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Abstract: Light causes damage when it is absorbed by sensitive artwork, such as oil paintings.
However, light is needed to initiate vision and display artwork. The dilemma between visibility and
damage, coupled with the inverse relationship between color quality and energy efficiency, poses
a challenge for curators, conservators, and lighting designers in identifying optimal light sources.
Multi-primary LEDs can provide great flexibility in terms of color quality, damage reduction, and
energy efficiency for artwork illumination. However, there are no established metrics that quantify
the output variability or highlight the trade-offs between different metrics. Here, various metrics
related to museum lighting (damage, the color quality of paintings, illuminance, luminous efficacy of
radiation) are analyzed using a voxelated 3-D volume. The continuous data in each dimension of the
3-D volume are converted to discrete data by identifying a significant minimum value (unit voxel).
Resulting discretized 3-D volumes display the trade-offs between selected measures. It is possible
to quantify the volume of the graph by summing unique voxels, which enables comparison of the
performance of different light sources. The proposed representation model can be used for individual
pigments or paintings with numerous pigments. The proposed method can be the foundation of a
damage appearance model (DAM).

Keywords: art conservation; cultural heritage; spectral optimization; color quality; LEDs; light
intensity; illuminance; exposure; energy efficiency; damage

1. Introduction

Optical radiation is electromagnetic energy that dissipates through space. Light, the
visible part of optical radiation, upon reaching the surface of an object is either reflected,
transmitted (if the object is transparent or translucent), or absorbed. Reflected light initiates
vision when it is detected by the human visual system. Light absorbed by the object turns
into heat and is considered wasted for illumination purposes. The absorbed light (energy)
may cause a chemical change in the molecules due to photochemical reactions, and if the
object is light-sensitive, such as a painting, it may cause irreversible damage (e.g., color
fading) [1,2]. The dilemma between visibility and damage is a crucial aspect of lighting
design for museums and galleries.

Characterizing the properties of the absorbed light can enable estimating and pre-
venting further damage to sensitive works of art. Past studies suggest that there are four
primary parameters that influence the optical damage to artwork: light intensity, exposure
duration, spectral power distribution (SPD) of the light source, and spectral sensitivity of
light sources [2,3]. An increase in light intensity and exposure duration increases damage
to artwork, although the relationship is likely not linear. The spectral power distribution
and spectral sensitivity of the pigments interact in a more complex manner.

Early models of damage were based on the Einstein–Planck law, which states that
energy in lower wavelengths (i.e., ultraviolet radiation) may cause more damage than
energy in longer wavelengths [4]. However, several research studies showed that energy
in long wavelengths, such as infrared radiation, and energy in the visible spectrum could
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also cause damage to artwork [5–8]. Another important factor is the selective influence of
light source SPD on the magnitude of damage. Studies suggest that the spectral absorption
of pigments may dictate the amount of damage to an artwork since only the light absorbed
by a pigment causes photochemical action [9–12]. This understanding, coupled with the
overall effect of lighting intensity, encouraged researchers to use spectral optimization
algorithms to reduce damage caused by lighting [13–19]. Some of these optimization
studies even considered the energy consumed by lighting to balance the end-users’ differ-
ent needs [14,16,18,19]. Despite the increase in computational power and knowledge of
materials’ response to light, there is still no universal damage model that can account for
different types of pigments. Another unresolved issue is the holistic presentation of the
trade-offs and complex relationships between the parameters, such as damage to artwork,
the color appearance of the painting, illumination levels (both for damage and visibility),
and energy consumption.

Although multi-primary LED (mpLED) systems can be optimized to generate tailor-
made solutions for light-sensitive artwork, quantifying the complex relationships between
target parameters using a single-dimensional model is not possible. Fortunately, the
complex relationships between different aspects can be presented using a 3-D graph,
and discretizing each continuous dimension of the graph (voxelating) can result in a
discrete, measurable volume. The voxelization method has been previously applied to
color rendition variability in mpLEDs [20]. Here, the voxelization method is applied to
display the trade-offs between damage, the color appearance of artwork, illumination
levels, and energy efficiency. The voxelization method is based on the idea that a large
distribution of data points can be grouped into discrete packages or cubes called voxels, as
shown in Figure 1. Converting a large dataset to voxels results in increased interpretability
of the data, reduces visual cluster, and enables creating predictive models. The data points
within each voxel are considered the “same” for classification purposes, and the “sameness”
(uniqueness) of the data points within a voxel can be defined by identifying the borders of
the voxel in each dimension. The voxelization in the context of museum lighting should
contain the primary goals of illuminating artwork, such as preventing damage caused by
lighting, optimizing the appearance of artwork (brightness and color), and improving the
efficiency of the light sources.
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2. Methods

Three-dimensional graphs are widely used in science communication to demonstrate
the relationship between conflicting parameters. The proposed voxelization method goes a
step further by discretizing the continuous data of each dimension to create unit voxels
(analogous to pixels in 3-D shapes). The size of a voxel can be defined by identifying the
acceptability or detectability of the minimum value for each dimension. The minimum
identifiable value is often characterized as a just-noticeable difference (JND) in psychophys-
ical studies. It is also possible to convert continuous data to discrete data by selecting
arbitrary unit sizes when a JND cannot be identified. Once the dimensions of a unit voxel
are identified, they can be plotted in a 3-D graph, as shown in Figure 1.

Key dimensions of the proposed demonstration method for museum studies are
damage, light intensity, color quality, and energy efficiency. Damage to artwork can be
quantified using the Berlin model [3] or the amount of light absorbed by the painting [19].
In the Berlin model, the damage caused by optical radiation is calculated as a function of
effective radiant irradiance.

Edm =
∫
λ

Ee,λ × s(λ)dm,rel × dλ (1)

where Edm (unit: W/m2) is the effective irradiance that causes damage, Ee,λ is the spectral
irradiance (unit: W/m2), s(λ)dm,rel is the relative spectral responsivity of a material normal-
ized at 300 nm, so that s(λ)dm,rel = 1.0 for λ = 300 nm, and λ is wavelength (unit: nm) [3].
The alternative damage calculation method is the ratio of the light absorbed by the surfaces
under a test light source to the light absorbed by the surfaces under a reference illuminant

A =

∫
λ

Ee,λ,test(λ)× (1 − R(λ))× dλ∫
λ

Ee,λ,re f (λ)× (1 − R(λ))× dλ
(2)

where A is a unitless relative absorption value reported as a percentage, Ee,λ,test(λ) is the
test light source irradiance, Ee,λ,ref(λ) is the reference source irradiance, and R(λ) is the
reflectance factor of a pigment. The test light source Ee,λ,test(λ) should be rescaled so
that the light reflected from the painting under the test and reference light sources are
equal. Equalizing the reflected light from the painting under the test and reference light
source ensures the luminance is the same in both conditions so that the comparison is not
affected by luminance related color appearance phenomena, such as the Hunt Effect [21]
and Bezold–Brücke hue shift [22].

Both the Berlin Model and relative absorption calculation method account for the
Grotthuss–Draper law, which states that only light that is absorbed can cause photochemical
activation. The difference between the two methods is that the relative absorption A offers
an easy-to-interpret measure for damage, but it does not account for the Planck–Einstein
relation (lower wavelength radiation has higher energy potential). On the other hand,
the Berlin Model uses a damage curve (action spectra) normalized to 300 nm, which may
undermine the Grotthuss–Draper law and can be hard to interpret.

In the proposed voxelization method, the light intensity can also be quantified by using
appropriate metrics, such as illuminance (unit: lx) or irradiance (unit: W/m2). Although
illuminance is relevant for the human visual system, irradiance can be used to account
for the difference between spectral sensitivity of the materials and the spectral luminous
efficiency function (visual system’s response to light). The color quality of the painting
can be quantified using colorimetric tools, such as color rendition metrics, or more precise
tools, such as color difference, chroma, and hue shift formulae. Color shift formulae can
provide detailed and specific information about the magnitude and direction of color shifts
between two lighting conditions. In the following voxelization example, the two lighting
conditions will be a reference white illuminant (i.e., daylight and incandescent lamps are
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considered ideal in museums for color quality purposes) and a test light source (SPDs
generated by a mpLED).

Test SPDs were generated by the linear optimization of a seven-channel mpLED
lighting system. The spectrum of each channel, shown in Figure 2, were combined by
iteratively mixing each channel at 20% dimming intervals, resulting in 279,936 (67) test SPD
combinations. The color differences in the appearance of 24 Macbeth ColorChecker test
samples [23] between each test SPD combination and reference incandescent halogen light
source were calculated using CAM02-UCS [24]. The root mean square (RMS) of the 24 color
difference values (∆E’RMS) were calculated to get an average score of the color shifts.
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Figure 2. The spectral power distribution of the seven-channel multi-primary LED system is used
in the linear optimization to generate data that are analyzed for the proposed 3-D representation of
metric trade-offs.

An incandescent halogen light source spectrum was used as a reference since they
are still widely used in museums [25]. Macbeth ColorChecker samples include a range of
saturated, desaturated, chromatic, and achromatic samples, which can be representative of
a wide range of artwork, and it is widely used in color and museum lighting research [26,27].
The color quality of every nominal white light was quantified using an ANSI/IES TM-30
fidelity index Rf, a gamut index Rg, and a local chroma shift in hue bin 1 (Rcs,h1) [28]. In
addition, relative absorption A (light absorbed by a pigment under the test light source
divided by the light absorbed by a pigment under the reference halogen light source),
illuminance (Ev), irradiance (Ee), the luminous efficacy of radiation (LER), correlation color
temperature (CCT), and the distance from the Planckian locus (Duv) [29] were calculated
for each test SPD.

3. Results

The data generated by the linear optimization method have been sorted and ana-
lyzed for metric correlation. Since most of the LED combinations (236,502 out of 279,936)
were not nominally white, color quality metrics that require a test light source to be close
to the Planckian locus (i.e., Rf, Rg, CCT, Duv) were not used in the analysis. However,
it is possible to filter out the non-white SPD combinations to utilize color quality met-
rics that are developed for white lights, with a caveat of reduced damage reduction for
individual pigments.

The data generated by the optimization method were voxelated using the most
important measures for museum lighting: damage to artwork, color appearance, and



Heritage 2021, 4 192

energy efficiency. For example, a 3-D voxelated volume (VV1) was calculated using the
relative absorption for a test color sample (Macbeth ColorChecker sample #24), the RMS
color difference of 24 Macbeth ColorChecker samples ∆E’RMS, and the LER, as shown in
Figure 3. Measures in each dimension were discretized by rounding values to a unit size
of 1 (e.g., LER of 200.3 lm/W and 200.7 lm/W were rounded to 200 lm/W and 201 lm/W,
respectively, and they fell into two different voxels). All the test SPD combinations that
fell into the same voxel were considered identical. Therefore, the number of unique
voxels (VV1 = 45,813) represents the number of unique SPD combinations that can be
generated within the seven-channel mpLEDs. It is important to note that the uniqueness
of each voxel depends on the voxel size criteria. For example, if the LER was voxelated
using 5 lm/W as the unit voxel size, the number of voxels would drastically decrease.
Therefore, the absolute magnitude of the volume does not have an inherent meaning.
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Figure 3. The 3-D voxelated volume VV1 shows the trade-offs between damage to artwork (light
absorption ratio of test light source to reference), color quality (shifts in the appearance of 24 Macbeth
ColorChecker samples between test SPDs and the reference light source), and energy efficiency
of the light source (luminous efficacy of radiation; unit: lm/W). Voxels are shown as circles for
representation purposes only.

The data departed from normality at the 0.05 significance level as tested by the Shapiro–
Wilk test, and a non-parametric test (Spearman’s rank correlation coefficient) was used to
analyze the correlation between the dimensions of the voxelated VV1 volume. While the
correlation between absorption A and ∆E’RMS were low (ρ = 0.111), the LER was inversely
correlated to absorption (ρ = −0.757) and ∆E’RMS (ρ = −0.427).

Figure 3 illustrates the relationship between color quality, damage, and energy effi-
ciency, where the top far corner is the ideal condition (low absorption, small color shifts,
and high efficacy). The visual illustration makes it clear that the ideal SPDs are increasingly
scarce compared to other SPDs that perform worse in terms of either damage, color shifts,
or energy efficiency. Since the relative absorption A > 100 denotes additional damage,
and the large color differences are not desired, it is possible to zoom into the graph by
limiting the x and y axes (relative absorption (A < 100) and color difference (∆E’RMS < 20),
respectively), as shown in Figure 4.
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Figure 4. Limiting the x and y axes of the voxelated 3-D volume VV1 can highlight areas of interest,
such as low relative absorption (A < 100) and color difference (∆E’RMS < 20). Voxels are shown as
circles for representation purposes only.

A second example (VV2) was calculated using relative absorption A for a test color
sample (Macbeth ColorChecker sample #24), the TM-30 fidelity index Rf, and the irradiance
Ee, as shown in Figure 5. In the second volume, which is the graphical representation of
the same data, there were VV2 = 2,265 unique voxels. While the absolute volume size
does not have an inherent meaning, comparing two or more light sources—using identical
voxel dimension metrics—can provide more information about the performance of the
light sources for a specific set of pigments (or the overall color quality of a painting).
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Voxelated 3-D volume VV2 also shows the relationship between competing target
parameters. The fidelity index Rf was not correlated with either relative absorption A
(ρ = 0.010) or irradiance Ee (ρ = 0.017). However, irradiance Ee and relative absorption A
were highly correlated (ρ = 0.996), which is not surprising since absorption increases with
light intensity.

It should be noted that the graphical distributions were applied to a single pigment
using relative absorption and to multi-pigments (e.g., a painting with numerous colors)
using color quality metrics to demonstrate the different use cases of the proposed method.
The proposed model can provide a more analogous analysis if all the dimensions are chosen
at the individual pigment scale (e.g., absorption for a single color and color difference
in the pigment under reference and test light sources). On the other hand, the proposed
model can also be used to gain a holistic understanding of a painting by using a high-level
approach (e.g., average absorption ratio by the pigments used in a painting, the average
color difference of pigments in the painting under reference and test light sources). While
the provided examples do not include the exposure time—an important dimension of
damage to artwork—it is possible to incorporate the total radiant exposure as a metric to
the voxelization method. The total exposure can be calculated by multiplying exposure
time t (unit: hr) with irradiance (Ee × t, unit: W h/m2) or illuminance (Ev × t, unit: lx h).
Alternatively, the radiant exposure can be quantified using the Berlin model (Hdm, unit:
W h/m2) [3].

4. Discussion

The proposed voxelization method can help analyze and compare the performance
of multi-primary LED systems. Since each SPD is represented as a single dot in a 3-D
graph, the proposed method cannot be used to analyze a single static SPD light source.
However, it is possible to analyze large datasets that include commercially available light
sources in the proposed 3-D volume. Such large datasets can provide museum curators,
conservators, and lighting designers with an opportunity to compare the performance of
different lighting technologies. Large datasets of different lighting technologies can also be
used to analyze a set of reference test samples collected in a museum or a painting (similar
to the color rendition approach) to attain an approximate idea of the performance in a
given space. The caveat in such an approach would be the consideration of object surface
reflectance characteristics since it may be challenging to identify the action spectra of the
pigments and dyes in every painting in a museum or a gallery.

Non-invasive scanning techniques, such as Fourier-transform infrared spectroscopy
(FTIR), X-ray fluorescence (XRF), Raman imaging, hyperspectral imaging, scanning electron
microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) [30–32] are often used
to obtain absorption spectra from materials. The analysis of organic and inorganic pigments
can also lead to new horizons in tailor-made museum lighting. In the future, it may be
possible to build a library of pigment and dye characteristics and their response to light
spectra, which may ultimately lead to a universal damage calculation model.

Despite the challenges of facing a universal damage model today, studies investi-
gating the sensitivity of different materials [33–40] can converge into a complex damage
appearance model (DAM), similar to color appearance models (CAMs). Although the
CIE 1976 L*a*b* (CIELAB) is the most widely used color space in conservation science, the
proposed damage model is based on the CAM concept due to the multi-layered nature
and better performance of CAMs. The CIELAB has well-documented limitations, such as
abnormal hue angle shifts [41,42], poor performance in the [43], and blue regions (negative
b* axis) [44]. Research suggests that color appearance models, such as CAM02-UCS [24],
can outperform CIELAB, especially when color differences are small—which are crucial
for conservation science [45,46]. In addition, conservation scientists often perform visual
observations of the artwork under controlled environmental conditions (e.g., laboratory).
Therefore, the additional input parameters required by CAMs (i.e., background and sur-
round conditions, adapting luminance) can be accurately determined by the users. In short,
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the CAM provides a better basis both conceptually and mathematically for the proposed
damage calculation models compared to a color space, such as CIELAB.

A DAM can have several inputs, such as light source spectrum, light intensity, ex-
posure duration, pigment spectral reflectance/absorption, artwork type (e.g., oil, gauche,
acrylic paint), and choice of a reference illuminant (i.e., daylight, incandescent). DAM
would provide an output of damage caused by lighting and the color appearance of the
resulting pigment under a specific light source, as shown in Figure 6. It should also be
noted that color difference formulae are often used in conservation science as a proxy for
damage, as illustrated by fading. However, not all types of chemical and structural damage
are caused by lighting [47]. For example, viscometry and chromatography are used to
measure the brittle effect (the breakdown of paper fibers) [48].
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Figure 6. A damage appearance model (DAM) can be developed based on the research studies investigating the impact
of different aspects of light on pigments. A computational model such as this can have inputs including spectral power
distribution, intensity, exposure duration of the light source, action spectra of the light-receiving material, material (binder,
pigment, dye) type, and choice of a reference illuminant (i.e., daylight, incandescent). The DAM outputs can be the color
difference to quantify damage and the color appearance of the light-receiving material.

Although a rudimentary DAM can provide an estimation of damage to a single
material at a given time, more advanced models can be built by integrating the results
across different pigments and dyes (e.g., providing averages with standard deviation and
error estimates, using multi-dimensional data analysis or machine learning algorithms).
More complex DAMs can be used in adaptive lighting systems, where a sensor detects
the spectral reflectance function of paintings, and a projection system emits spectrally and
spatially optimized lighting to each colored part of the painting to reduce damage while
maintaining the overall color quality of the painting, or even visually restore the faded
colors of the artwork [18,49–51].

5. Conclusions

Museum conservators and curators often face the multi-faceted problem of identifying
the optimal lighting conditions in museums. While light is needed to display art, it may
also damage sensitive artwork over time. Museum conservators, curators, and lighting de-
signers can use the properties of light sources (spectral distribution, intensity, and exposure
duration) and materials (spectral absorption characteristics) to estimate the damage caused
by optical radiation. Here, a three-dimensional representation of the conflicting parameters
(e.g., color quality vs. damage) is provided to display the trade-offs between several mea-
sures. The continuous scale of each dimension of the 3-D graph is converted to discrete
data using unit voxels. The discretization of continuous data can enable the quantification
of the performance of multi-primary LEDs in the context of art conservation. Sample
calculations demonstrated the use of the proposed method to highlight the most common
trade-offs in museum lighting design: conflicts between the color quality of paintings
(average color difference), damage caused by lighting (absorption percentage), illuminance,
and luminous efficacy of the radiation. However, it is possible to adopt different metrics
for each dimension, such as color discrimination or other color rendition metrics for color
quality, the Berlin model [3] and irradiance for damage quantification, and CCT and Duv
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for color quality of the light source. In addition, new metrics that are relevant for museum
lighting and perception of artwork (e.g., visual clarity [52,53] and visual complexity [54])
can be utilized in the proposed 3-D volume. Future work will investigate the quantification
of the trade-offs between various damage, color quality, and visual perception metrics and
validate their accuracy through visual evaluations.
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