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Abstract

Emergency departments worldwide face challenges in managing fluctuating patient de-
mand, which is often inadequately addressed by traditional forecasting methods due to
the inherent nonlinearities of data. The purpose of this study is to propose a short-term
prediction model for daily attendance in a private emergency healthcare unit in southern
Brazil. The study employed seven years of historical data to compare the performance of
ARIMA, Artificial Neural Networks (ANNSs), and the chaotic logistic map model to forecast
next-day arrivals in two specialties, general clinic and pediatric. The errors for the general
practitioner and the pediatricians of the ARIMA, ANN, and logistic map models were,
respectively, [0.31%, 2.54%, 2.17%] and [32.72%, 10.11%, 7.85%], measured by MAPE (mean
absolute percentage error). The logistic map ranked second and first place, respectively,
providing acceptable results in both cases. The main innovation is the successful applica-
tion of a chaotic model, specifically the logistic map, exclusively for one-day prediction
variables in the management of health and medical services. In particular, for the pedi-
atrician, a most irregular time series, the logistic map provided the better outcome. For
professionals, the study offers an accurate tool for optimizing the allocation of human and
material resources and supporting daily strategic decisions. For scholars, it opens research
avenues, addressing a gap in the body of knowledge on chaotic models that have not yet
been extensively explored in healthcare service demand one-day forecasting.

Keywords: demand forecasting; ARIMA; Artificial Neural Networks; chaotic models;
logistic map; emergency department; healthcare; short-term prediction

1. Introduction

Healthcare systems worldwide encounter difficulties in efficiently managing emer-
gency departments, which require new perspectives on the underlying factors that shape
the random behavior usually observed in the arrival rates of patients with urgent needs [1].
The problem is notably significant in regions like Brazil, where emergency departments
also function as medium-complexity health services [2], similar to the UK National Health
Service (NHS) [3]. Such services must deliver immediate and precise medical care at
affordable costs [4].

Usually, the demand for emergency services surpasses capacity, leading to stressful,
challenging-to-manage queues. The consequence is patient dissatisfaction, caused by
insufficient service or by service provided by non-physician professionals [5]. Recent
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overloads in the healthcare system underscore a need for strategic planning in allocating
resources for emergency departments [4]. Additionally, the pressure is intensified by
ongoing systemic inefficiencies, including insufficient staffing and a lack of resources, which
became more pronounced during health emergencies like the COVID-19 pandemic [6].

Emergency care includes managing patients with acute illnesses or trauma, or those
requiring advanced services. It also involves patients transported by mobile emergency
services [1]. Due to cost control imposed by management [7], resource allocation and
scheduling may significantly influence service quality [8]. Overburdening affects not
only patient satisfaction but also the well-being of professionals working in high-stress
environments [5].

Strategic resource allocation is a key factor in service management [1], as illustrated
by studies of the UK’s NHS, which emphasize efficiency while maintaining care quality [3].
Optimizing emergency department operations requires predictive modeling tools such
as ARIMA and ANN to forecast patient inflow, enabling better preparation and resource
allocation [7]. ARIMA models have limitations in capturing complex, nonlinear patterns
inherent in healthcare data. ANNSs are trained to minimize the squared difference between
measured and predicted outputs, using backpropagation to adjust weight combinations
and improve accuracy. Nonetheless, ANN may require more computational resources [8].
Such limitations suggest potential for alternative chaotic models, mainly due to their skills
in handling erratic demand fluctuations.

At the time of this study, a search of Scopus and Web of Science revealed that ARIMA
variations and ANN are the most commonly used time series modeling tools for healthcare
management. A specific search in SCOPUS between 2015 and 2025, under the keywords
“demand forecasting” and “healthcare”, retrieved 110 documents (40 articles). A second
similar search adding “chaotic models” OR “chaotic methods” OR “chaos” retrieved no
articles, which means that, even if healthcare is a relevant theme, the use of chaotic methods
is still a gap in the body of knowledge.

Thus, the research gap that this article aims to bridge is the use of chaotic models
in healthcare management. The specific research question is as follows: Can a chaotic
model satisfactorily predict the demand for arrivals in an emergency healthcare unit?
The purpose of this article is to propose a method based on a chaotic model to predict
the demand for emergency consultations in a Brazilian emergency healthcare unit. The
research method is quantitative modeling. The study is limited to short-term forecasting,
specifically one day, and to the simplest chaotic model, the logistic map. To enrich the
analysis and allow comparisons, medium-term forecasts were also made using the ARIMA
and ANN methods. This study uniquely and innovatively addresses the gap in forecasting
emergency healthcare facilities by introducing chaotic models. Unlike previous studies,
this research introduces the logistic map in healthcare short-term forecasting, an approach
still unexplored. Unlike other methods, the logistic map captures intrinsic nonlinearities
and sensitivity to initial conditions, allowing for improved accuracy in short-term predic-
tions. This methodological innovation extends the applicability of chaos theory to practical
decision-making in healthcare services, offering a low-complexity, high-performance alter-
native to conventional tools. By demonstrating its effectiveness in two medical specialties,
the study not only fills a gap in the forecasting literature but also provides a replicable
framework for healthcare contexts.

After the introduction, the article presents the methodology, related studies, results,
and conclusions.
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2. Materials and Methods

George Box and Gwilym Jenkins proposed ARIMA-based methods in the 1970s,
relying on the premise that all prior values can explain part of the next values. Therefore,
each value depends to some degree on all previous values. It remains to be determined
how strong this dependence is [9]. The method uses an interactive procedure to fit a
forecasting model based on random and cyclical patterns to minimize forecasting errors [10],
integrating (I) autoregressive (AR) and moving average models (MA) [11]. In the notation
ARIMA (p, d, q), p represents the order of the autoregressive component, d is the number
of differences required to make the time series stationary (i.e., the number of times past
values are subtracted to remove trends), and g denotes the order of the moving average
component [4]. Applying d differences helps eliminate potential trends in the data, resulting
in a stationary time series where variables fluctuate around a constant average level [12].
Equation (1) expresses the model:

Yi = Q1Yi—1+ @2Yt2+ . + Qpyr—p +er — b1e1_1 — O2er 2 — ... — 04814 1)

In which y; = variable at time t ¢ = autoregressive parameter 6 = moving average
parameter e; = residual error.

ANNSs reproduce human central nervous system processes using computational re-
sources, unveiling complex nonlinear relationships between outcome variables and their
corresponding predictors. The model ANN consists of N layers that function like biological
neurons and intensive connections through synapses. The computational elements used in
ANN are called artificial neurons or processing elements [13].

The main function of an ANN is to assign weights by training the model with historical
datasets. Learning is conducted by adjusting the connection strength [14]. The first and last
layers are the input and output, respectively. Both provide information from the hidden
layers and are used by the network to convert specific input patterns into appropriate
output patterns through a nonlinear function. The network takes the form of a linear
combination of the independent variables and their respective weights and bias terms (or
intercepts) for each neuron. Execution occurs in steps: calculate y, calculate the error (the
difference between predicted and actual values), and vary weights according to a rule to
minimize the error [15]. Equation (2) shows the model.

Y =X+ Wix] + WXy + .. .4+ WyXy 2)

In which y = the output or predicted value w; = the variables” weights x; = the inde-
pendent variables or inputs x( = bias.

This study employs MAE, RMSE, and MAPE, represented by Equations (3)—(5), to
measure the quality of the prediction [14].

n ..
MAE:W 3)
RMSE = /lel‘zll_yl| (4)

no |\ Yidi

Zl:l Yi
MAPE = —

Yi—9i ’

)

In which y;= real demand value in the i-th period #);= forecast value for the i-th period
n = number of periods.

The next method involves chaotic systems. The outputs of a chaotic system vary
according to nonlinear deterministic rules that, when applied repeatedly, produce data
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series that, at first glance, seem to be random [16]. Moreover, chaotic systems exhibit a
sensitive dependence on input parameters. Small variations in the input produce more than
proportional and unexpected changes in the output [17]. Such changes can be quantitative
and qualitative and can radically alter the output pattern, even if the input variations are
very small [18].

Models based on deterministic rules can describe chaotic patterns, even if the dataset
is small. Initially, output patterns resemble random behavior, but a subjacent model applies,
showing its deterministic formation law [19]. The initial conditions of the parameters
heavily influence the output of a chaotic phenomenon that becomes unstable with time.
The outcomes of a deterministic system, even with defined laws of evolution, become
unpredictable due to the extreme sensitivity to perturbations and noise [16]. In short, noise,
nonlinearities, and interaction between components amplify minimal parameter errors and
create deterministic chaos [19].

Two properties help reconstruct the dynamics of chaotic systems: the embedding
dimension and time delays [17]. The embedding dimension corresponds to the number of
variables controlling the system, while time delays indicate how long changes in variables
can affect the system. Chaotic behavior in time series suggests that reconstructing system
dynamics is possible by rearranging the order of observations, which should unveil valuable
hidden information [20].

Even if, among the already known chaotic models, the logistic map is the simplest, it is
useful in modeling complex, nonlinear behavior [21]. The logistic map represents a positive
feedback process arising from a recurrent deterministic rule, the quadratic function [22].
Equation (6) shows the model:

S(t—l—l) = ast(l - St) (6)
In which s; = value at time ¢ 2 = range from 0 to 4.

When 4 is less than 1, the result converges to 0. When 1 < a < 3, the process tends
towards a fixed value k, a stationary attractor given by Equation (7).

)

The process changes behavior when 3 < a < 3.57 taking on cyclic attractor behavior.
If 3.57 < a < 4, the attractor takes on bifurcation behavior, the chaos edge. Since it originates
from a deterministic rule, that region is called “chaos out of order” or “deterministic chaos.”
Chaotic behaviors arise if a > 4 [23].

3. Background: Related Studies on Prediction in Healthcare Service

A systematic literature review relying on Scopus and Web of Science databases consid-
ered only peer-reviewed English language papers published between 2016 and 2021 [24,25].
The search terms were “demand forecasting” (8102 papers), “demand forecasting models”
(6047 papers), “health care demand forecasting” (262), and “emergency department de-
mand forecasting” (80). The review excluded inadequate, inaccessible, non-English, and
duplicate articles, resulting in the 29 articles shown in Table 1.

Table 1. Related studies.

Reference Method Independent Variables Quality Measures
[26] LR Year MAD

[27] LR Day of the week and time of day. R?

[28] MLNB, SVM Month, day of the week, time of day. MAE, RMSE, RAE
[29] FL, ARIMA, ANN Month and day of the week. MAPE, RMSE

[30] ML Day of the month, day of the week, time of day. FSE
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Table 1. Cont.

Reference Method Independent Variables Quality Measures
[31] ML Day of the month and day of the week. MAE, MAPE
[1] ARIMA, ES, LR, STLF Mon.th of the year, holida}.l, day of the week, work shift, medical MASE
specialty, and demographics.
[32] SARIMAX Temperature and holiday. MSE
[33,34] GA, ANN, MLFS Month of the year, day of the week, time of day, holidays, and MAPE, RMSE
climate features.
[4,35,36] ARIMA Month, day of the week, and time of day. MAPE
[37] SARIMA, ES Day of the week. MAPE
[38] SARIMA Month, gender, type of diabetes, and type of emergency. MAE, MSE, MAPE
[5,39] ARMA, ARIMA Month of the year, week of the month, and day of the week. RMAP, MAE, RMAE
[40] ES, HWMS, SARIMA, Month, day of the week, temperature, rainfall, air speed, relative MAPE
MSARIMA humidity, and hours of sunshine.
[41] ARMA, ARIMA Day of the week. MAE
[11] ARIMA, ARMAX,NLR  Day of the week and available operational resources. MAE, RMSE, MAPE
[13] ANN, NLR Year, month, day of the week, holiday, and temperature. R%Z, RMAE
[42] ANN Year, month, and day of the week. RMAE
[43] WMA, LR, ANN, SVR Month, day of the month, day of the week, and time of day. MSE, MAPE
[44] ARIMA, ANN Month and day of the week. MAE, RMSE, MAPE
[45] ARIMA, ANN, ML Month and day of the week. RMSE
[46] ANN Day of the week and time of day. MAD, MAPE
[47] ML, VAE Day of the week and time of day. R?, RMSE, MAE, EV
[48] SARIMA, MSARIMA Day of the week and time of day MSE, MAPE, DS

Ref. [26] used LR to model psychiatric care and addiction services at Toronto Western
Hospital between 2012 and 2016. The study used a discrete event simulation to balance
demand and capacity based on projected waiting times. Ref. [27] used LR to compare
peaks of demand and achieved reduced forecast errors in daily admissions predictions,
including syndromic data. Ref. [28] used ML to predict the length of stay of patients in
the pediatric emergency department of the regional hospital center in Lille, France. The
NB, C4.5, and SVM methods achieved higher accuracy. Ref. [29] used FL, ARIMA, and
ANN to predict daily, weekly, and monthly emergency department attendance for up to
four months in four UK emergency departments. FL showed lower MAPE and RMSE.
Ref. [30] compared twenty traditional, hybrid, and ML-based methods in two outpatient
clinics at one medical center. ML-based and hybrid methods were more accurate, while
the traditional methods achieved lower FSE on data following regular patterns. Ref. [31]
compared machine learning algorithms to linear models in predicting short-term hospital
demand regarding 1, 3, and 7 days. Linear models outperformed more advanced algo-
rithms. Ref. [1] combined discrete event simulation, ARIMA, ES, LR, and STFL, assessed
by MASE, to manage emergency demand at Princess Alexandra Hospital in England. Inte-
gration of the techniques enabled the management of emergencies caused, for example,
by the closure of a nearby department. Ref. [1] modeled demand by medical specialty
using ARIMA, ES, LR, and STLE. The authors used data from the National Health Ser-
vice of England. STFL achieved the lowest MASE. Ref. [32] used ANN and SARIMAX
to link independent variables (temperature and tourist arrivals) to demand at Rambam
Hospital in Haifa, Israel. SARIMAX had the lowest MSE. The day of the week was the
most important predictor. Refs. [33,34] developed an integrated deep ANN to predict
patient flow in emergency departments at different triage levels. The model recorded lower
MAPE and RMSE than LR, ARIMAX, ANN, and ML-based models. Ref. [35] developed
a modified version of GA for resource selection and demand forecasting in an outpatient
clinic in northeast China. A combination of GA and ANN outperformed LR, ARIMAX,
and Shallow ANN by RMSE and FS criteria. The authors constructed an ARIMA model
to predict the number of monthly visits to an emergency department. The ARIMA model
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(0, 0, 1) produced better results, which were evaluated using MAPE. Ref. [36] modeled
the presence of green patients (according to the Manchester protocol) in the emergency
department of Passos, Brazil. The ARIMA (1, 1, 1) model showed the lowest MAPE. Ref. [4]
used ARIMA for emergency demand at the hospital in Braga, Portugal. The ARIMA (1, 1, 1)
(1,0, 1) model obtained the lowest MAPE. Ref. [37] applied SARIMA, ES, and a combination
of both in two internal medicine departments of a hospital in Chengdu. The combined
model achieved the lowest MAPE. Ref. [38] developed a model for hypoglycemic and
hyperglycemic cases that occurred between 2009 and 2015 in Outpatient Victoria, Australia.
The SARIMA model (0, 1, 0, 12) showed the lowest MAPE (4.2%) and was useful for
prehospital diabetic emergency management. Refs. [5,39] used ARMA and ARIMA models
evaluated with RMAP to predict emergencies in the hospital of Troyes, France, and to
create a new patient classification. Ref. [40] tested ES, HWMS, SARIMA, and MSARIMA,
evaluated by MAPE at Hospital de Clinicas in Porto Alegre, Brazil. ES and SARIMA were
the best for all patients and urgent patients. Ref. [41] forecast the multi-period bed demand
using non-stationary inter-arrival times and patient-level duration. Ref. [11] compared
ARIMA, ARMAX, NLR, and SVM to predict the total number of urgent patients assessed
by MAE, MAPE, RMAE, and RMSE. Ref. [13] used LR-NLR and ANN to predict emer-
gency department admissions at a public hospital in Istanbul. The independent variables
were holidays and maximum temperature values. ANN-based models achieved lower
MAEs. Ref. [42] used ANN to predict demand for medical specialties, including patient
demographic characteristics assessed by MAE. Ref. [43] compared WMA, LR, ANN, and
SVR in three Chilean hospitals. SVR provided the best results. Ref. [44] used ARIMA and
ANN in an emergency department and assessed outcomes using MAE, RMSE, and MAPE.
Ref. [45] compared ARIMA-, ANN-, and ML-based methods using data from the Medway
Foundation Trust (MFT) in Kent, England. ML- and ARIMA-based models performed
better on more erratic or stable data. Ref. [46] applied ANN in a U.S. emergency depart-
ment. The multilayer perceptron (MLP) model achieved lower MAD and MAPE. Ref. [47]
used an ML-based model to predict demand in the pediatric emergency department of the
regional hospital of Lille, France. VAE performed better than recurrent neural network
(RNN), long short-term memory (LSTM), bidirectional LSTM (BiLSTM), convolutional
LSTM network (ConvLSTM), restricted Boltzmann machine (RBM), gated recurrent units
(GRUs), and convolutional neural network (CNN). Ref. [48] compared ARIMA, MSARIMA,
and a combinatorial model based on MSARIMA and a weighted Markov Chain to forecast
three years of daily inpatient discharges at West China Hospital. The combined model
outperformed the others, even if the authors raised concerns about some assumptions in
weighting Markov Chain parameters.

The autoregressive method is the most frequent method in the sample (17 out of
29 studies). ANN, ML-based, and regression-based methods appear in ten, seven, and
six studies, respectively. MAPE is the most commonly used quality measure, appearing in
15 studies, while MAE and RMSE appear in ten and eight studies, respectively. Chaotic
models did not appear, reinforcing the existence of a research gap.

4. Results

The research method is quantitative modeling [49]. This type of method uses logical
and mathematical relationships to reproduce how natural systems behave [50]. The study
analyzed 89 months of data from the emergency department of a private, nonprofit hospital
in the southern region of Brazil. The data included the number of daily arrivals of the
two most required specialties, general practitioners and pediatricians, which account
for 58% and 24% of arrivals, respectively. The procedure employed the free software
R version 4.2.1, a programming language and computational environment, to build the
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ARIMA and ANN models [51]. ANN employed a backpropagation algorithm to reduce
the error. The logistic map utilized the solver command of Excel®. Starting from an
initial estimate for sO (between 0 and 1) and a (between 3.57 and 4), the initial execution
and feedback constant, the procedure generates an infinite chaotic series. Next, both
the actual and the chaotic series are normalized to the interval [0, 1], and the RMSE
is calculated. Using an evolutionary algorithm, the solver identifies the sequence of
executions [s(1), s(2), s(3)...; s(1), s(3), s(5)...; s(1), s(4), s(7)...] that minimizes RMSE,
updates the parameters, and estimates the next execution, the day after. A timeframe of nine
executions provided satisfactory results for the next day. The solver typically requires about
20,000—40,000 iterations to converge.

The calculation involved one-day forecast horizons as the focus is on short-term
prediction. As ARIMA and ANN also offer seven, 14, and 30-day predictions, they appear
in the study, even if they are not the research focus.

4.1. Data

The dataset spans from 1 January 2014 to 31 May 2021. As the research project
is finished, more updated data is not available, which is less relevant for the study, as
the main purpose is methodological. The COVID-19 pandemic period (March 2020 to
December 2020) caused a notable reduction in the number of visits for both specialists. The
training set trains the model until it achieves satisfactory performance based on quality
measures, covering 1 January 2014, to 31 December 2020. The training data estimates the
parameters of the prediction method, while the test data evaluates the accuracy of the
models [14,32]. The test data covered 1 January 2021, to 31 May 2021. Figure 1a,b illustrate
the daily number of patients visiting general practitioners and pediatricians, respectively.
No trends or outliers appear, but seasonality reflects the day-of-month effect, particularly
among pediatricians.

I WUWM
H il W W‘ I “f i » KM |l 4 M IJ |
M ] l H i WWWL M

Figure 1. Daily number of arrivals. (a) General Practitioners (b) Pediatricians.
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Autocorrelation also helps verify stationarity [52]. Autocorrelation in a time series
is the correlation of a variable with itself at different time lags. It measures how y;, the
value at time ¢, is related to y;_i, where k is the lag. A positive autocorrelation at lag
k means past values strongly influence current ones in the same direction, while a negative
autocorrelation means they move in opposite directions [4]. Partial auto correlation captures
the correlation between a variable and a lag of the variable that is not explained by the
correlation at all lags of a lower order, removing the effect of the observations [35]. Both
showed a strong correlation within seven days for both specialists.

4.2. ARIMA

The study used the auto.arima, autocorrelation, and partial autocorrelation functions
(ACF and PACF) from the R software prediction library, following previous studies [1,11].
Auto-arima reports the most appropriate parameters p, d, and g, based on Kwiatkowski,
Phillips, Schmidt, and Shin (KPSS) unit root tests (d) and the lowest AIC (Akaike informa-
tion criterion) (p and g) [51]. The ARIMA (3, 1, 2) model for general practitioners showed
the best performance, with a MAPE of 16.09%. PACF shows p = 3 given the modulus
change at lag 3. ADF and KPSS tests indicated d = 1, ensuring stationarity. PACF shows
that lags 1 to 6 move in the same direction until a new cycle of seven observations begins,
shifting from negative to positive intensity. ACF shows q = 2, as a modulus change occurs
from lag 2. For pediatricians, the auto.arima function yielded ARIMA (4, 1, 1) with a
MAPE of 18.45%. PACF shows p = 4 given the modulus change at lag 4. The parameter
d = 1 indicates stationarity. ACF shows g = 1, as the highest modulus occurs at lag 1 before
a new cycle begins at seven observations.

Figure 2a,b show ACF and PACEF for both specialties.

0.4-
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® 0.0 EFFRPRE=SF 2 === A ===
< = "l 'I I
-0.4-
6 é 10 1'5 20 2‘5 3‘0 CI] é 1‘0 1‘5 2‘0 25 30
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00 T I e e T
<
_0_2-
-04-
" n L 1 1 L) L]
0 5 10 15 20 25 30
Lag Lag

(b)

Figure 2. ACF and PACEF for both specialties (source: R software, version 4.2.1). (a) General practitioners.
(b) Pediatricians.

The procedure included normality and white-noise tests. The null hypothesis as-
sumes uncorrelated residuals [35]. For the general practitioner, Figure 3a shows the ACF
with autocorrelations near zero within 7-observation cycles, indicating residuals behave
like white noise. For the pediatrician, Figure 3b shows residual autocorrelations within
bounds over 7-observation cycles, also indicating white noise behavior without trend or
seasonality. Both residual times show no trends or seasonality. Both residuals” histogram
confirms normality.
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Figure 3. Residual plots (source: R software, version 4.2.1). (a) General Practitioners. (b) Pediatricians.

Finally, stationarity and invertibility require p and g to lie, respectively, within the
complex and the inverse complex unit root circle [52]. According to Figure 4a,b, both
models meet invertibility and stationarity conditions.

Inverse AR roots Inverse MA roots
Inverse AR roots Inverse MA roots

o
I

0.0

0.0

Imaginary
Imaginary

o
o

-1.0- ' v
10 -05 0.0 05 10 10  -05 0.0 05 1.0 Real
Real

(a) (b)

Figure 4. Inverse roots for both models (source: R software, version 4.2.1). (a) General Practitioners.
(b) Pediatricians.

Given the adequacy of the models, the last step is to verify the accuracy of the predic-
tions. According to MAE, RMSE, and MAPE, the errors for the general practitioners and
pediatricians were, respectively, [0.30, 0.30, 0.31%] and [13.62, 13.62, 32.72%].

4.3. ANN

This study used the nnetar function from the R software forecast library, which re-
turns the model NNAR (p, P,K),,. A comprehensive comparison with ARIMA and the
structure of NNAR architecture can be found in detail in [53,54]. The values of p and
P are selected based on the lowest AIC result. Based on different internal scenarios,
the best parameterization is determined. The value of k is determined by the relation
(p + P +1)/2, rounded up to the nearest integer [50]. The notation NNAR (p, k) introduced
by [52] indicates p delayed inputs and k nodes in the hidden layer, building a multilayer
feed-forward network; outputs from one layer are inputs to the next. Node inputs combine
through weighted linear combinations, modified by a nonlinear sigmoid function, which
reduces extreme input effects, increases input—output sensitivity, and improves handling of
nonlinearities. For both specialties, the model (1, 1, 2) achieved the best fit. For the general
practitioner, the NNAR (30, 20) model used the last 30 observations as predictors with
20 neurons in the hidden layer. For the pediatricians, the NNAR (31, 20) model used the
previous 31 observations with the same hidden layer size.
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Given the adequacy of the models, the last step is to verify the accuracy of the predictions.
According to MAE, RMSE, and MAPE, the errors for the general practitioners and pediatricians
of the ANN model were, respectively, [2.42, 2.42, 2.54%] and [2.52, 2.57, 10.11%].

4.4. Logistic Map

Although not applied in the healthcare field, particularly in short-term prediction of
medical visits, the logistic map is widely recognized as a useful tool for analyzing time
series in complex systems [16,23]. By utilizing the Solver optimization function in Microsoft
Excel®, the model obtained initial values of s(0) and a as 0.521570 and 3.655899, as well as
an optimal sequence [s(1), 5(6), s(11), ..., s(41)]. Table 2 shows the temporal evolution of the
logistic map for the general practitioner, with a step size of five positions. It also shows the
squared error (SE) of executions. Equation (8) exemplifies the calculation by showing s(1),
according to Equation (6). Equation (9) predicts the next number of visits by calculating
5(46) and multiplying it by 106, the maximum actual number of arrivals, normalized as 1.

s(1) = 3.65589 x 0.52157 x (1 — 0.521570) = 0.912272 8)

Next number of arrivals = 106.5(46) = 106. [3.655899 x 0.550949 x (1 — 0.550949)] = 95.87541 )

Table 2. Temporal evolution of the logistic map for general practitioners.

Execution s(Execution) Visits (Norm) SE RMSE

1 0.912 1.000 0.008 0.06
6 0.804 0.802 0.000

11 0.830 0.821 0.000

16 0.753 0.717 0.001

21 0.882 0.877 0.000

26 0.899 1.000 0.010

31 0.899 0.981 0.007

36 0.900 0.943 0.002

41 0.898 0.906 0.000

Table 3 shows the temporal evolution of the logistic map for pediatricians, with a
step size of five positions. The initial values of s(0) and a are 0.111496 and 3.757890.
Equations (10) and (11) calculate s(1) and the next number of arrivals by taking s(46) and
multiplying it by 55, the maximum actual number of arrivals, normalized as 1.

s(1) = 3.75789 x 0.111496 x (1 — 0.111496) = 0.372274027 (10)

Next number of arrivals = 55.5(46) = 55. [ 3.757890 x 0.822332 x (1 — 0.822332)] = 30.1969536 (11)

Table 3. Temporal evolution of the pediatrician’s logistic map.

Execution s(Execution) Visits (Norm) SE RMSE

1 0.372 0.309 0.004 0.09
6 0.328 0.291 0.001

11 0.229 0.327 0.010

16 0.939 1.000 0.004

21 0.414 0.291 0.015

26 0.620 0.709 0.008

31 0.381 0.509 0.016

36 0.384 0.455 0.005

41 0.404 0.473 0.005
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Figure 5a,b illustrate the relationship between real normalized data and the logistic
map outcomes for both models. The two R? close to 1 reinforce the models.

100% ~0—
100% ’g
..~".'.... o o
80% .‘“.,.-‘ 80% °
& R? = 0.8931 .
60% 60% o
R?=0.8715
40% 40% :.
p X X
20% 20%
0% 0%
70% 80% 90% 100% 20% 40% 60% 80% 100%
(a) (b)

Figure 5. Actual norm data (y axis) and logistic map models” outcomes (x axis). (a) General Practi-
tioners. (b) Pediatricians.

Given the adequacy of the models, the last step is to verify the accuracy of the predic-
tions. According to MAE, RMSE, and MAPE, the errors for the general practitioners and
pediatricians were, respectively, [2.12, 2.12, 2.17%] and [2.20, 2.20, 7.85%].

4.5. Result Comparison

Table 4 showcases the results obtained from the models, including predictions for
seven, 14, and 30 days provided by the ARIMA and ANN models, even if those horizons
are not the focus of the research.

Table 4. Summary of results.

Specialt Method Horizon MAE RMSE MAPE
p y

One day 0.30 0.30 0.31%

Seven days 27.32 34.59 28.13%

ARIMA 14 days 24.65 3034 25.38%

G 1 30 days 22.48 28.19 23.14%

P enera One day 242 242 2.54%

ractitioners ANN Seven days 24.34 26.45 25.03%

14 days 20.8 24.28 20.93%

30 days 17.63 20.43 17.17%

Logistic Map One day 212 212 2.17%

One day 13.62 13.62 32.72%

Seven days 17.17 17.36 41.99%

ARIMA 14 days 14.67 15.82 35.90%

30 days 15.89 16.84 38.88%

Pediatricians One day 2.57 2.57 10.11%

Seven days 1.95 2.62 7.47%

ANN 14 days 4.05 5.98 14.87%

30 days 6.24 8.78 22.12%

Logistic Map One day 2.20 2.20 7.85%

For general practitioners, ARIMA surpasses the logistic map, which slightly outper-
forms ANN. For pediatricians, the logistic map largely surpasses ANN, whereas ARIMA
demonstrates a very low adequacy for this specific dataset. Despite utilizing a small
number of observations, the logistic map yielded low, acceptable errors in both cases. An
unexpected result is that short-term prediction for pediatricians is less accurate than for
general practitioners. The reason for this difference should be investigated in the future,
mainly why ARIMA yielded a very poor result.
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5. Conclusions

The logistic map was selected for its capacity to represent nonlinear dynamics typical
of short-term predictions. Unlike ARIMA, constrained by linearity, and ANN, which re-
quires large datasets and tuning, it provides a simpler means of capturing chaotic behavior
in healthcare management. Its adaptability enables efficient modeling under varying pa-
rameters, yielding robust forecasts. Such models are valuable because they accommodate
the unpredictability of healthcare demand and reproduce complex dynamics where tra-
ditional methods often fail. Accurate short-term forecasts support the allocation of staff,
materials, and costs in daily care, strengthening operational and patient management. To
project next-day capacity, hospitals consider unoccupied beds at day’s end and add patients
expected to be discharged, underscoring the role of time series predictions. By contrast,
less precise forecasts, such as 30-day horizons, risk misallocation of resources, operational
inefficiencies, and financial losses.

The purpose of the study was to evaluate a short-term model for predicting daily
attendance in an emergency healthcare unit. It compared two established forecasting
methods, ARIMA and ANN, with a less conventional approach, the logistic map. The
results showed that the logistic map could be an alternative for short-term prediction
in healthcare management. The research question was as follows: Can a chaotic model
satisfactorily predict the demand for arrivals in an emergency healthcare unit? The article
provided a positive answer to the question.

The main contribution and innovation lie in the successful application of chaotic
models, especially the logistic map, to the specific challenge of short-term forecasting
demand for medical services. This contribution addresses a recognized gap in the existing
academic literature, where the inherent nonlinear and complex patterns of healthcare
demand have often posed difficulties for linear statistical models or complex machine
learning techniques. The use of a chaotic model, designed to capture intricate dynamics,
offers a new framework for understanding and predicting patient flow, moving beyond
current limitations. To the best of our knowledge, this is the first use of the logistic map
in forecasting emergency healthcare demand. Therefore, the contribution is twofold: it
addresses a gap in applying chaos theory to healthcare and provides a resource-efficient
forecasting tool for limited-capacity environments.

For practitioners in healthcare management, the findings offer a tangible tool for
enhancing operational efficiency. The improved accuracy in short-term demand forecasting
can directly support a more precise allocation of human resources, such as medical staff
and support personnel, and material resources, including beds, equipment, and supplies.
Better accuracy can lead to better patient flow, reduced waiting times, and a more balanced
workload for staff, ultimately contributing to improved patient care experiences, cost
reduction, and optimized resource utilization within emergency departments.

For scholars, this article opens avenues for further research. Future investigations
could explore the applicability of other chaotic models, such as the Henon attractor or the
Mackey—-Glass model. Developing hybrid models that combine the strengths of chaotic
approaches with traditional statistical methods or machine learning techniques could also
yield more robust predictions. Research into incorporating external factors, such as weather
patterns, public health campaigns, or local events, into chaotic models to enhance their
predictive power would be valuable. Furthermore, studies focusing on adapting chaotic
models for long-term forecasting or developing mechanisms for real-time adaptation to
unforeseen changes would advance the field. Finally, research into the practical challenges
and best practices for integrating advanced models into existing healthcare information
technology systems would facilitate their broader adoption and impact. Upcoming studies
should also investigate how to combine qualitative [55] and multicriteria approaches [56]
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with time series analysis. The method could introduce new influential, weighted factors [57],
such as patient demographics, weather conditions, and local healthcare policies, alongside
quantitative data.

The study faced limitations. Its scope was intentionally limited to short-term predic-
tions, which means it does not fully explore the potential of chaotic models for long-term
horizons. Furthermore, it utilized only the logistic map. Other chaotic models may exhibit
different characteristics or offer alternative insights into the complex dynamics of patient
demand. It also does not delve into the accuracy of the information system. The effective-
ness of any forecasting model is also inherently dependent on the quality and availability of
historical data. The study does not account for sudden, large-scale disruptions like natural
disasters, pandemics, or mass incidents, which require adaptive response mechanisms
rather than purely predictive ones. Finally, the practical implementation of advanced
forecasting models can be affected by technological constraints within healthcare facilities,
including access to specialized software, computational resources, or personnel with the
necessary expertise, which was not tackled by the study.
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Abbreviations

Forecasting methods

ANN artificial neural network

ARIMA autoregressive integrated moving average

ARMA autoregressive moving average

ARMAX autoregressive moving average with exogenous inputs
ES exponential smoothing

EV explained variation

FL fuzzy logic

GA genetic algorithm

HWSM Holt-Winters seasonal multiplicative

LR, NLR linear, nonlinear regression

ML machine-learning

MLFS machine-learning feature selection

MLNB machine-learning naive Bayes

MSARIMA  multivariate autoregressive integrated moving average
SARIMA seasonal autoregressive integrated moving average
SARIMAX  seasonal autoregressive integrated moving average with exogenous inputs
STLF short-term load forecasting

SVM support vector machine

SVR support vector regression

WMA weighted moving average

Quality measures

DS direction of symmetry

FSE forecasting standard error

MAD mean absolute deviation
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MAE mean absolute error
MAPE mean absolute percentage error
MASE mean absolute scale error
MSE mean quadratic error
R2: coefficient of determination
RAE relative absolute error
RMAE relative mean absolute error
RMAP relative mean absolute performance
RMSE root mean square error
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