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Abstract: The aim of this study is to estimate the uncertainty of a portable X-ray fluorescence (p-XRF)
instrument for the (semi-quantitative) analyses of tiles with underglaze decoration. Before starting the
campaign of on-site measurements, the optimum acquisition time and the most accurate calibration
mode were selected. For this purpose, the elemental composition of two glass standards of NIST
(SRM610 and SRM612) and a Corning A standard were measured with varied times (5–360 s) and
in different calibration modes (Mining, Mining Light Elements, Soil, and Rare Earth Elements).
Afterwards, a set of blue-and-white tiles that was unearthed at Iznik Tile Kilns Excavation between
the dig seasons of 2015 and 2019 was examined with p-XRF by selecting ten points of measure from
each layer (body, transparent glaze, and blue coloured areas). The elemental composition of different
layers was evaluated by means of the intragroup and intergroup data. They were also compared
to the previous studies and found that the corrosion-free, homogeneous, and non-porous surfaces
decrease the relative standard deviation (RSD) by increasing the consistency of the compositional data.
The major elements found in the matrix of each layer (Al and Si for the body, Pb and Sn for the glaze)
have the lowest value of RSD, as expected. However, the comparison of the data with the analysis
of the reference materials showed that the content of Mg and also Si, which belong to the low-Z
elements group, is shifted relatively towards the higher compositional values. The impossibility of
measuring the elemental composition of sodium does not hinder the classification of the samples.
Although the transition metals have very low concentrations, p-XRF measurements appear rather
consistent and the intrinsic scattering of the data observed for a single artefact is largely smaller than
those observed for the tiles of different historical buildings. Thus, it allows the classification to be
made related to the different techniques used.
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1. Introduction

The use of portable instruments, particularly p-XRF, with the improvement of their performances
and the reduction of their price profoundly modifies the practices in archaeometry [1–15]. However,
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the potential for the misuse of the instrument has resulted in scepticism towards the technique and
its application in the area of archaeological materials due to the several perceived weaknesses of
the portable/handheld system [16–22]. The first weakness of portable XRFs is the variability of their
positioning due to constraints on-site and the complex shape of many objects. A second intrinsic
weakness is that the volume analysed will be very different related to the element measured, hence
the penetration depth of the light elements (Mg, Al, Si, K, and Ca) is close to the surface and is over
several hundreds of µm for heavier elements like lead (Pb) and gold (Au) and several mm for tin (Sn),
antimony (Sb),and so on [23]. However, the absorption of X-rays by air prohibits the measurement
of very light elements (B, C, O, and Na). The measurements of low-Z elements are therefore very
sensitive to possible corrosion, often evidenced in the metallic objects but also glasses, specifically
excavated ones. Re-normalization procedures in comparison with the similar uncorroded references
may be applied [24]. The “wrong” choice of the calibration mode during the analyses with p-XRF also
unfavorably affects the results, which remain subject to discussion. Different calibration methods will
be introduced in detail in the section on the XRF procedures.

An evaluation of the measurement “error” for the different types of materials is therefore essential
to establish that differences observed are significant and to discuss their technical and historical
implications. Variations related to the object’s heterogeneity also induce measurement shift, which
complicates classification by comparison of the elemental composition.

Several studies have been carried out on the comparison of p-XRF measurements with
lab-scale, high-resolution instruments (wavelength dispersive XRF (WD-XRF), laser ablation
inductively coupled plasma-mass spectrometry (LA-ICP-MS), atomic emission spectrometry (ICP-AES),
and‘neutron activation analysis (NAA)). The results were interpreted by plotting correlations, slopes,
and multivariate statistics diagrams in comparison with the elements measured and/or techniques
used [2,3,25–27]. Most of these studies cover the characterization of homogeneous, matrix-consistent
materials, for example, ancient glasses and high temperature fired ceramics. The latter studies, in which
the number of the elements (5–10) was limited, represent mostly the elemental composition of high-Z
elements (Nb, Zr, Sr, etc.) [2,3,26]. The studies demonstrated that a non-destructive p-XRF instrument
has analytical consistency with ICP-AES, ICP-OES (inductively coupled plasma-optical emission
spectrometry), and NAA techniques in distinguishing different production groups of cultural materials.
It should be noted that these high-tech instruments require an additional step, namely the calibration
process before the measurement of the samples, e.g., preparation of the calibration curve for each ICP
analysis [28], involving regular measurements of STG standards with WD-XRF after each maintenance
of the instrument [29]. An external calibration procedure may also apply for the ceramic analyses
with p-XRF by using reference glass samples (Corning, Brill, NIST SRM 610, 612) [24] and geological
standards (red mud and diorite DR-N) [30]. For instance, in the study of Liu et al. [3], a Corning glass
D whose composition was determined by ICP-AES was used to estimate the reliability of the p-XRF
instrument, before starting the measurements of potash glass beads. The error data found in these
articles will be used to compare with our results.

The previous studies of our group cover a wide range of elements due to the complex microstructure
of the historical artefacts. The glazed ceramics that we examine with p-XRF usually contain four
different layers of variable thickness including the transparent glaze, layers which contain the colouring
agents, slip (if present) layer, and body substrate [31–34]. A previous study was carried out to
compare and reveal the reliability of both techniques, WD-XRF and p-XRF, by analyzing a set of
Chinese blue-and-white porcelains [29]. The results were favourably given as the mean values of each
measurement carried out on the body, glaze, and coloured areas, to limit some of the probable analysis
errors. A comparison of the elemental ratios has been generally preferred for the interpretation of the
compositional data [33]. To go deeper into establishing a reliable procedure for the p-XRF analysis,
we selected four representative blue-and-white glazed tiles unearthed from ancient Iznik tile kilns [32].
Firstly, we developed a pXRF methodology to apply for the analysis of glazed ceramics by performing
test measurements of the reference glasses (NIST SRM610, SRM612, and Corning A), and consecutively,



Heritage 2020, 3 1304

we measured ten points from each layer of the selected tiles. Each single “studied spot” (shown in
Appendix A, Figures A1–A4) is added in the scatter plots of the examined layers, i.e., body, transparent
glaze, and blue décor, to show the compositional variations. The objective is to measure and compare
the standard deviation factor of the major, minor, and trace elements as a function of the ceramic and
geometry parameters (glaze thickness, heterogeneity of the glaze/body, etc.) and then to estimate an
error bar that will be applied for the determination of the characteristic parameters of Iznik productions
(Al2O3/SiO2, PbO/SiO2, Sn/Pb, CoO/MnO/NiO ratio, etc.) analyzed on-site.

Iznik pottery artefacts, which are considered the most sophisticated ceramic productions of
the Ottoman era [35–38] equivalent to the magnificent Chinese [39], Japanese [40], and European
porcelains [41], have always attracted intensive attention from research scholars and connoisseurs
since the 19th century [42–49]. They aimed to discover the production technology of these unique
masterpieces. The panels of tiles that were produced in Iznik kilns usually decorate the wall revetments
of historical buildings [50–54], and some of them (e.g., Selimiye Mosque in Edirne and holy places in
Bursa) are conserved as world heritage sites by UNESCO. The complex structure of Iznik ceramics,
which arises from the presence of multilayers (body, slip, multicoloured underglaze decors, and
transparent glaze), serves to control the efficiency of portable analytical instruments, i.e., p-XRF in our
case. Moreover, understanding the production technology will allow us to question the connection
between the ancient Anatolian ceramic centres (Byzantine, Seljuks) and the external ones (Samarqand,
Chinese). Therefore, the study of the tiles, which are the local productions of Iznik kilns, is crucial.

2. Experimental

2.1. Artefacts

Hundreds of mono and polychrome decorated and/or glazed sherds, which were unearthed during
the excavation seasons from 2015 to 2019 at the Iznik Tile Kilns Excavation site [32], were examined
with a handheld XRF (hh-XRF) instrument (Figure 1) to identify the composition of the body, glaze, and
colouring agents (blue, green, turquoise, red decors, and black lines) for the purpose of classification.
The measurements were carried out by contacting the instrument gently on the glazed and bodied
(unglazed) sides of the sherds, as was done on site in the historical buildings (Figure 1) [33]. Before the
compositional analyses, a macroscopic examination of the cross-sections was carried out with a stereo
microscope to measure the thickness of the glaze for estimating the penetration depth of the elements
measured. Three of them (see Figure 1 centre, which represent “blue-and-white” productions, and one
being a Rhodes work were chosen to reveal any potential uncertainties of the instrument for the analysis
of glazed ceramics. IZN/15 (from the 2015 excavation season) and IZN/17 (2017 season) are decorated
with a similar lightness of the blue colour, in addition to the turquoise-coloured areas. The blue colour
of the sherd, IZN/16 (2016 season), is darker than the others, and the tone of the white area is milky
rather than a yellowish hue, which is observed particularly in the glaze of IZN/19. IZN/16 is dated to
the 16th century, while IZN/15, IZN/17, and IZN/19 are accepted by social scientists (art historians and
archaeologists) to be produced in the 17th century [50–54]. The blue colour in IZN/19 is encountered
under the yellowish-green glaze. The glossy surface of IZN/16, which is well-preserved, proves the
absence of any corrosion of the glaze. Conversely, the glaze of the other three sherds, especially that
of IZN/19, is matte and rough. The loss of gloss in the glaze may arise from the surface corrosion
(leaching of potassium ions, protonation, or crack formation) and/or an incomplete firing of the pieces.
Excavated sherds are rubbish materials from fabrication. Distribution of the glaze thickness for a series
of Iznik tiles is given in Appendix A, Figure A5.
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Figure 1. Examples of on-site use of hh-XRF instrument: (top-left) on-site measurement of the tile 
panel of Üç Şerefeli Mosque in Edirne, and (centre) and (top-right) measurements at the Iznik Tile 
Kilns Excavation’ house; (bottom), representative images of the sherds of tiles. IZN/15, IZN/16, and 
IZN/17 belong to the group of “blue-and-white” tiles, while IZN/19 is known as a Rhodes work. 
Cross-sections (from Bilge Çubukçu) show the thicknesses of the glaze and paste. 

2.2. XRF Procedure 

XRF analysis was performed using a handheld Hitachi X-MET 8000 Expert Geo (Oxford 
Instruments) system equipped with rhodium (Rh) target X-ray tube of 4 W, 50 kV max, and a silicon 
drift detector (SDD). Later generation p-XRF spectrometers contain built-in calibrations installed in 
the operating software of the instrument at the factory before reaching the end-user [27,29]. Different 
methods are created according to the different materials to be measured. Soil mode, which measures 
the high-Z elements preferentially (from K and onwards in the periodic table), is used for the analysis 
of sediments. The Rare Earth Elements (REE) mode, which additionally measures La, Ce, Pr, Nd, and 
Hf, is usually applied for the measurement of obsidians, which contain trace elements in their 
composition. Mining (Mg, Al, Si, P, and S excluded) and Mining Light Elements (Mg, Al, Si, P, S, and 
Cl included) modes are chosen for the measurements of glass, pottery, and glazed ceramics. 
Additionally, the Alloy mode is included for the metals/alloys’ analyses. Before our group started the 
campaign of studies of Iznik tiles with p-XRF [32–34], four calibration methods (Soil, Mining, Mining 
Light Elements, Rare Earth Elements) were tested on the analyses of the reference glass standards 
(NIST SRM610, SRM612, and Corning A), and the most accurate mode was found to be Mining Light 
Elements, which was also determined in the previous study [29]. This method operates in the 
measurement at double excitation energies, whereas the first one uses the low energy at 8 keV for 
determining the elemental composition of the low Z elements (Mg, Si, Al, P, S, Cl), and the second 
one uses a high energy at 45 keV to identify the network modifiers (K, Ca, Pb) and blue colouring 
agents (Mn, Fe, Co, Ni, Cu, Bi) found in the decor. The beam size at the surface was around 1 cm2, 
and a camera was used to control the measurement points, which were selected from ten different 

Figure 1. Examples of on-site use of hh-XRF instrument: (top-left) on-site measurement of the tile
panel of Üç Şerefeli Mosque in Edirne, and (centre) and (top-right) measurements at the Iznik Tile Kilns
Excavation’ house; (bottom), representative images of the sherds of tiles. IZN/15, IZN/16, and IZN/17
belong to the group of “blue-and-white” tiles, while IZN/19 is known as a Rhodes work. Cross-sections
(from Bilge Çubukçu) show the thicknesses of the glaze and paste.

2.2. XRF Procedure

XRF analysis was performed using a handheld Hitachi X-MET 8000 Expert Geo (Oxford
Instruments) system equipped with rhodium (Rh) target X-ray tube of 4 W, 50 kV max, and a
silicon drift detector (SDD). Later generation p-XRF spectrometers contain built-in calibrations installed
in the operating software of the instrument at the factory before reaching the end-user [27,29]. Different
methods are created according to the different materials to be measured. Soil mode, which measures
the high-Z elements preferentially (from K and onwards in the periodic table), is used for the analysis of
sediments. The Rare Earth Elements (REE) mode, which additionally measures La, Ce, Pr, Nd, and Hf,
is usually applied for the measurement of obsidians, which contain trace elements in their composition.
Mining (Mg, Al, Si, P, and S excluded) and Mining Light Elements (Mg, Al, Si, P, S, and Cl included)
modes are chosen for the measurements of glass, pottery, and glazed ceramics. Additionally, the Alloy
mode is included for the metals/alloys’ analyses. Before our group started the campaign of studies
of Iznik tiles with p-XRF [32–34], four calibration methods (Soil, Mining, Mining Light Elements,
Rare Earth Elements) were tested on the analyses of the reference glass standards (NIST SRM610,
SRM612, and Corning A), and the most accurate mode was found to be Mining Light Elements, which
was also determined in the previous study [29]. This method operates in the measurement at double
excitation energies, whereas the first one uses the low energy at 8 keV for determining the elemental
composition of the low Z elements (Mg, Si, Al, P, S, Cl), and the second one uses a high energy at
45 keV to identify the network modifiers (K, Ca, Pb) and blue colouring agents (Mn, Fe, Co, Ni, Cu,
Bi) found in the decor. The beam size at the surface was around 1 cm2, and a camera was used to
control the measurement points, which were selected from ten different areas (shown in Appendix A,
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Figures A1–A4) representing the composition of the body, “white” glaze, and blue coloured area with
the aim of identifying the variation.

The acquisition time was determined after a group of sequential analyses of the glass standards by
measuring them at different periods of time. We measured three standards (the elemental compositions
are listed in Appendix A, Table A1) at 5, 10, 15, 20, 30, 60, 120, 180, and 360 s. The shorter acquisition
time allowed us to better determine the composition of the low-Z elements, but there was not enough
time to detect the heavier elements (e.g., Pb, Sn, etc.). Indeed, the longer acquisition time is more reliable
than the shorter radiation time, but the use of the instrument manually does not allow one to hold it
steady throughout 180 or 360 s. Unfortunately, this p-XRF instrument may not be attached to a tripod
due to its configuration. The results of the elemental analyses also showed that the optimum acquisition
time was 30 s for the determination of both low and high-Z elements. Moreover, the variation of the
data determined at different acquisition times is rather narrow, and this confirms the consistency of the
instrument. The results obtained from the standard materials were also compared to the data already
published in the literature [55,56]. Figure 2a shows the scatter plots of Al2O3 versus SiO2, where a slight
shift towards higher concentration values is observed by comparison with the nominal composition
for the measurement of the glass standards with our p-XRF instrument. Note that the measured data
are distributed isotopically. On the contrary, the determination of the minor and trace elements in the
blue coloured areas was found to be more accurate at shorter acquisition times. Figure 2b shows the
distribution of the radiation periods applied on the measurements of glass standards compared to
the literature data. The elemental measurements of Corning A provide relatively consistent results
in regarding the NIST standards. The heterogeneous structure of the samples may also affect the
results. These two SRM standards were previously subjected to destructive analyses many times with
the LA ICP-MS technique, hence the surfaces of these standards were ablated with the laser, which
led to the formation of micro-craters. As a result of the external calibration process, we measured
the set of samples with 30 s of radiation. With this instrument, the elemental compositions were
reported semi-quantitatively in wt% and/or ppm, and the mean values were calculated as well as the
standard and relative standard deviation factors (see Tables 1–3). Each measurement point, which
was numbered from one (#1) to ten (#10) for each tile, was shown in the binary and ternary scatter
graphs by plotting the distribution of the oxide variation normalized by SiO2. The normalization
procedure using the major element signal (Si) [30–33] or signals from the cathode (Rh, Ag . . . ) [57]
aims at reducing the errors that occurred due to the variance of the distance of instrument tip to the
surface artefact. The data obtained from the measurement of the body, transparent glaze, and blue
decor are listed in Tables 1–3, as well as the standard deviation, which allows identifying the variations
in terms of the composition, grain size, and thickness of the layers. For semi-quantitative evaluation
purposes, the K-alpha emission lines of Mg, Al, Si, K, and Ca, the transition metal elements (Ti, V, Cr,
Mn, Fe, Co, Ni, Cu, Zn, and As) and trace elements (Rb, Sr, Zr, Ba, and Bi), as well as the L spectral lines
of lead and tin, were taken into consideration. The representative major, minor, and trace elements
vary depending on the measurement layer (body, decor, and glaze matrix, Figure 3).
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SD 0.15 0.35 1.08 0.13 0.44 0.12 0.001 0.001 0.000 0.012 0.2 0.001 
RSD 10.89 11.51 3.10 13.10 16.25 10.83 12.66 11.01 9.79 35.21 13.79 21.25 
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Figure 2. (a) Binary scatter plots of Al2O3 versus SiO2 and (b) ternary scatter plots of CoO-MnO-NiO
showing the analysis points of different acquisition times (between 5 and 360 s) in comparison with the
elemental compositional data (*) of the reference materials derived from the literature [55,56]. For an
easy comparison, the same scale of x- and y-axes is used for the tiles studied in this paper.

Table 1. Mean elemental composition measured by p-XRF for the body on different spots and
corresponding standard deviation, absolute (SD), and relative (RSD).

Body Data Mg Al Si K Ca Fe Rb * Sr * Zr * Ba * Pb Bi *

IZN/15

Mean 1.23 2.80 36.67 0.96 1.87 1.06 40 90 40 230 0.93 30

SD 0.15 0.24 0.99 0.09 0.29 0.18 0.000 0.001 0.001 0.002 0.25 0.001

RSD 12.58 8.66 2.69 9.29 15.49 16.64 12.52 8.48 15.78 10.26 26.65 24.43

IZN/16

Mean 1.55 2.29 35.42 0.90 4.21 0.88 50 140 90 300 1.57 80

SD 0.25 0.31 0.77 0.06 0.73 0.06 0.001 0.001 0.001 0.005 0.30 0.002

RSD 16.27 13.72 2.17 6.65 17.37 7.04 14.06 8.15 10.89 17.91 19.09 23.08

IZN/17

Mean 1.37 3.01 34.78 1.01 2.69 1.15 50 110 50 350 1.43 50

SD 0.15 0.35 1.08 0.13 0.44 0.12 0.001 0.001 0.000 0.012 0.2 0.001

RSD 10.89 11.51 3.10 13.10 16.25 10.83 12.66 11.01 9.79 35.21 13.79 21.25

IZN/19

Mean 1.70 2.80 35.37 1.02 3.50 1.22 40 170 50 270 1.04 40

SD 0.13 0.35 0.74 0.10 0.43 0.12 0.001 0.001 0.001 0.004 0.36 0.001

RSD 7.76 12.40 2.09 9.60 12.39 9.89 16.02 6.79 17.33 14.24 34.54 33.87

* Rb, Sr, Zr, Ba, and Bi content in ppm; others in wt%; Na not measured with p-XRF.
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Table 2. Mean elemental composition measured by p-XRF for sherd glazes on different spots and
corresponding standard deviation, absolute (SD) and relative (RSD).

Glaze Data Mg Al Si K Ca Ti V Sn Sb Ba * Pb Bi *

IZN/15

Mean 0.76 0.73 24.52 0.66 1.17 0.18 0.24 0.26 0.19 600 33.80 690

SD 0.19 0.15 0.85 0.11 0.30 0.10 0.08 0.03 0.02 0.02 2.74 0.008

RSD 25.16 20.42 3.45 16.60 25.74 53.31 34.42 10.58 11.76 35.51 8.10 12.16

IZN/16

Mean 0.35 0.35 28.37 0.95 0.74 0.10 0.11 2.42 0.05 500 25.02 710

SD 0.18 0.05 0.42 0.15 0.07 0.02 0.10 0.08 0.01 0.01 0.70 0.012

RSD 49.59 14.78 1.49 15.43 10.08 15.22 91.31 3.16 9.99 24.72 2.79 16.64

IZN/17

Mean 0.77 1.11 24.51 0.89 1.03 0.15 0.24 0.36 0.10 500 32.91 670

SD 0.11 0.47 1.51 0.24 0.21 0.04 0.09 0.05 0.01 0.01 3.64 0.012

RSD 13.60 42.40 6.16 26.79 20.65 27.35 36.01 13.99 12.81 23.85 11.05 17.52

IZN/19

Mean 1.10 0.67 17.53 0.63 2.54 0.54 0.29 0.23 0.40 600 41.93 840

SD 0.34 0.17 2.72 0.07 0.44 0.52 0.03 0.03 0.04 0.03 4.95 0.012

RSD 30.68 25.61 15.54 10.37 17.39 97.11 11.02 14.90 10.74 45.23 11.80 14.16

* Ba and Bi content in ppm; others in wt%.

Table 3. Mean elemental composition (wt%) measured by p-XRF for blue glazed areas on different
spots and corresponding standard deviation, absolute (SD), and relative (RSD).

Blue Data Si V Cr Mn Fe Co Ni Cu Zn Sn Pb Bi

IZN/15

Mean 23.60 0.28 0.04 0.01 0.26 0.04 0.02 0.23 0.01 0.28 36.02 0.10

SD 0.27 0.01 0.01 0.01 0.02 0.01 0.01 0.14 0.00 0.01 0.52 0.01

RSD 1.16 3.10 12.48 47.42 8.13 32.55 32.55 63.29 14.37 4.53 1.43 14.93

IZN/16

Mean 28.17 0.10 0.04 0.02 0.30 0.03 0.01 0.36 0.01 2.42 25.25 0.11

SD 0.50 0.10 0.02 0.01 0.02 0.01 0.00 0.02 0.00 0.07 0.46 0.01

RSD 1.79 100 38.04 24.19 5.93 17.01 25.85 6.38 18.88 3.08 1.81 12.65

IZN/17

Mean 23.77 0.25 0.04 0.04 0.30 0.05 0.02 0.16 0.01 0.38 34.40 0.11

SD 1.00 0.08 0.01 0.01 0.02 0.01 0.00 0.04 0.00 0.03 2.53 0.01

RSD 4.22 33.58 15.02 16.62 5.50 15.10 19.16 28.17 13.60 8.61 7.35 10.23

IZN/19

Mean 17.15 0.29 0.09 0.04 0.44 0.03 0.02 0.36 0.02 0.23 43.27 0.08

SD 1.46 0.02 0.05 0.01 0.09 0.01 0.00 0.04 0.00 0.02 2.49 0.01

RSD 8.49 6.12 54.21 20.28 20.74 26.11 20.84 11.03 7.79 9.31 5.75 10.65

IZN RSDmax 8.5 100 54 47 21 33 33 65 19 9 7 15

Ref [3] Error * <15 - - <40 <70 <65 - <80 150 <25 >50 -

Err/RSD 6 - - 10 18 - - 8 5 3 28 -

* From oxide data [3].
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Figure 3. (a) Comparison of the minimum (PbO pure matrix, solid line arrow) and maximum
(SiO2 matrix, dashed line arrow) X-ray penetration depths for low-Z (Mg, Al, Si, K, and Ca) and high
Z-elements (Pb, Sn, and Ba for the glaze; V, Mn, Fe, Co, Ni, Cu, and and Bi for the blue coloured area)
in a glazed ceramic; (b) increasing variation of glaze thicknesses for the same set of Iznik ceramics.
See Figure A5 for the frequency distribution of the glaze thickness.

2.3. Errors and Representativeness of the Measurements

Unfortunately, the measurement of the low-Z elements with p-XRF constitutes some problems,
either very light elements (Na, O, C, and B) cannot be measured, or the measurement is very limited
(Mg, Al, and Si) from the top toward the inner surface of the sample (Figure 3a), and this can undergo
surface cation leaching and corrosion [58]. Fluxing elements (K, Na, Ca, and B), which are required to
melt the glass and glaze, belong to the light elements group. The measurement of the glass standards
show that the error rate varies between 75% and 850% for Mg and 6.5–9.5% for Si. Pb is also a major
fluxing element. As sketched in Figure 3a, the penetration depth of the X-ray beam, which is used
to measure K (and L) lines, is small, similar, or larger than the thickness of the glaze, which varies
between ~100 and 400 µm for Iznik ceramics (Figure 3b) and the absorption is found to increase with
the PbO content.

The number of elements used as colouring agents, dissolved in the (amorphous) glaze or pigment
dispersed in the glaze, is always limited and depends on the colouring power. For instance, due to
its high colouring power (absorption in the middle range (~500 nm) of the visible spectrum, where
human eye detection is at the top [59]), 0.1 to 0.5 wt% of CoO gives a dark blue colour and 0.01 wt%
can be sufficient to give light blue [3,32,33]. Other metal transition elements (Mn, Fe, Ni, and Cu) are
also important colouring agents, with less power of colouration due to their main absorption occurring
before or after the maximum sensitivity of the human eye. Consequently, their amount is generally
higher than that of cobalt (up to a 1 wt% or more) when they are used as colouring agents. But the
amount is strongly decreased when these elements are found only as impurities of the element selected
as a colouring agent. Nevertheless, the penetration of the photons is sufficient to analyse the colouring
elements in and under the glaze (part of the decor can be drawn on the body (on over a slip) before
the deposition of the glaze (and below)). p-XRF is thus well adapted for the study of coloured glazes.
Penetration of the energetic X-rays used to determine heavy elements such as tin (the main opacifying
agent of ancient, glazed pottery) is much larger than that of the glaze. Tin is rather rare and costly and
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thus absent (or found only as very small traces) in the lead-containing frit (crushed glass) present in the
composition of Iznik bodies, so it does not affect the representativeness of the measure. Although the
penetration depth of lead (1.13 mm) is also larger than the thickness of the glaze layer, the measurement
accuracy of the glaze is not affected by the penetration of X-rays, because the lead content (see Table 1
for the sherds IZN/15, IZN/16, IZN/17, and IZN/19) in Iznik pastes is much lower in the composition of
the body (1–4 wt%) than in the glaze [60].

The amount of element in the probed volume is also an important factor. As shown didactically
in Figure 4, Si and Al are the major elements that build the phase structures of the ceramic body and
glaze. Measurement of the major elements is not affected by the Limit of Detection (LOD), and it can
be anticipated that the heterogeneity of the artefact in the probed volume will determine the standard
deviation measured for a given artefact. The LOD might be considered for colouring elements and
associated impurities, thus the low amount of these elements and their heterogeneous distribution
in the probed volume play an important role. The beam surface of the handheld instrument (1 cm2)
is large, though an analysis from a smaller surface is possible with the later generation instruments
(~1 mm2) [61], but a motorised XYZ stage is required that limits the use of these instruments outside.
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6.5%, for SRM612 9.3%, and for Corning A standard, the rate is 7.8%. However, K and Ca, used as 
fluxing agents in the composition of the glaze, have similar concentrations, which allows a better 
classification of the samples. Additionally, the variation in the time-dependent measurement of the 
same standard is very narrow, showing the consistency of the semi-quantitative XRF data. If a new 
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Figure 4. Tree clustering dendrograms of glaze (a), body (b), and blue coloured layer (c), which
show the representative oxide compositions; below, the maximum (upper line, pure SiO2 matrix) and
minimum (pure PbO) penetration depth values in microns are given. The Euclidian clustering level
classifies well the major (Si, Ca, and Al in the body; Pb, Si in the glaze), the minor elements (fluxing
and colouring agents), and traces (e.g., Sr, Zr, and Rb in the glaze).

Binary and ternary scattering plots, which represent XRF data of the studied tiles (each sherd
shown in different coloured labels, see the legend of Figure 5) were drawn with the software Statistica
Academic Version 13. The hierarchical clustering diagrams (also known as dendrograms) were drawn
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with the same software. The similarity in the variables was calculated by “single linkage” amalgamation
and Euclidian distances. Additionally, the software of Microcal™ Origin® version: 6.0 is used for the
combination of the old and current data.
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Figure 5. Binary scatter plots of Al2O3 (wt%) versus SiO2 (wt%) in the glaze and body of the tiles IZN/15
(orange circle), IZN/16 (blue triangle), IZN/17 (green diamond), and IZN/19 (red square). Open labels
represent the data obtained from the glaze, and the solid labels represent the body analyses (#X: spot
number, see Appendix A). Ellipses are drawn as a guide for viewing for comparison with data obtained
on reference materials (Figure 2).

3. pXRF Methodology

Before starting the campaign of measurements with p-XRF, the instrument was tested with the
appropriate reference standards. The previous similar studies show that for the ceramic analyses,
both glasses and red mud standards are used to reveal the reliability of the technique [29,30]. Therefore,
two standards of NIST (SRM610 and SRM612) and a Corning A glass standard were measured with
different acquisition times and different built-in calibration modes. Table A1 in the Appendix A
presents the elemental composition of the standards recorded at 5, 10, 15, 20, 30, 60, 120, 180, and
360 s. The amount of Mg, a very low Z element, is seen to be quite high in comparison with the high
precision analysis of the reference standard with the laboratory-scale instruments. The error rate of
Mg is 842%, 0%, and 75% for NIST SRM610, SRM612, and Corning A, respectively. However, for Si,
the error rate is below 10%, which is acceptable for a reliable measurement. For SRM, 610 is 6.5%,
for SRM612 9.3%, and for Corning A standard, the rate is 7.8%. However, K and Ca, used as fluxing
agents in the composition of the glaze, have similar concentrations, which allows a better classification
of the samples. Additionally, the variation in the time-dependent measurement of the same standard is
very narrow, showing the consistency of the semi-quantitative XRF data. If a new configuration will
allow the use of a tripod with the instrument, 120 s of acquisition time will be also satisfactory for the
determination of the elemental composition of the body. Instead, 30 s of acquisition time is the optimal
parameter for the quantification of trace elements found in the coloured areas, in this case the blue
decor. Built-in calibration modes enable a better quantification of the XRF data, but only if they are
selected properly. After optimizing the acquisition time, we tested different methods on the NIST and
Corning standards. The rare earth elements mode uses higher energy, 50 keV, than the other calibration
methods (45 keV), which allows a better distinction of the high Z elements to be made. In the case of
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glazed ceramics, the reading of both low-Z and high-Z elements is correlatively important. Only with
the Mining Light Elements method can the elements Si, Al, and Mg be determined.

4. Results—Materials: Microstructure and Elemental Composition

4.1. Body

Previous on-site studies at Iznik Tile Kilns Excavation identified three types of paste composition:
(i) Group #1: the low amount of quartz (~50 wt% SiO2) and high alumina (12–16 wt% Al2O3), briefly
named “clayey body”; (ii) Group #2: a high amount of quartz (65–85 wt%) and low alumina (3–6 wt%),
named “fritware/stonepaste”; (iii) Group #3: the medium amount of quartz (39–62 wt%), low alumina
(3.6–6.3 wt%), and high amount of calcium (11–27.5 wt% CaO), described as a calcareous-rich clayey
body. The tiles, which are used in this study for the statistical analyses, contain mainly 72–81 wt%
SiO2, 3.5–7 wt% Al2O3, and 2.1–7.8 wt% CaO, and so refer to the group classified as stonepaste #2 [32].
The visual examination permitted a certain way of distinguishing the colour variation of the paste for
these three groups. The body of Group #1, which represents the earlier productions of Iznik (14th-
and 15th-centuries) in the form of “brick”, has a reddish appearance. Group #2, which refers to the
productions of the classical period of Iznik (16th-century), is whitish, and Group #3, which corresponds
principally to the later productions (end of 16th and 17th centuries), appears light beige. The tiles
studied in this research are assumed to be produced between the 16th and 17th centuries. IZN/15, 16,
and 17 belong to the group of “blue-and-white” productions, while IZN/19 is an example of “Rhodes”
work. The colour of the paste varies from relatively dark (IZN/15, 16) to light beige (IZN/17) and
off-white (IZN/19). The sherds IZN/15, IZN/17, and IZN/19 have a slip layer of around 1.5 mm in
thickness, while the slip layer of the sherd IZN/16 is thinner.

The mean elemental compositions of the elements and standard deviations are given in Table 1,
and the complete results obtained from ten single points of measurement are shown in Table A2.
Corresponding oxide compositions are given in Appendix A, but we must underline that a major
element is not measured, which is sodium. It should be noted that the glaze and body components of
ceramics are formed in oxide structures (as presented in Figures 5 and 6), but the penetration depths
are calculated as a function of the absorption parameter for the representative elements found in the
mixture of the raw materials used for the body and lead-based glaze, as well as their thicknesses
(schematised as silica and lead oxide respectively in Figure 4).

Penetration depths are given for both pure silica and lead oxide, the first model being representative
of the body; the penetration depth in the glaze will be intermediate between that calculated for pure
silica and lead oxide. Moreover, Figure 3 visualizes the differences of the constituents between body,
glaze, and (blue) coloured glazed areas.

The binary scatter plots of Al2O3 (derived from the clay) versus SiO2 (derived from the quartz)
represent different groups of Iznik productions (Group 1–3) concerning the elemental composition of
the glaze and body [32,33]. The addition of the new data in the representative plot (see further) will
lead to identifying in which group the new materials are included. Figure 5 shows that the variation of
the matrix composition in the glaze is larger than that in the body. It also represents the heterogeneity
of the glaze layer, which is higher due to the partial differences of the thickness, composition of the
major and minor constituents, and existence of surface defects. The subgroups, which represent the
differences of the measurement points, are evidenced in the analysis of both glaze and body layers.
In the case of body analysis, the dimensions of the porosity and presence of different mineral phases
affected the results and lead to subgrouping. Glaze subgrouping is associated with defects observed
with the p-XRF camera.
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Lines are drawn as a guide for viewing (See Figure 4 for labels, #X: spot number, see Appendix A).

Examination of Figure 5 shows that variation of about ± 5% for SiO2 wt% and of ± 0.5% for
Al2O3 wt% can be considered as the variability arising from the heterogeneity of the tiles. Comparison
between Figure 2 (reference materials) and Figure 5 (Iznik materials) clearly shows that the scattering
of the values arises from the local heterogeneity of the artefacts. The variation is a little smaller than
the RSDmax, because some discrepancies are correlated to defects observed at the camera before the
measurements (Figure A2, IZN/15: #4, #5; IZN/17: #2, #5, #7; IZN/19: #2, #4, #5). The LOD value of
potassium (K2O/SiO2 ~< 0.01) was found to be almost the same in the glaze and body layers measured
with the p-XRF instrument in comparison with SEM-EDS analyses carried out at the laboratory [62].
The content of potassium oxide in the body appears quasi-independent of the amount of calcium for the
tiles IZN/16 and 19, by showing that K2O is not related to the composition of the clay found in the body,
but may refer to an impurity associated with quartz (potentially K-feldspar). On the contrary, the body
composition of the tiles IZN/15 and 17 contains proportionally potassium and calcium oxide, and these
may come from the clay. The large distribution of the amount of calcium oxide found in the glaze of
IZN/19 reveals explicitly the dull appearance of the glaze. Here also (Figure 6), the subgroupings of the
measurement points (for example for IZN/17, #2, 5, and 7) in the glaze refer to the tarnished surfaces.
Errors are ± 0.025 for the CaO/SiO2 ratio and 0.01 for the K2O/SiO2 ratio.

4.2. Glaze

The glaze of the Iznik tiles belongs to the lead-alkali type (20–45 wt% PbO, 8–14 wt% Na2O)
with a tin oxide content of 0.1 to 8 wt% [49,62]. Unfortunately, p-XRF cannot measure the Na content.
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In Table 2 and in the Figure 5 diagram, the lower content of SiO2 and Al2O3 in comparison with the
body composition is obvious and results from the relatively large amount of PbO present (25–40 wt%
PbO, Table A3). The thickness of the glazes may be divided into two groups: namely, thick and thin.
The two tiles, IZN/16 and 19, contain a glaze of 0.30 mm in thickness. However, the glazes of the
tiles IZN/15 and IZN/17 have a thickness of around 0.15 mm. From the binary scatter plots shown in
Figure 7, we observed that the tiles IZN/15 and IZN/17 have a similar but larger variation of lead oxide
(min 27 wt%–max. 36 wt% PbO), while IZN/16 has a more homogeneous glaze layer that contains
24–27 wt% PbO. Moreover, the (dissolved) tin oxide content of IZN/16 is around 2.4 wt%, which refers
to its intentional addition in the glaze. However, IZN/15 and IZN/17 contain dissolved tin oxide
less than 0.5 wt%, which may be an impurity of lead. Previous studies demonstrated that tin oxide
content decreases by centuries, from the 15th to the end of the 16th century, and the productions of
17th centuries do not contain any tin in both the transparent glaze and coloured decor [32,33].
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The standard and relative standard deviation (RSD) factors are calculated for the major (Si, Pb,
and wt%), minor (Mg, Al, K, Ca, Ti, V, Sn, Sb, and wt%), and trace elements (Ba, Bi, and ppm) found in
the transparent glaze (Table 2). The low value of RSD Si of IZN/16, which is found to be 1.49%, confirms
the observation of the glossy finish of the glaze. Therefore, the dispersion of the results is smaller than
in the other three tiles. In contrast, the tile IZN/19, which has a dull surface due to the corrosion and/or
improper firing, has a bigger RSD for Si (15.5%). Moreover, the variation of tin is also smaller for the
tile IZN/16 (RSD Sn: 3.16%), which refers to its intentional addition as an opacifier. In the other tiles,
the presence of tin appears probably as an impurity in the lead source. The physical properties of the
surface analyzed directly affect the consistency of the measurements of the composition. The flatness
of the surface, the absence of porosity, and the smaller dimensions of the grains lower the standard
deviation, and thus this increases the reliability of the measurements with p-XRF. Furthermore, it is
observed that the major elements found in the glaze are not affected by the thickness of the layer
(0.15 µm for IZN/15 and IZN/17; 0.30–0.35 µm for IZN/16 and IZN/19).

For the glaze analysis, the differences in the composition derived from the quality of the surface,
which turned the transparent glaze to yellowish colour and changed the elemental composition.
The higher content of silica (SiO2) and lower content of alumina (Al2O3) may decrease the resistance to
corrosive attacks that have occurred under the soil [63]. Therefore, the corrosion resistance of IZN/16 is
less than the other sherds. The less-well preserved glazed surface of the other samples is thus due to
their pristine poor state: they are rubbish, and this has certainly been the reason for their rejection.
Hence, an integrated camera in the p-XRF instrument is preferred for the characterization of ancient
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ceramics to visualise the focused zones and choose the different facies before each measurement of the
glaze, coloured areas, and body (Appendix A).

The binary scatter plots of SnO2 versus PbO show the linear correlation of lead and tin, which
refers to the use of the same raw material and is only different for the glaze of IZN/16. The Pb/Sn
ratio is found to be 10.3, which confirms the literature data presented for opaque white glazes [49,64].
A further study with Raman spectroscopy (non-invasive) or SEM-EDS (micro-destructive) is needed to
see if the tin remains dissolved or precipitated in the form of cassiterite. The other three tiles contain
almost no tin, which may not have been added intentionally, but is present as an impurity in the lead.

4.3. Blue Colouring Agent

Colouring a glass (i.e., a glaze) is an advanced technology that uses some rather rare elements.
This is the case for the blue colour that can be obtained only by three routes, namely, cobalt and lapis
lazuli in the past and V-doped zircon for a few decades more recently [65]. Consequently, long-distance
trading was established both for lapis lazuli [66] and cobalt [65]. The main sources of cobalt are
European [67], Persian [68], and Asian [69,70]. It is reported that ancient Chinese texts mention the
importation of different types of “blue ores” that have been coming from Islamic countries and/or
from Europe [38]. Due to different orogenesis, the composition of Asian and European/Persian ores
are different. The latter are arsenic salts, although the Asian sources are arsenic-free and generally
richer in Mn (and Fe) than in Co [65,66], with Mn/Co ratio up to 5. The presence of Mn and Fe impose
a firing under reducing atmosphere to produce a blue colour. Both have associated transition metals
(Fe, Mn, Ni, Cu, and Co), but the relative ratios vary and some other elements like Bi or Zn are also
identified [65–78].

Before the chemical analyses were undertaken, a visual examination of the sherds revealed the
differences in the hue of the blue-coloured areas, which is darker in IZN/16 compared to the other tiles
IZN/15, IZN/17, and IZN/19. The elemental measurements (Table 3; corresponding oxide compositions
in Table A4) showed that these three tiles contain a similar amount of Co (0.03 to 0.05 wt%), Mn (0.01 to
0.04 wt%), Fe (0.3 to 0.4 wt%), Ni (0.02 to 0.03 wt%), and Zn (0.01 to 0.02 wt%) without arsenic, but the
copper content slightly varies between 0.16 wt% (IZN/17) and 0.36 wt% (IZN/16 and IZN/19). Even the
compositions are relatively similar, the ratios of the elements (Co/Ni, Co/Mn, etc.) may be evidence of
more specific findings. Co/Ni ratios for IZN/15, IZN/16, IZN/17, and IZN/19 are, respectively, 2, 3, 2.5,
and 1.5, while the Co/Mn ratios are 4, 1.5, 1.25, and 0.75.

The data of Liu et al. [3], measured on blue glass beads, i.e., a homogeneous and infinite sample,
shows that the error of p-XRF measurement in comparison with ICP-AES is small for the major
elements, varying between 1% and 12% and much higher for minor and trace elements, which change
between 10 and 400%, the largest values being observed for the light and trace elements. Since the
volume probed for the light elements (Figure 3) will be small, the results may be affected by corrosion.
Indeed, the smallest RSDs regarding the glaze elements are measured for the sample exhibiting the
highest gloss (IZN/16), and the largest for that exhibiting a degraded surface (IZN/19, Figures 5–7),
as observed for the “white” areas. The major, low-Z elements such as Si have a smaller RSD value than
the transition metals (Cr, Mn, Co, Ni, Cu, and Zn), and the RSD is medium for Sn and Pb, which shows
a better homogeneity in comparison with the dissolved colouring agents in the glaze or underglaze.
Similar errors are observed in our samples. The maximum RSD factor measured for Si on an Iznik
tile is 8.5% (Table 3). We can expect that the error will be similar for the second major element, Pb;
here, the RSDmax is equal to 7%, close to the value observed for Sn (RSDmax = 9%). RSDmax values
measured for cobalt and associated elements range between 15% and 100% of the same order of the
error given by Liu et al. [3] for these elements.

The dispersion of the blue colourants shown in the ternary scatter plots of CoO-NiO-MnO is
comparable for all the tiles except IZN/19. Additionally, the variance of IZN/15 is slightly higher
than IZN/16 and IZN/17. For these elements, the probed volume is of the same order of the glaze
thickness and this is consistent with the similar dispersion of the data shown in Figure 8 and Table 3.
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No differences can be related to the varied thicknesses (IZN 16 & IZN19 = 300 µm; IZN 15 & IZN 17
= 150 µm). Note that the elongation of the ellipses drawn in Figure 7 is plotted alongside the lines
between fixed Co/Ni and Co/Mn ratios. This could be due to the occurrence of a mixture between
two cobalt ores, respectively, Ni and Mn-rich, from different origins or to the presence of different
compositions in the ore mined in the same location (see further). In contrast, significant differences are
observed in the graph of Bi2O3-CoO-ZnO by revealing a very narrow variation for IZN/16, like that
already observed in the binary scatter plots of SnO2 versus PbO. This is assigned to the high quality
(preparation and preservation) of the IZN/16 glaze. The significant content of ZnO found in the blue
coloured area of IZN/19 relates directly to the yellowish colour of the glaze in which Zn is added in the
pyrochlore solid solution (Pb2-XM′XM2-YM”YO7-δ with M, M” = Sb, Sn, Fe, Si, Zn; M′ = RE) that gives
the characteristic Naples yellow colour [61].
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which Bi is detected. 
  

Figure 8. Ternary scatter plots of CoO, NiO, and MnO (left), and CoO, Bi2O3, ZnO (right) normalized
by SiO2 found in the blue coloured areas (#X: spot number, see Appendix A). Lines and ellipses are
drawn as a guide for viewing.

The amount of copper appears more random, being narrow only for the IZN/16 sample (Figure 9).
There is not a direct relationship with the Co content. This can be explained by the fact that copper
occurs as an impurity in other raw materials. The highest content is observed for the IZN/19 glaze in
which Bi is detected.Heritage 2020, 3 FOR PEER REVIEW  15 of 27 

 

 
Figure 9. Binary scatter plots of CuO versus CoO normalized by SiO2, found in the blue-coloured 
areas (#X: spot number, see Appendix A). Lines and ellipses are drawn as a guide for viewing. 

5. Discussion: Comparison of the Results with the Previous Measurements 

The results of the previous measurements, which were performed on the Iznik tiles preserved 
as the wall revetments of the holy places in Edirne [33] and unearthed materials of the previous 
excavation seasons [32], are also included in Figure 10 to obtain an overall assessment of the Iznik 
tiles produced with different technologies in different periods (mainly between the 14th and 17th 
centuries). The ellipses in Figure 8 are also drawn in Figure 10 to facilitate the comparison of the 
reference results of IZN/15, 16, 17, and 19 with the previous ones carried out at different sites (Edirne 
and Iznik). Data collected on different buildings from different sites are more scattered than those 
recorded on reference sherds, but the distribution along the lines drawn in Figure 8 was validated 
also in Figure 10. This plot is consistent with the use of different cobalt ores containing different ratios 
of Ni/Co, Mn/Co, and Bi2O3/CoO, which is also consistent with the literature data [32,33,65–78]. The 
differences in the composition of various samples are thus significant. 

 
Figure 10. Comparison of the intrinsic variability measured on IZN samples with a set of 
measurements made on the blue areas of sherds previously excavated from Iznik kilns [32] and on 
tiles of Edirne mosque (Şah Melek Paşa (1429), Üç Şerefeli (1410–1447), Muradiye (1435–1436), and 
Selimiye (1569–1575) [33]. Ellipses of Figure 7 have been reported in the previous section. 

Figure 9. Binary scatter plots of CuO versus CoO normalized by SiO2, found in the blue-coloured areas
(#X: spot number, see Appendix A). Lines and ellipses are drawn as a guide for viewing.



Heritage 2020, 3 1317

5. Discussion: Comparison of the Results with the Previous Measurements

The results of the previous measurements, which were performed on the Iznik tiles preserved
as the wall revetments of the holy places in Edirne [33] and unearthed materials of the previous
excavation seasons [32], are also included in Figure 10 to obtain an overall assessment of the Iznik
tiles produced with different technologies in different periods (mainly between the 14th and 17th
centuries). The ellipses in Figure 8 are also drawn in Figure 10 to facilitate the comparison of the
reference results of IZN/15, 16, 17, and 19 with the previous ones carried out at different sites (Edirne
and Iznik). Data collected on different buildings from different sites are more scattered than those
recorded on reference sherds, but the distribution along the lines drawn in Figure 8 was validated
also in Figure 10. This plot is consistent with the use of different cobalt ores containing different
ratios of Ni/Co, Mn/Co, and Bi2O3/CoO, which is also consistent with the literature data [32,33,65–78].
The differences in the composition of various samples are thus significant.

Heritage 2020, 3 FOR PEER REVIEW  15 of 27 

 

 
Figure 9. Binary scatter plots of CuO versus CoO normalized by SiO2, found in the blue-coloured 
areas (#X: spot number, see Appendix A). Lines and ellipses are drawn as a guide for viewing. 

5. Discussion: Comparison of the Results with the Previous Measurements 

The results of the previous measurements, which were performed on the Iznik tiles preserved 
as the wall revetments of the holy places in Edirne [33] and unearthed materials of the previous 
excavation seasons [32], are also included in Figure 10 to obtain an overall assessment of the Iznik 
tiles produced with different technologies in different periods (mainly between the 14th and 17th 
centuries). The ellipses in Figure 8 are also drawn in Figure 10 to facilitate the comparison of the 
reference results of IZN/15, 16, 17, and 19 with the previous ones carried out at different sites (Edirne 
and Iznik). Data collected on different buildings from different sites are more scattered than those 
recorded on reference sherds, but the distribution along the lines drawn in Figure 8 was validated 
also in Figure 10. This plot is consistent with the use of different cobalt ores containing different ratios 
of Ni/Co, Mn/Co, and Bi2O3/CoO, which is also consistent with the literature data [32,33,65–78]. The 
differences in the composition of various samples are thus significant. 

 
Figure 10. Comparison of the intrinsic variability measured on IZN samples with a set of 
measurements made on the blue areas of sherds previously excavated from Iznik kilns [32] and on 
tiles of Edirne mosque (Şah Melek Paşa (1429), Üç Şerefeli (1410–1447), Muradiye (1435–1436), and 
Selimiye (1569–1575) [33]. Ellipses of Figure 7 have been reported in the previous section. 

Figure 10. Comparison of the intrinsic variability measured on IZN samples with a set of measurements
made on the blue areas of sherds previously excavated from Iznik kilns [32] and on tiles of Edirne mosque
(Şah Melek Paşa (1429), Üç Şerefeli (1410–1447), Muradiye (1435–1436), and Selimiye (1569–1575) [33].
Ellipses of Figure 7 have been reported in the previous section.

The clustering of different groups arises from either the use of the same raw materials with different
concentrations or from different ores. The specific cases of the blue pigment appeared in the wall
revetments of Edirne mosques. The blue of Üç Şerefeli Mosque (1410–1447) is rich in Bi2O3 and NiO,
while Şah Melek Paşa (1429) is richer in MnO. Some of the tiles of Selimiye Mosque (1569–1575) have a
blue pigment that is rich in MnO and poor in NiO. The ratio of Al2O3 versus SiO2 plotted in Figure 11
shows that the sherds studied in this paper belong to the group 2 described previously in the first study
of the unearthed materials, and the dispersion of the measurements is very limited. The scattering of
the glaze data is also narrow but confirms explicitly the use of different glaze technologies related to
the different ceramic workshop and/or the artist. The scattering of the data is very similar.

Figure 12 shows the corresponding Euclidian hierarchical dendrogram for the content of Al2O3

and SiO2 in the glaze. Lower levels are not significant. The specificity of the Üç Şerefeli tile technology
is obvious, as well as the presence of two glazing technology for the Muradiye tiles. The tiles studied
in this paper are similar to the tiles of Edirne’s mosques, except for some blue-and-white tiles of the
Muradiye Mosque. However, IZN/16 is more comparable with the tiles of the Üç Şerefeli and Şah
Melek Paşa Mosques.
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Figure 11. Comparison of the intrinsic variability measured on IZN samples with a series of
measurements made on transparent, glazed, white-coloured areas and the body of sherds previously
excavated from Iznik kilns and measured on-site on white glaze [32,33]. A zoomed plot is given for the
glaze data (bottom right).
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Figure 12. Clustering diagram comparing data collected on IZN samples with those collected on-site at
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sherds examined in this study where only the higher hierarchical levels make sense. On the left side of
the diagram, previous materials studied at the Iznik Tile Kilns Excavation [32] are clustered.



Heritage 2020, 3 1319

The reliability of the p-XRF measurements for the comparison and classification of the body
and glaze layers is thus good and valid for on-site measurements. In Figure 13, the application of a
mean error of about 15% for Si and Pb to the measurement data shows that previous conclusions are
not perturbed and that the comparison of the Sn/Pb ratio is a good tool to follow the technological
evolution of the Ottoman glazing technique and its relationship with its Seljuk precursors.Heritage 2020, 3 FOR PEER REVIEW  18 of 27 
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Figure 13. Comparison of the Sn/Pb and Co/Mn ratio for a series of measurements made on white and
blue glazed areas of Iznik tiles [32,33]. The error bar is deduced from the present work.

The uncertainty of the measurement of the Co/Mn ratio is much more important. As visible in
Figures 8 and 10, the data are scattered along lines with a variable Co/Mn ratio. The nearest cobalt
source being Kashan mining, it is tempting to assume that the cobalt ores are coming from Persia.
Alternative importation from Europe (Erzgebirge) has been proposed by Porter [78] when bismuth
is detected, according to geological studies [67]. A study of Kashan ores by Matin and Pollard [79]
shows the variation of the Mn/Co ratio from 1 to 10 as a function of the ore sample collected, which is
consistent with the scattered data observed for these IZN samples. The Ni content is rather constant,
which looks also consistent with the variability observed for IZN references and some Edirne mosque
tiles. Here also, the Üç Şerefeli mosque tiles, which are rich in bismuth, may be made with other cobalt
ores, and most likely with European cobalt ores. The estimation of the error is thus rougher, varying
between 50% and 200%. An illustration of the increasing error with the decreasing cobalt content has
been applied to Figure 12. This does not modify the main classification previously proposed [33].

6. Conclusions

The study of the reference unearthed ceramic samples allows the exploration of the uncertainty of
p-XRF regarding the exhaustive information that corresponds to the composition measured on the
glazed ceramics, even when the glaze has lost its gloss. To determine the reliability of the instrument,
an external calibration procedure must be first applied before the measurement campaign. Similar
reference standards of the real artefacts will be used for providing the optimum measurement conditions.
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With this aim, NIST (SRM610 and SRM612) and Corning A glass standards were analysed at varied
acquisition times (from 5 to 360 s) by using different built-in modes (Mining, Mining Light Elements,
Soil, and Rare Earth Elements). As a result of the analyses, 30 s of radiation time is found optimal for
the semi-quantitative characterization of lighter and heavier elements when the instrument is used
manually under the special conditions of measurements, which are made on site with only limited
accessibility. Additionally, Mining Light Elements calibration was the most accurate mode to quantify
the amount of silicon and aluminum.

After the pre-measurement of the standards, four tiles were measured by focusing ten single
points on each layer (comprising the transparent glaze, blue coloured area, and body). The data appear
reliable for the major elements and their comparison of the elemental ratio for transition metals, the
penetration depth probed being rather similar to the thickness of the glaze. We can anticipate that
the analysis of pottery with a thin glaze layer (<~100 µm) will be significantly perturbed by the
contribution of the sub-layer(s), slip, or body. The choice of the surface probed with a camera allows
the elimination of areas that are not representative (such as defects and the mixing of coloured areas).
Moreover, the proper calibration mode should be chosen for the right materials. The instrument used
in this study has a rather large spot (a few mm2), which averages the information acquired for the body
(coarser grains ~x µm) and the glaze. The anisotropy of the scattering of the data in CoO-MnO-NiO
measured on the blue areas is consistent with the use of heterogeneous ores such as those from Kashan
Mining (Persia). Consideration of the Bi content gives a strong argument to support the use of a special
cobalt source for the Üç Şerefeli mosque tiles, likely European.
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Appendix A

Appendix A.1 Analyzed Spots

Each single “studied spot” in the body, transparent glaze, and blue coloured areas is shown in
Figures A1–A4.
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Appendix A.2 Glaze Thickness

The thickness of the glaze measured for a series of sherds excavated at Iznik Tile Kilns is shown
in Figure A5.
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Table A1. XRF data (wt%) showing the measurements with different acquisitions times (5, 10, 15, 20,
30, 60, 120, 180, and 360 s) carried out on the glass standards of NIST (SRM 610 and 612) and Corning A
in comparison with the data found in the literature.

Label Acquisition Time MgO Al2O3 SiO2 K2O CaO Fe2O3 Rb2O SrO ZrO2 PbO

SRM610

360 s 0.65 2.34 77.39 0.26 0.00 11.00 0.00 0.07 0.13 0.65
180 s 0.71 2.37 77.49 0.25 0.00 10.89 0.00 0.06 0.11 0.71
120 s 0.66 2.36 77.54 0.26 0.00 10.90 0.00 0.06 0.12 0.66
60 s 0.68 2.36 77.44 0.25 0.00 10.97 0.00 0.06 0.13 0.68
30 s 0.66 2.32 77.03 0.25 0.00 11.32 0.00 0.06 0.12 0.66
20 s 0.41 2.36 77.55 0.24 0.00 11.07 0.00 0.08 0.12 0.41
15 s 0.31 2.40 77.62 0.24 0.00 11.02 0.00 0.07 0.12 0.31
10 s 1.33 2.43 76.30 0.28 0.00 11.22 0.00 0.05 0.12 1.33
5 s 0.00 2.18 77.44 0.25 0.00 11.62 0.00 0.06 0.13 0.00

Ref [55] 0.07 2.11 72.28 0.12 0.06 11.83 0.08 0.05 0.06 0.07

SRM612

360 s 0.35 2.14 78.46 0.12 0.00 12.20 0.00 0.01 0.00 0.35
180 s 0.34 2.16 78.50 0.12 0.00 12.16 0.00 0.01 0.00 0.34
120 s 0.39 2.10 78.24 0.11 0.00 12.36 0.00 0.01 0.00 0.39
60 s 0.00 2.10 78.60 0.12 0.00 12.41 0.00 0.01 0.00 0.00
30 s 0.00 2.06 78.48 0.12 0.00 12.52 0.00 0.02 0.00 0.00
20 s 0.30 2.12 78.30 0.15 0.00 12.31 0.00 0.01 0.00 0.30
15 s 0.00 2.17 78.33 0.15 0.00 12.49 0.00 0.01 0.00 0.00
10 s 0.59 2.03 78.16 0.09 0.00 12.29 0.00 0.01 0.00 0.59
5 s 0.00 1.95 78.45 0.12 0.00 12.54 0.00 0.01 0.00 0.00

Ref [55] 0.00 2.10 71.79 0.01 0.01 11.91 0.01 0.01 0.02 0.00

Corning
A

360 s 4.77 1.14 72.00 0.21 2.96 5.27 1.01 0.99 1.26 4.77
180 s 4.99 1.20 71.67 0.20 2.83 5.03 0.99 1.01 1.27 4.99
120 s 4.87 1.25 71.78 0.21 2.83 5.03 0.99 1.02 1.27 4.87
60 s 4.50 1.12 71.81 0.18 2.94 5.28 1.08 1.05 1.28 4.50
30 s 4.67 1.22 71.30 0.17 2.93 5.25 1.10 1.09 1.36 4.67
20 s 4.59 1.24 71.76 0.20 2.85 5.10 0.97 1.01 1.33 4.59
15 s 4.48 1.25 71.96 0.20 2.85 5.15 0.99 1.03 1.27 4.48
10 s 5.15 1.14 71.19 0.20 2.92 5.13 1.00 1.08 1.32 5.15
5 s 5.86 1.21 70.88 0.21 2.78 4.96 1.04 1.05 1.22 5.86

Ref [56] 2.66 1.00 66.56 0.08 2.87 5.03 0.79 1.00 1.09 2.66
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Table A2. XRF data (wt%) showing the measurements #1 to #10 carried out on the body of IZN/15,
IZN/16, IZN/17, and IZN/19.

Label Spot MgO Al2O3 SiO2 K2O CaO Fe2O3 Rb2O SrO ZrO2 PbO

IZN/15

#1 2.11 5.19 80.21 1.16 2.22 1.28 0.00 0.01 0.00 0.63
#2 1.45 4.62 81.53 0.97 2.12 1.27 0.00 0.01 0.01 0.88
#3 2.03 4.78 78.80 1.07 2.68 1.44 0.00 0.01 0.01 0.89
#4 2.35 5.93 74.90 1.35 3.30 2.07 0.00 0.01 0.01 1.23
#5 1.88 5.17 80.26 1.22 2.19 1.40 0.00 0.01 0.00 0.70
#6 2.14 5.90 78.08 1.26 2.64 1.64 0.00 0.01 0.01 0.95
#7 2.02 5.33 77.49 1.17 2.77 1.81 0.01 0.01 0.01 1.12
#8 2.13 5.63 76.31 1.19 3.08 1.66 0.00 0.01 0.01 1.20
#9 2.40 5.69 76.21 1.12 3.02 1.30 0.00 0.01 0.01 1.58
#10 1.85 4.73 80.78 1.03 2.17 1.34 0.00 0.01 0.01 0.87

IZN/16

#1 2.97 4.67 75.23 1.06 5.64 1.20 0.01 0.02 0.01 1.85
#2 3.00 5.19 75.16 1.13 5.83 1.23 0.00 0.02 0.01 1.23
#3 2.38 3.54 77.18 1.04 6.00 1.19 0.01 0.02 0.01 1.39
#4 2.84 4.85 74.86 1.14 5.27 1.35 0.01 0.02 0.01 2.15
#5 2.43 4.67 72.90 1.18 7.83 1.46 0.01 0.02 0.01 2.07
#6 2.81 4.59 73.33 1.06 7.43 1.20 0.01 0.02 0.01 1.99
#7 2.81 4.77 76.81 1.20 4.61 1.31 0.00 0.01 0.01 1.24
#8 2.76 3.84 77.76 0.99 4.68 1.15 0.00 0.02 0.01 1.46
#9 1.66 3.51 77.04 0.99 6.37 1.23 0.01 0.02 0.01 1.71
#10 2.04 3.63 77.44 1.01 5.17 1.30 0.00 0.02 0.01 1.82

IZN/17

#1 2.29 5.18 76.00 1.08 3.92 1.52 0.01 0.01 0.01 1.40
#2 2.73 5.21 72.81 1.12 3.99 1.51 0.01 0.01 0.01 1.54
#3 2.25 6.68 72.27 1.43 3.92 1.81 0.01 0.01 0.01 1.56
#4 2.29 5.59 72.37 1.17 4.11 1.77 0.01 0.01 0.01 1.92
#5 2.49 7.09 72.08 1.57 3.71 2.04 0.01 0.01 0.01 1.69
#6 2.20 5.37 78.13 1.18 2.75 1.43 0.00 0.01 0.01 1.23
#7 2.14 5.19 74.34 1.11 4.41 1.63 0.00 0.01 0.01 1.44
#8 1.72 5.11 78.62 1.05 2.46 1.47 0.01 0.01 0.01 1.29
#9 2.19 5.48 74.60 1.16 4.29 1.58 0.01 0.01 0.01 1.46
#10 2.44 6.04 72.80 1.31 4.03 1.73 0.01 0.01 0.01 1.84

IZN/19

#1 2.83 6.48 73.10 1.44 5.49 1.94 0.01 0.02 0.01 1.04
#2 3.02 5.88 73.67 1.31 6.04 1.83 0.00 0.02 0.01 0.95
#3 2.78 4.32 76.89 1.07 5.26 1.62 0.00 0.02 0.01 1.02
#4 2.62 5.34 76.04 1.19 4.84 1.67 0.00 0.02 0.01 0.95
#5 2.69 5.45 76.34 1.19 4.43 1.57 0.00 0.02 0.01 1.25
#6 2.55 5.31 76.69 1.18 4.22 1.58 0.00 0.02 0.01 1.26
#7 3.01 5.22 76.38 1.23 4.56 1.81 0.00 0.02 0.01 0.78
#8 3.25 4.74 76.44 1.10 4.97 1.54 0.00 0.02 0.01 0.83
#9 2.94 4.33 77.87 1.14 3.91 1.80 0.00 0.02 0.01 0.94
#10 2.56 5.89 73.36 1.41 5.23 2.10 0.01 0.02 0.01 2.20
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Table A3. XRF data (wt%) showing the measurements #1 to #10 carried out on the glaze of IZN/15,
IZN/16, IZN/17, and IZN/19.

Label Spot MgO Al2O3 SiO2 K2O CaO TiO2 SnO2 PbO

IZN/15

#1 1.29 1.06 51.77 0.68 1.47 0.25 0.32 37.75
#2 1.45 1.40 52.76 0.76 1.36 0.22 0.34 36.54
#3 0.91 1.12 50.84 0.70 1.39 0.26 0.37 39.26
#4 1.32 1.82 55.91 0.98 2.32 0.26 0.26 31.20
#5 1.09 1.98 55.66 1.12 2.61 0.79 0.28 30.20
#6 1.75 1.30 50.15 0.77 1.47 0.29 0.36 38.63
#7 1.21 1.25 51.39 0.76 1.48 0.25 0.33 37.99
#8 1.31 1.31 51.60 0.78 1.47 0.26 0.35 37.64
#9 0.64 1.17 52.46 0.70 1.41 0.24 0.36 37.80

#10 1.70 1.37 52.04 0.75 1.37 0.23 0.29 37.05

IZN/16

#1 0.34 0.78 61.53 1.06 0.98 0.14 3.05 26.50
#2 0.52 0.59 61.45 1.02 0.94 0.14 3.02 26.66
#3 0.28 0.70 61.32 1.20 1.11 0.19 3.07 26.46
#4 0.75 0.80 61.34 1.24 1.03 0.17 3.00 25.98
#5 0.85 0.48 60.66 1.02 0.93 0.17 3.08 27.14
#6 0.86 0.76 58.73 1.66 1.27 0.24 3.26 27.43
#7 0.00 0.52 59.25 1.17 1.04 0.18 3.26 28.99
#8 0.74 0.64 60.88 1.06 1.18 0.17 2.97 26.63
#9 0.91 0.62 60.22 1.11 1.00 0.19 3.05 27.20

#10 0.86 0.73 60.64 1.04 0.96 0.15 3.03 26.97

IZN/17

#1 1.26 1.45 49.41 0.88 2.03 0.31 0.48 38.33
#2 1.33 3.50 57.36 1.52 1.20 0.13 0.34 29.17
#3 1.21 1.45 51.23 0.88 1.49 0.24 0.50 37.58
#4 1.18 1.85 50.76 1.00 1.85 0.30 0.50 36.46
#5 0.86 3.44 57.28 1.52 1.16 0.14 0.36 29.85
#6 1.43 1.61 50.69 0.90 1.24 0.23 0.47 38.14
#7 1.30 3.38 57.00 1.48 1.19 0.20 0.37 29.62
#8 1.38 1.45 51.15 0.83 1.30 0.29 0.49 37.85
#9 1.33 1.28 50.74 0.79 1.23 0.28 0.51 38.54

#10 1.56 1.58 48.61 0.94 1.69 0.34 0.50 38.96

IZN/19

#1 0.99 0.96 36.42 0.80 2.64 0.50 0.33 50.19
#2 1.74 2.13 52.75 0.92 3.41 0.66 0.18 30.64
#3 2.63 1.60 39.96 0.83 3.18 0.67 0.28 43.07
#4 1.50 1.17 39.53 0.67 2.66 0.43 0.29 46.07
#5 1.65 1.20 37.89 0.84 3.06 3.52 0.28 43.88
#6 2.40 1.01 32.23 0.70 4.19 0.63 0.34 48.45
#7 1.61 1.12 31.91 0.71 4.38 0.63 0.32 48.70
#8 1.32 1.13 33.93 0.70 3.83 0.66 0.33 48.74
#9 2.80 1.22 32.65 0.69 4.23 0.70 0.31 47.29

#10 1.61 1.22 37.67 0.76 3.92 0.60 0.30 44.69
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Table A4. XRF data (wt%) showing the measurements #1 to #10 carried out on the blue coloured areas
of IZN/15, IZN/16, IZN/17, and IZN/19.

Label Spot SiO2 TiO2 V2O5 Cr2O3 MnO Fe2O3 CoO NiO CuO ZnO SnO2 PbO Bi2O3

IZN/15

#1 51.23 0.21 0.49 0.07 0.02 0.35 0.04 0.02 0.19 0.01 0.36 38.62 0.10
#2 49.40 0.32 0.54 0.05 0.03 0.36 0.07 0.03 0.19 0.01 0.35 39.61 0.11
#3 50.65 0.24 0.51 0.07 0.03 0.36 0.05 0.02 0.18 0.01 0.36 39.11 0.13
#4 50.05 0.27 0.51 0.06 0.00 0.36 0.05 0.03 0.30 0.01 0.35 39.26 0.11
#5 51.21 0.26 0.48 0.07 0.03 0.46 0.07 0.03 0.18 0.01 0.31 37.82 0.13
#6 50.60 0.27 0.49 0.07 0.01 0.39 0.08 0.04 0.11 0.01 0.35 38.07 0.14
#7 51.23 0.22 0.50 0.06 0.03 0.36 0.04 0.02 0.24 0.01 0.36 38.45 0.10
#8 50.20 0.25 0.51 0.07 0.02 0.37 0.02 0.01 0.71 0.01 0.38 38.89 0.09
#9 49.91 0.25 0.52 0.05 0.01 0.36 0.03 0.02 0.19 0.01 0.36 39.47 0.10

#10 50.41 0.26 0.51 0.07 0.02 0.36 0.04 0.02 0.53 0.01 0.35 38.66 0.09

IZN/16

#1 59.82 0.21 0.38 0.06 0.03 0.44 0.05 0.02 0.47 0.01 3.04 27.13 0.11
#2 60.15 0.22 0.37 0.07 0.02 0.43 0.06 0.02 0.43 0.01 3.00 26.96 0.14
#3 57.37 0.30 0.00 0.05 0.02 0.49 0.04 0.01 0.38 0.01 3.33 28.45 0.14
#4 61.16 0.19 0.36 0.09 0.02 0.41 0.04 0.01 0.43 0.01 3.04 26.88 0.11
#5 60.94 0.15 0.00 0.05 0.03 0.44 0.03 0.01 0.44 0.01 2.99 26.77 0.10
#6 59.94 0.19 0.37 0.00 0.04 0.40 0.05 0.02 0.48 0.01 3.15 27.72 0.12
#7 60.82 0.16 0.36 0.06 0.03 0.40 0.04 0.01 0.44 0.01 3.03 27.19 0.11
#8 61.41 0.14 0.00 0.07 0.03 0.41 0.04 0.02 0.47 0.01 3.03 27.02 0.11
#9 60.49 0.17 0.00 0.07 0.03 0.42 0.04 0.01 0.44 0.01 3.03 26.77 0.14

#10 60.47 0.16 0.00 0.07 0.02 0.43 0.05 0.01 0.47 0.01 3.05 27.08 0.12

IZN/17

#1 51.69 0.27 0.51 0.06 0.05 0.41 0.07 0.02 0.17 0.02 0.49 37.28 0.12
#2 47.84 0.32 0.49 0.08 0.05 0.45 0.08 0.02 0.28 0.02 0.51 39.15 0.12
#3 50.26 0.29 0.48 0.07 0.05 0.43 0.05 0.01 0.14 0.02 0.47 37.06 0.14
#4 50.66 0.24 0.51 0.06 0.05 0.42 0.06 0.02 0.16 0.01 0.49 37.88 0.12
#5 56.05 0.13 0.00 0.06 0.05 0.38 0.08 0.02 0.12 0.02 0.37 29.80 0.10
#6 51.10 0.22 0.48 0.07 0.05 0.42 0.07 0.02 0.21 0.02 0.48 37.35 0.14
#7 51.01 0.23 0.47 0.06 0.04 0.44 0.06 0.02 0.26 0.02 0.47 36.99 0.12
#8 48.38 0.30 0.53 0.05 0.05 0.47 0.07 0.02 0.20 0.02 0.52 40.67 0.14
#9 49.57 0.30 0.48 0.05 0.07 0.44 0.08 0.02 0.28 0.02 0.52 38.48 0.14

#10 51.87 0.26 0.48 0.05 0.04 0.42 0.08 0.02 0.16 0.02 0.46 35.92 0.14

IZN/19

#1 31.90 0.80 0.53 0.12 0.05 0.59 0.03 0.02 0.58 0.02 0.34 52.94 0.10
#2 39.24 0.55 0.52 0.19 0.06 0.76 0.04 0.03 0.51 0.02 0.28 45.99 0.09
#3 39.47 1.71 0.45 0.06 0.05 0.61 0.03 0.03 0.43 0.02 0.26 42.60 0.08
#4 38.20 0.56 0.54 0.23 0.03 0.85 0.02 0.02 0.43 0.02 0.27 44.01 0.10
#5 39.06 0.44 0.51 0.08 0.07 0.48 0.05 0.04 0.46 0.02 0.29 46.06 0.08
#6 37.87 0.49 0.49 0.08 0.05 0.60 0.04 0.03 0.50 0.02 0.30 48.44 0.08
#7 39.90 0.50 0.53 0.23 0.04 0.86 0.03 0.02 0.44 0.02 0.27 44.78 0.10
#8 36.78 0.52 0.53 0.00 0.05 0.58 0.04 0.03 0.44 0.02 0.30 46.77 0.09
#9 31.46 0.60 0.57 0.00 0.05 0.52 0.02 0.02 0.43 0.02 0.35 47.89 0.10

#10 33.11 0.59 0.55 0.05 0.04 0.50 0.05 0.03 0.41 0.02 0.31 46.63 0.07
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16th International Congress of Turkish Art (ICTA), Ankara, Turkey, 3–5 October 2015.

55. Adlington, L.W. The Corning Archaeological Reference Glasses: New Values for “Old” Compositions.
Pap. Inst. Archaeol. 2017, 27, 1–8. [CrossRef]

56. Pearce, N.J.; Perkins, W.T.; Westgate, J.A.; Gorton, M.P.; Jackson, S.E.; Neal, C.R.; Chenery, S.P. A Compilation
of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Reference
Materials. Geostand. Geoanalytical Res. 1997, 21, 115–144. [CrossRef]

57. Conrey, R.M.; Goodman-Elgar, M.; Bettencourt, N.; Seyfarth, A.; Van Hoose, A.; Wolff, J.A. Calibration
of a portable X-ray fluorescence spectrometer in the analysis of archaeological samples using influence
coefficients. Geochem. Explor. Environ. Anal. 2014, 14, 291–301. [CrossRef]

58. Tournie, A.; Ricciardi, P.; Colomban, P. Glass corrosion mechanisms: A multiscale analysis. Solid State Ion.
2008, 179, 2142–2154. [CrossRef]

59. Pradell, T.; Molera, J. Ceramic technology. How to characterise ceramic glazes. Archaeol. Anthr. Sci. 2020, 12,
1–28. [CrossRef]

60. Paynter, S.; Okyar, F.; Wolf, S.; Tite, M.S. The production technology of Iznik pottery—A reassessment.
Archaeometry 2004, 46, 421–437. [CrossRef]

61. Colomban, P.; Kırmızı, B.; Gougeon, C.; Gironda, M.; Cardinal, C. Pigments and glassy matrix of the 17th–18th
century enamelled French watches: A non-invasive on-site Raman and pXRF study. J. Cult. Herit. 2020, 44,
1–14. [CrossRef]

62. Tite, M. Iznik pottery: An investigation of the methods of production. Archaeometry 1989, 31, 115–132.
[CrossRef]

63. Matin, M. Tin-based opacifiers in archaeological glass and ceramic glazes: A review and new perspectives.
Archaeol. Anthr. Sci. 2018, 11, 1155–1167. [CrossRef]

64. Vane-Tempest, S.; Kronberg, T.; Fröberg, L.; Hupa, L. Chemical Resistance of Fast-Fired Raw Glazes in
Solutions Containing Cleaning Agent, Acids or Bases. Qualicer 2004. Available online: http://www.qualicer.
org/recopilatorio/ponencias/pdfs/0413121e.pdf (accessed on 29 September 2020).

65. Colomban, P. Rocks as blue, green and black pigments/dyes of glazed pottery and enamelled glass artefacts?
A review. Eur. J. Miner. 2014, 25, 863–879. [CrossRef]

66. Colomban, P. Routes du lapis lazuli, lajvardina et échanges entre arts du verre, de la céramique et du livre.
Taıci 2005, 4, 145–152.

67. Kissin, S.A. Five element (Ni-Co-As-Ag-Bi) veins. Geosci. Can. 1992, 19, 113–124.
68. Wen, R.; Pollard, A.M. The Pigments Applied to Islamic Minai Wares and the Correlation with Chinese

Blue-and-White Porcelain. Archaeometry 2014, 58, 1–16. [CrossRef]
69. Colomban, P.; Sagon, G.; Huy, L.Q.; Liem, N.Q.; Mazerolles, L. Vietnamese (15th Century) Blue-And-White,

Tam Thai and Lustre Porcelains/Stonewares: Glaze Composition and Decoration Techniques. Archaeometry
2004, 46, 125–136. [CrossRef]

70. Simsek, G.; Colomban, P.; Wong, S.; Zhao, B.; Rougeulle, A.; Liem, N.Q. Toward a fast non-destructive
identification of pottery: The sourcing of 14th–16th century Vietnamese and Chinese ceramic shards.
J. Cult. Herit. 2015, 16, 159–172. [CrossRef]

71. Fischer, C.; Hsieh, E. Export Chinese blue-and-white porcelain: Compositional analysis and sourcing using
non-invasive portable XRF and reflectance spectroscopy. J. Archaeol. Sci. 2017, 80, 14–26. [CrossRef]

72. Du, F.; Su, B. Further study of sources of the imported cobalt-blue pigment used on Jingdezhen porcelain
from late 13 to early 15 centuries. Sci. China Ser. E Technol. Sci. 2008, 51, 249–259. [CrossRef]

http://dx.doi.org/10.7596/taksad.v7i1.1450
http://dx.doi.org/10.29135/std.272958
http://dx.doi.org/10.5334/pia-515
http://dx.doi.org/10.1111/j.1751-908X.1997.tb00538.x
http://dx.doi.org/10.1144/geochem2013-198
http://dx.doi.org/10.1016/j.ssi.2008.07.019
http://dx.doi.org/10.1007/s12520-020-01136-9
http://dx.doi.org/10.1111/j.1475-4754.2004.00166.x
http://dx.doi.org/10.1016/j.culher.2020.02.001
http://dx.doi.org/10.1111/j.1475-4754.1989.tb01008.x
http://dx.doi.org/10.1007/s12520-018-0735-2
http://www.qualicer.org/recopilatorio/ponencias/pdfs/0413121e.pdf
http://www.qualicer.org/recopilatorio/ponencias/pdfs/0413121e.pdf
http://dx.doi.org/10.1127/0935-1221/2013/0025-2305
http://dx.doi.org/10.1111/arcm.12143
http://dx.doi.org/10.1111/j.1475-4754.2004.00148.x
http://dx.doi.org/10.1016/j.culher.2014.03.003
http://dx.doi.org/10.1016/j.jas.2017.01.016
http://dx.doi.org/10.1007/s11431-008-0013-0


Heritage 2020, 3 1329

73. Figueiredo, M.; Silva, T.P.; Veiga, J.P. A XANES study of cobalt speciation state in blue-and-white glazes from
16th to 17th century Chinese porcelains. J. Electron Spectrosc. 2012, 185, 97–102. [CrossRef]

74. Zhu, T.Q.; Zhang, Y.C.; Xiong, H.; Feng, Z.Y.; Li, Q.; Cao, B.L. Comparison of the different types of Qinghua
porcelain from Jingdezhen in the Yuan Dynasty of China (AD 1271–1368) by micro X-ray fluorescence
spectroscopy (µ-XRF) and microscopy. Archaeometry 2016, 58, 966–978. [CrossRef]

75. Pappalardo, G.; Costa, E.; Marchetta, C.; Pappalardo, L.; Romano, F.P.; Zucchiatti, A.; Prati, P.; Mando, P.A.;
Migliori, A.; Palombo, L.; et al. Non-destructive characterization of Della Robia sculptures at the Bargello
museum in Florence by the combined use of PIXE and XRF portable systems. J. Cult. Herit. 2004, 5, 183–188.
[CrossRef]

76. Zucchiatti, A.; Bouquillon, A.; Katona, I.; D’Alessandro, A. The ‘Della Robia Blue’: A case study for the use
of cobalt pigments in ceramics during the Italian renaissance. Archaeometry 2006, 48, 131–152. [CrossRef]

77. Barilaro, D.; Crupi, V.; Interdonato, S.; Majolino, D.; Venuti, V.; Barone, G.; La Russa, M.F.; Bardelli, F.
Characterization of blue decorated Renaissance pottery fragments from Caltagirone (Siciliy, Italy).
Appl. Phys. A 2008, 92, 91–96. [CrossRef]

78. Porter, Y. Le cobalt dans le monde iranien (IXe-XVIe siecles): Notes sur son utilization en céramique et son
commerce. Taoci 2000, 1, 5–14.

79. Matin, M.; Pollard, A.M. Historical Accounts of Cobalt Ore Processing from the Kashan Mine, Iran. Iran
2015, 53, 171–183. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.elspec.2012.02.007
http://dx.doi.org/10.1111/arcm.12215
http://dx.doi.org/10.1016/j.culher.2003.08.002
http://dx.doi.org/10.1111/j.1475-4754.2006.00247.x
http://dx.doi.org/10.1007/s00339-008-4452-z
http://dx.doi.org/10.1080/05786967.2015.11834755
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Experimental 
	Artefacts 
	XRF Procedure 
	Errors and Representativeness of the Measurements 

	pXRF Methodology 
	Results—Materials: Microstructure and Elemental Composition 
	Body 
	Glaze 
	Blue Colouring Agent 

	Discussion: Comparison of the Results with the Previous Measurements 
	Conclusions 
	
	Analyzed Spots 
	Glaze Thickness 

	References

