e., a text file in which
some Ground Control Points, surveyed by means of a total station, were identified by their
ID and their coordinates (latitude, longitude, altitude). Once imported, the Control file
was processed as a scanworld. In order to georeference all of the scans, it was necessary to
set the Control file as the home scanworld. A new final registration was carried out after
the georeferencing.

Finally, the project was exported as a PTX formatted file.
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3.3.2. Autodesk Recap Pro Point Cloud Segmentation

Recap Pro, from Autodesk, was used for the segmentation of the point cloud.
Once the file to import had been selected, a filter was applied to adjust the density

and range; moreover, the geographical coordinate system was specified among hundreds
of options available, but the operation was eased by the automatic detection performed
by the software itself. Then, a decimation grid was set, which is a parameter that imposes
the minimum points’ mutual distance. In Cyclone, the points scanned were at a mutual
distance of the order of 1 mm, and the dimension of the points was set at 0.5 mm radium;
thus, the points perfectly covered the space on the surfaces, giving to the human eye the
exact perception of the objects surveyed. This level of detail is not needed anymore in the
modelling phase, so the decimation grid was set at 5 mm, obtaining a lighter database.

In order to perform the segmentation, Color Setting and Selection Tools were lever-
aged, allowing for the changing of the background color and the simulation of illumination
(Figure 3), and allowing us to define a point selection by means of a rectangular window, a
closed polygon, a plane or a limit box. The segmentation consisted in the identification of
the area that was strictly necessary to the modeling process, to cut the superfluous elements
and make the model even more streamlined, optimizing at the same time the performance
of the machine and the graphic rendering.

Figure 3. Colorization options: (a) Elevation; (b) Intensity; (c) Normal; (d) Scan Location.

3.4. H-BIM Process

The H-BIM process was accomplished through a series of Autodesk codes, used in a
synergistic and versatile way to optimize the resources, and results as shown in Figure 4.

The segmented point cloud was imported into Infraworks to generate the Digital
Elevation Model. The output of this part of the process is represented by some three-
dimensional polylines, which trace the DEM, i.e., the very heterogeneous road surface
under study. These polylines were transformed into Feature lines in Civil 3D, used as
Baselines of the Corridor. At the same time, through Subassembly Composer, an extension
of Civil 3D, a parametric section consistent with the information found in the literature [66]
was modeled. The association of this subassembly with the baselines has led to the
production of the Corridor in Civil 3D, on which a 3D surface with custom material was
modeled. To the geometric model thus obtained, a series of information was added using
Dynamo, another Civil 3D extension, which works through VPL scripts.

3.4.1. Infraworks DEM Creation

Recap Pro was also fundamental to ensure interoperability with the other software
used; indeed, it was used to convert the original file with a PTX extension to a file with an
RCP extension, in order to import it to Autodesk Infraworks.

Starting a new project within Infraworks, the geographical coordinate system was
set accordingly with the one used in the georeferencing phase. The RCP segmented Point
Cloud was imported and configured as the dataset.
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Figure 4. BIM Workflow.

After the import process had been completed, Infraworks was used for the creation
of the DEM. In this step the processing rules were defined, i.e., the level of detail of the
terrain, and the linear and the vertical features to be associated to the process.

The next step was to extract linear features from the resulting DEM by manually
drawing characteristic lines directly onto the DEM surface in correspondence with the
road axis, road margins, and sidewalk edges, in order to coordinate the horizontal and
vertical information.

Then, they were exported in a SHP file format that contains the X, Y and Z, coordinates
of the lines’ vertices, which correspond to latitude, longitude, and altitude.

In this way, 3D and geo-referenced feature lines were obtained, ready to be imported
into a BIM tool, such as Autodesk Civil 3D. These feature lines were the base to develop
the H-BIM itself.

3.4.2. Subassembly Composer Custom Subassembly Modeling

Civil 3D has a well-stocked default library of structural and functional elements, but
the assembly of the ancient Roman road does not correspond to any of those available, as
these ones follow principles and materials of modern conception; thus, it was necessary to
build it from scratch using Subassembly Composer, which is automatically bundled with
the Civil 3D license and is an extremely useful tool for the customization of typological
road sections.

In order to create the geometry, one must proceed by selecting from the Toolbox the
necessary elements, i.e., nodes, links, and the surfaces enclosed by them, and add them
to the Flowchart section. The position of the points in the section plane can be set from
an initial point, by default the origin, by means of Delta-X and Delta-Y, or by imposing a
slope combined with a Delta-X or a Delta-Y. Links are defined by indicating the starting
and ending nodes. Shapes are defined by indicating the links that constitute their edges.
For each element, point, link or shape, it is possible to associate a code, which is of vital
importance for subsequent operations in Civil 3D, which happens to be a strongly hard-
coded piece of software. As the geometry is formed, the preview of what has been coded
is obtained.
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By defining the parameters in the Input/Output Parameters section, it was possible to
use them to characterize the geometry and thus make the section parametric. For example,
by defining the “width” parameter, encoded as “LaneWidth” because, as mentioned, Civil
3D is strongly hard-coded, this can be used to define the distance between two points
within the geometry (the Delta-X or Delta-Y mentioned previously). In the same way,
it is possible to define parameters such as the material and its characteristics, through
string-type parameters, or the cross slope through the “CrossSlope” parameter of the grade
type, or a percentage.

Due to the peculiar conformation of the infrastructure and the variable horizontal–
vertical trend of the three-dimensional polygonal lines used as the reference, it is essential
to set targets among the other parameters of the typological section itself.

Once the subassembly is ready, it is saved in a .ptk format, a kind of compressed file
that contains all of the information related to the Subassembly Composer process. Then, it
can be imported into Civil 3D and used to complete the corridor modeling.

3.4.3. Civil 3D Corridor Modeling

The 3D model of the road was obtained using Civil 3D. Usually, the corridor is ob-
tained by extruding an assembly along an alignment, drawn on a topographic surface and
made three-dimensional by the coordination with a design profile. In this case, the three-
dimensional axes were obtained differently (cf. Section 3.4.1), resulting in 3D polylines
tracing the point cloud (Figure 5).

Figure 5. 3D polylines’ property visualization.

Next, the corridor was created as shown in Figure 6: the 3D polylines were turned into
feature lines; the central one was set as the road axis, while the external ones were set as
edges by associating them with the target types “Width or offset” and “Slope or elevation”.

To complete the corridor model, the extrusion surfaces and solids were made, and
finally materials for the render characterization were associated with them.

The Corridor represents the geometric frame on which the data structure of the BIM
is supported. In order to add informative content to the Corridor, the so-called “property
sets” were leveraged, which are sets of various types of information that can be customized
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by the designer. Four different Property Sets were created and added to the corridor
manually, each one matching a supposed layer of the roman road, namely: Nucleus,
Rudus, Stratumen, and Summa Crusta. The properties added were basically the material
properties, such as the shear modulus and density.

Figure 6. Corridor visualization: (a) drawing view; (b) object viewer mode.

3.4.4. Infraworks Rendering

The Civil 3D model was exported from and reimported into Infraworks in order to
visualize the renders.

In order to control the appearance of the coverage areas of the rendered model, style
rules of the coverage areas—first in Civil 3D, and later in Infraworks—were modified,
creating a custom coverage area style rule.

After that, the Top Surface and Materials were imported from Civil 3D to Infraworks.

3.5. Algorithm Scripting through the Visual Programming Language Environment
within Dynamo

Finally, a Dynamo script was developed to update the Property Set attached to the Cor-
ridor Model. Dynamo is based on a VPLE (Visual Programming Language Environment)
which consists in a logic graph, the nodes of which represent functions that have inputs
and outputs. The output of a node can be used as an input for other nodes. Nodes are
connected by means of links. Nodes can be selected from among the hundreds contained
in the Dynamo Nodes Library.

The script developed for this case study is as essential as it is effective (Figure 7): the
main operational process is led by the “Object.UpdateProperty” node, which updates the
properties of the Property Set attached to an object. As inputs, the user must indicate the
object, the Property Set name, the names of the properties to be updated, and the values
to update them with. The object was directly extracted by the current Civil file indicating
the name of the object (“Corridor”) and the name of the Property Set (“Summa Crusta”).
Property Names could be indicated with strings, manually introduced by means of the
”String” node, and values could be indicated by means of a ”Block” node; in this case, the
names and values were imported from a .CSV formatted file, where the first line provided
names and the second provided values, by means of the node “File Path”, allowing for
the selection of the input file and “Boolean”, which enabled the default setting of the
“Data.ImportCSV“ node, which transposed the rows and columns to be changed.
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Figure 7. Dynamo visual script to update the corridor properties.

4. Results

In the present work, Leica Cyclone was used to manage a geographic database, i.e., a
large amount of data collected in the field using a terrestrial laser scanner. In Cyclone, the
point cloud is shown at a very high level of definition: color gradients, and the slightest
depressions and differences in level can be easily appreciated, and one can obtain an idea
of the degree of the macro-roughness of the paved surface (Figure 8a). These features make
it a useful tool for visualization and project orientational exploration.

Recap Pro was subsequently used to operate the segmentation of the original point
cloud (Figure 8b), and for reasons of interoperability with the other software used in the
following phases of the workflow.

After being processed within Recap, the Point Cloud file was exported as an RCP-
formatted file to be imported into Infraworks (Figure 8c), and a DEM was developed.
Feature lines were drawn on the DEM (Figure 8d), and data related to the coordinates of
their vertices were extracted.

Figure 8. Cont.
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Figure 8. Results: (a) Leica Cyclone view for registration. (b) Recap Pro view for segmentation. (c) Infraworks view for
Digital Elevation Modeling. (d) Infraworks view for Linear Feature lines extraction. (e) Subassembly Composer typological
section view. (f) Civil 3D view for Corridor modeling. (g) Infraworks view for the pavement render. (h) Civil 3D property
set for information associated with the Corridor model. (i) Properties before and after the dynamo script application.
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The tools made available by Subassembly Composer were exploited to create a typo-
logical section (Figure 8e) that was as consistent as possible with the studies carried out on
the typological section of urban Roman roads [66]. Moreover, the use of this tool has been
fundamental for the definition of the parameters characterizing the section itself. Among
these, a logical-geometric parameter is that of the “targets”, which allowed us to adapt
the section to the horizontal–vertical alignment of the three-dimensional axes imported in
Civil 3D and previously produced in Infraworks, which precisely follow the trend of the
DEM and therefore the data obtained from the laser scanner survey.

This is an element of unquestionable innovative value that demonstrates how the
reverse-engineering technique can be applied to infrastructural elements of complex and
non-standardized geometry.

Once the process was completed in Subassembly Composer, it was possible to com-
plete the construction of the 3D model in Civil 3D, extruding the customized typological
section along the three-dimensional line corresponding to the central axis of the road, and
adapting the horizontal–vertical alignment to that of all of the three 3D lines imported
from the previous work carried out in Infraworks for the geographical orientation of the
surveyed data (Figure 8f). A top surface was then modeled on the corridor thus formed, to
which a custom material corresponding to Vesuvian lava stone was associated (Figure 8g).

A BIM project is characterized by the association of technical information with a
three-dimensional geometric model.

For this reason, the BIM was completed with the creation of a Property Set that reports
the information related to the mechanical behavior of Vesuvius Lava Stone [67], which can
be viewed in the corridor properties (Figure 8h).

Dynamo was then used to fill in the empty Property Set created in Civil 3D with data
imported from a .csv file (Figure 8i).

5. Discussion

The results obtained showed the suitability of the workflow set up for the production
of the BIM of a stone-paved archaeological road, although the IT tools used were not
originally designed for this purpose. The implemented methodology allows us to manage
and process the data collected during the survey phase.

The use of the latest technologies of topographical surveying allowed for the accu-
mulation of a huge geo-spatial database consisting of point clouds defined by millions of
points. Leica Cyclone software has been critical to the management of this database and
its geo-referencing, while Recap Pro proved its efficiency in the segmentation operational
phase. The subsequent use of Autodesk applications for the creation and management of
projects in the BIM environment allowed the processing of the data and the obtaining of a
BIM representative of what was surveyed in the field.

It is perhaps necessary to point out that, in the transition from a detailed mesh obtained
with techniques that faithfully trace the point cloud obtained during the survey with TLS,
to the simplified digital model, there is a loss in terms of precision in the geometric
representation. However, the advantage of using a Building Information Model lies in the
“I” of the acronym. The information contained in the model is the keystone that holds the
very meaning of applying BIM to archaeological heritage.

The correspondence between the model created and the actual geometric distribution
of the surveyed surface was verified using Cloud Compare, an open-source software
program for the manipulation and comparison of point clouds. In Civil 3D, the volume
of the model was measured as the volume of the solid extracted from the corridor. The
volume measured in Cloud Compare was obtained by creating a reference plane positioned
below the point cloud, at a relative height equal to the thickness of the cross-section created
in the model. We executed Cloud Compare’s “2.5D Volume calculation” algorithm, which
compared the volumes between two-point clouds, or between a point cloud and a plane
of reference. Mesh transformation operations into point clouds and repositioning were
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performed in order to execute the algorithm, which also makes it possible to interpolate
the data and homogenize the areas which are useful for calculation.

The two volumes deviate by 3.78%.
Civil 3D and Infraworks are industry-leading tools for the delivery of infrastructure

projects; it is much rarer to find their applications in H-BIM, and even less so in archaeology.
In this, the work described in this research brings an element of innovation, given that
the features of these pieces of software, conceived to optimize the infrastructural design
from scratch, have been exploited for the reproduction of unique artifacts with an immense
historical and cultural value, which are part of an important UNESCO archaeological site
such as Pompeii.

The possibilities offered by the integration between the tools for the writing of calcula-
tion codes have been exploited using Dynamo—which leverages the visual programming
environment to open the doors of the programming world to the widest possible user base—
to manage the semantic heritage of the created BIM, ensuring the possibility of updating its
content from external databases and surveys of architectural, structural, geotechnical types.

6. Conclusions

In this research work, IT tools were leveraged to apply techniques and methodologies
that have previously been successful for infrastructure projects. The desire to find work-
flows that are functional in the process of the reverse engineering of existing artifacts is
not new, but our goal of being able to coordinate technologies and software designed for
the BIM approach for linear infrastructures was ambitious, given the shortcomings in the
application of BIM to linear infrastructures of historical value. Hence, the present work
was able to take another small step in the right direction to achieve this end, including
the results obtained in the broader context of historical and cultural heritage conservation,
creating another precedent for the application of Heritage-BIM to archaeological heritage,
i.e., the implementation of BIM in Archaeological-BIM.

However, the work carried out did exhibit some criticalities related to the limitations of
commercial software conceived for the ex-novo design of linear infrastructure. In fact, these
involve the use of standard parametric elements, which are geometrically very simplified
and homogeneous. Attempting to fit the model to the field reality has been an operation
characterized by limits and simplifications. Although Civil 3D allows users to operate on
the meshes, the computational complexity makes this software poorly suited for this type
of operation. In addition, the modeling of the pavement surface texture was relegated to
the visual field, associated to a photographic image obtained in situ, which was repeated
modularly along a smooth surface.

Other limitations derived from the uniqueness of the site in question included the
fact that the archaeological protection regulations prevent the possibility of carrying out
intrusive tests on the road pavement, and that the high irregularity of the surface surveyed
accentuated the problem of laser beam occlusion, leading to program errors and the
necessity of repeating the survey operations.

Moreover, the need for patterns and templates to structure the data to be associated
with the geometric models is emphasized in order to obtain BIM models for which the
consultation rules are clear and defined.

Future research should go further in the direction of the digitalization of Europe’s
immense cultural heritage, strengthening the knowledge of processes and methodologies
to simplify and improve the performance of methods for the analysis and the conservation
of the architectural–infrastructural heritage, with a focus on stone paved roads, which
constitute most of the historical roads in urban centers.
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