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Abstract: This paper proposes a new hybrid model to forecast electricity market prices up to four
days ahead. The components of the proposed model are combined in two dimensions. First, on
the “vertical” dimension, long short-term memory (LSTM) neural networks and extreme gradient
boosting (XGBoost) models are stacked up to produce supplementary price forecasts. The final
forecasts are then picked depending on how the predictions compare to a price spike threshold.
On the “horizontal” dimension, five models are designed to extend the forecasting horizon to four
days. This is an important requirement to make forecasts useful for market participants who trade
energy and ancillary services multiple days ahead. The horizontally cascaded models take advantage
of the availability of specific public data for each forecasting horizon. To enhance the forecasting
capability of the model in dealing with price spikes, we deploy a previously unexplored input in the
proposed methodology. That is, to use the recent variations in the output power of thermal units
as an indicator of unplanned outages or shift in the supply stack. The proposed method is tested
using data from Alberta’s electricity market, which is known for its volatility and price spikes. An
economic application of the developed forecasting model is also carried out to demonstrate how
several market players in the Alberta electricity market can benefit from the proposed multi-day
ahead price forecasting model. The numerical results demonstrate that the proposed methodology is
effective in enhancing forecasting accuracy and price spike detection.

Keywords: electricity price forecasting; electricity price spikes; long short term memory neural
network; extreme gradient boosting

1. Introduction

Spot prices in competitive electricity markets exhibit seasonality, volatility, and price
spike occurrence [1–3]. The occurrence of price spikes is associated with different system
events, for instance, the scheduled and forced outage of generation and transmission assets,
transmission congestion, and extreme weather events leading to increased demand or
shortage of supply [2,4,5]. Accurately forecasting price spikes holds paramount impor-
tance [6] due to their potential to inflict significant financial losses upon unsuspecting
business owners. Moreover, traditional forecasting models encounter significant challenges
in effectively accounting for and managing these volatile market conditions [7]. Even
though price volatility can be observed in all power markets, real-time markets are more
prone to the price risks associated with such unforeseen spikes [1]. Higher price volatility
in real-time electricity markets adds to the difficulty of producing reasonably accurate
electricity price forecasts [8], while forecasting errors for day-ahead markets are often
reported to be single-digit, comparable studies often report significantly higher errors for
real-time markets [9,10].

There are plenty of studies in the literature that have undertaken the challenge of
forecasting electricity market prices. Between a very recent review [11] and one that
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was published in 2014 [4], the interested reader can find a comprehensive summary of
applied methods, best practices, and tips and recommendations for future research in this
domain. There are, however, a few observations that are worth noting in the context of the
present work. First, the vast majority of available methods are applied to day-ahead market
prices. This is understandable because most electricity markets have a day-ahead market
component in which most of the energy is traded [3,12,13]. There are a few jurisdictions
with only a real-time market mechanism, including Alberta and Ontario provinces in
Canada, Australia, and New Zealand. Second, almost all available studies have limited their
forecasting horizon to the next day, with a few exceptions, e.g., [14,15], that look beyond
the next day. Longer forecast horizons are useful, and sometimes necessary, for optimizing
operation plans and portfolio management for market participants. For example, in Alberta,
participants in the ancillary services market rely on energy price forecasts generated before
1:00 p.m. on Fridays for the following Monday to optimize their portfolio [16]. Third, only a
limited number of papers have taken price spikes into account when designing their models
or when evaluating the performance of their proposed models. For example, ref. [5] used
an auto-regressive conditional hazard model to predict the probability of one-step-ahead
price spikes in the Australian electricity market. In [8], system demand forecasts along
with weather information were used in a hybrid neural-network-based model to forecast
next-day normal and spike prices for Ontario’s electricity market. In [17], other exogenous
variables, such as reserve capacity, variable generation, and interconnection flows, were
examined to predict the probability of extremely high or low prices for the next day in the
Australian market.

In this paper, we propose a hybrid model to predict the real-time electricity market
prices in Alberta for up to four days in advance. The model is designed particularly to
handle the extended forecasting horizon and the high volatility of prices in this market
caused by frequent price spikes. This is achieved through two main contributions. The
first contribution is that the proposed hybrid model combines multiple models at two
dimensions. More specifically, at a “vertical” dimension, we stack up two forecasting
models, namely, long short-term memory (LSTM) [18] deep neural network and extreme
gradient boosting, also called XGBoost [19]. LSTM networks have proven effective in
time series forecasting with nonlinear long-term patterns [20]. However, neural networks
are generally prone to over-fitting and are computationally taxing. Particularly, when
deployed on cloud platforms, frequent training of deep learning models leads to high
computation fees [21]. XGBoost, on the other hand, is a scalable machine learning method
with comparably better training speed and resilience against over-fitting. In addition, at
a “horizontal” dimension, we cascade five models, each with different inputs to predict
prices along the 96 h forecasting horizon. Each model takes advantage of available features,
depending on its forecasting horizon. Observe that this approach can be considered as
an ensemble model. Ensemble forecasting, in general, enhances forecast accuracy by
leveraging the strengths of multiple models [22]. However, we not only combine the
predictions of the LSTM and XGBoost models, we also concatenate the outputs of multiple
models to generate the final 96-hour-ahead forecast string. This approach distinguishes
our method as a hybrid model rather than a conventional ensemble model. The second
contribution is to identify and successfully deploy a new input that has not previously
been explored in the context of enhancing price spike forecasting. In particular, we identify
the real-time ramping of large baseload units within the system as effective inputs for
predicting price spike events.

The rest of this paper is organized as follows: Section 2 presents a literature review
on the analyzed market, the algorithms used in the proposed electricity price forecasting
model, and the actual state of research in hybrid models for electricity price forecasting. The
methodology of the proposed electricity price forecasting system and research contributions
are described in Section 3. Section 4 discusses the results in terms of forecast accuracy and
price spike detection. In Section 5, we conduct an economic application of the proposed
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electricity price forecasting system in Alberta’s ancillary services market. Finally, Section 6
summarizes the findings of the proposed research work.

2. Background and Related Work

In this section, we first present a brief overview of Alberta’s electricity market opera-
tion. Moreover, we discuss price volatility and the occurrence of price spikes in Alberta,
Ontario, and one representative price zone of New York’s electricity markets. We next
review the basic structure of LSTM and XGBoost models and some of their previous appli-
cations in time series forecasting. We close this section with a review of a selected number
of previous related papers that either have proposed hybrid models for electricity price
forecasting, have focused on Alberta’s market, or have developed methods to model and
forecast price spikes in electricity markets.

2.1. Alberta’s Electricity Market

The Alberta power system is consists of more than 500 substations and a network
of transmission lines that covers 26,000 km in length and transports electric energy in
a single control area of around 660,000 km2 [23]. Alberta also transfers electric energy
across interties with three neighboring jurisdictions, i.e., British Columbia, Montana, and
Saskatchewan. There are close to 350 active generation units that provide electric power to
the grid in Alberta. In total, there are close to 200 market participants in both the supply
and demand sides.

In Alberta, a must-comply rule exists, which means all energy from generators above
1 MW must be sold through the market. Power generators and importers submit electricity
supply offers to the Alberta Electric System Operator (AESO). Exporters of electricity to
neighboring jurisdictions submit bids to purchase supply generated in Alberta. Finally,
consumers submit demand bids to purchase at or below a specific price [24]. The offers
must be submitted a day ahead (by noon) for each hour and may be updated periodically.
These offers cannot change within two hours before the applicable delivery hour [25]. This
means that the offers for the hour running from 8:00 a.m. to 9:00 a.m. (denoted using
AESO’s terminology as Hour Ending 9 or HE9) can be changed until 6:00 a.m. (the start of
HE7). Note that these power generators are free to choose offer prices between the floor
CAD 0/MWh and the cap CAD 999.99/MWh.

The AESO market clearing algorithm essentially sorts all supply (demand) offers
(bids) from the lowest (highest) to the highest (lowest) price for each hour of the day
into a so-called economic merit order curve. Following the changes in electricity demand
throughout the day, the system controller keeps supply and demand in balance, dispatching
from the merit order and maintaining, in this way, the reliability of the system. When the
system demand increases, the system controller moves up the merit order and dispatches
the next eligible supply or accepts the next demand bid. On the other hand, when the
system demand declines, the system controller moves down the merit order and instructs
suppliers to decrease their supply and/or consumers to increase demand. This way, the
demand is always met with the lowest cost option available. The last supply offer used
to meet the demand for each minute is called the system marginal price (SMP). The SMP
reflects the intersection of supply and demand for each minute in the electricity market,
and it is updated in real time. At the end of the hour, the time-weighted average of
the sixty one-minute SMPs is calculated and published as the Hourly Alberta Pool Price
(HAPP) [24]. A uniform HAPP applies to all loads and suppliers within the province
without any consideration of location.

The energy market is run in real time, whereas the Alberta ancillary services (ASs)
market is run a day ahead. The AS market includes 10 min spinning, 30 min non-spinning,
and frequency regulation reserves. For each reserve, an equilibrium price is determined
based on available offers, and the settlement price is the equilibrium price plus the HAPP.
The equilibrium price may be positive or negative [16]. Ancillary services market partici-
pants must submit their offers to the market operator before 11:30 a.m. the day before the
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operation day for all 24 h of the next day. For Mondays, the offers must be submitted before
1:00 p.m. on preceding Fridays. The AESO procures standby and active volumes of each
type of operating reserve. The system controller first dispatches the active reserves, which
are used to maintain the balance of the electric system under normal operating conditions.
When the available resources in the active reserves portfolio are not enough to meet the
real-time reliability and operating requirements of the electric system, the system controller
proceeds to dispatch the standby reserves [16].

Given the way the market clearing process is run, and depending on the nature of
market participation, multi-hour-ahead electricity price forecasts could be used by market
players to optimize their operation. For example, some large load consumers will need a
short lead time to cut back their demand. For those, a one-hour-ahead or even a sub-hour-
ahead forecast of high prices is often useful. On the other hand, suppliers need at least
four hours heads up to change their offers within the permitted window. Furthermore,
generators that participate in AS market use day-ahead for Tuesday–Friday (or multi-day-
ahead for Mondays or long weekends) price predictions to increase their profits in the
AS market.

One of the most important features of the Alberta electricity market is that the HAPP
fluctuates considerably from hour to hour. The pool price in Alberta can unexpectedly
jump to a maximum of CAD 999.99/MWh, mainly due to short-term events, like outages
at generation and transmission facilities, along with extreme weather conditions. On the
other hand, the pool price can reach a minimum value of CAD 0/MWh due to surplus
events. Figure 1 (top) shows the price fluctuations in the Alberta electricity market over the
year 2021, where the occurrence of several price spikes can be appreciated. Furthermore, in
Figure 1 (bottom), a heatmap shows the average price for every month of that same year
per hour of the day. High monthly average hourly prices, starting at values around CAD
100–150/MWh and up to more than CAD 200/MWh, can be observed during the on-peak
period, i.e., from 7 a.m. to 11 p.m. every day [26]. Furthermore, observe the presence of
clusters of very high prices during both the summer and winter seasons.
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Figure 1. (Top): Alberta’s spot market prices for the year 2021. (Bottom): Monthly average of hourly
Alberta’s spot prices at each hour of the day.

Figure 2 shows a comparison of the occurrence of price spikes between Alberta’s
HAPP [27], Ontario’s Hourly Ontario Energy Price [28] (HOEP), and New York’s Locational-
Based Marginal Price (LBMP) [29] in 2021. Prices are clustered based on different price
thresholds in $/MWh (CAD/MWh for HAPP and HOEP, and USD/MWh for New York
LBMP). Ontario’s electricity market [28] is also a single-settlement real-time wholesale
power pool, while the New York market [29] is a two-settlement, day-ahead, and real-time
market. For the latter, the real-time LBMP of a high-demand zone (i.e., Zone J or the one
corresponding to New York City) is considered. Observe from Figure 2 that the occurrence
of price spikes in Alberta’s market surpasses the other two markets at all the different
thresholds. Furthermore, as the threshold increases towards $ 500/MWh, the occurrence
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of spikes for the Ontario and New York electricity markets dramatically decreases. For
example, for the threshold between $ 400/MWh and $ 500/MWh, neither of these two
markets registered any price spikes, while for that above $ 500/MWh, the occurrence of
three price spikes for both the Ontario and New York markets was detected.
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Figure 2. Comparison of the occurrence of the number of price spikes between the Alberta, Ontario,
and New York (real-time) electricity markets using different price thresholds in $/MWh (CAD/MWh
for HAPP and HOEP, and USD/MWh for New York LBMP). For the New York market, we show the
New York City zone, i.e., the highest demand zone in the New York electricity market.

Electricity price spikes can occur for several hours and this occurrence depends upon
the system’s available supply and electric demand [8], but also can depend on the bidding
strategies used by different market participants [30]. Higher-cost operating generators
become operative usually when the demand increases, and they normally influence the
price causing the occurrence of price spikes [5]. The increasing number of price spikes
in Alberta’s electricity market means that expensive operating generators (usually gas
generators) have been required during the on-peak hours to meet demand. Furthermore,
among other reasons, like higher demand and higher gas prices, for the year 2021, for
example, the occurrence of price spikes is also associated with changes in the bidding
strategies of large market participants [26], following the expiration of their long-term
power purchase agreements (PPAs). In other words, those participants are no longer
subject to the contractual terms established in their PPAs to recover their fixed and variable
operation costs, but now, they are recovered directly from the energy market.

As previously discussed, higher volatility levels can be observed in real-time electricity
markets [31]. Using the measure of return variation, σh,T , presented in [1], we conduct a
comparative analysis of hourly spot price return variations between the Alberta, Ontario,
and New York electricity markets. For the latter, again, we selected the load zone J (i.e., New
York City zone), being the one having higher load concentration in that market. In this
analysis, the time series of spot prices are scaled to zero–one. The return variations are
calculated first, as the difference between the spot price at time, t, and the spot price at
t− h. For example, in [1], intra-hour return variations are calculated, i.e., h = 1. Second,
each difference is divided by the average value of the spot prices over T, e.g., T = 3 (2019,
2020, and 2021) years in our case. Finally, σh,T can be estimated as the standard deviation
of the price differences over T. Furthermore, due to the increasing levels of renewable
penetration, zero or negative spot prices can frequently be observed in modern electricity
markets [32]; hence, we decide to use σh,T , as defined in [1], to overcome the associated
problems with arithmetic or logarithmic returns. In other words, prices differences, rt,h, are
defined as follows:

rt,h =
pt − pt−h
1
T ∑T

i=1 pi
, (1)
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where pt denotes the spot price at time, t; pt−h the spot price at t− h; and T is the overall
number of prices (T = 3 years in our case). Finally, the return variation, σh,T , can be
calculated as follows:

σh,T =

√
∑No

t=1(rt,h − r̄h,T)
2

No − 1
, (2)

where No is the number of prices differences, rt,h, and r̄h,T is the simple rt,h average, all of
them over the time window, T. Considering the volatility indices presented in [31], we
extend the analysis for h = {1, 24, 168}, i.e., intra-hour, trans-day, and trans-week return
variations, respectively.

Table 1 shows the results for the return variations σ{1,3}, σ{24,3}, and σ{168,3} for each
electricity market. Higher values are shown in bold letters. From the results observed
in Table 1, Alberta’s market presents the higher three-year return variations for each
case, i.e., intra-day, trans-day, and trans-week. For example, Alberta’s intra-day return
variations (i.e., σ{1,3}) are, on average, 5.3 times higher than intra-day return variations
from the other analyzed markets. Likewise, Alberta’s trans-day (i.e., σ{24,3}) and trans-week
(i.e., σ{168,3}) return variations are, on average, 6.5 and 6.1 times higher than those from the
other markets, respectively.

Furthermore, we observe from Table 1 that trans-week variations show the highest
value in all markets. For example, on average, σ{168,3} is 2.3 times higher than σ{1,3} for all
the analyzed electricity markets; similarly, σ{168,3} is 1.3 times higher than σ{24,3}. As [31]
found in their work, trans-week price fluctuations are wider than those observed intra-
hourly. From the analyzed period T, and based on observations from Table 1, we can
conclude that higher return variations tend to occur in single-settlement electricity markets
like Alberta’s and Ontario’s. This is in comparison with two-settlement electricity markets,
like the one in New York. Furthermore, Alberta’s market presents higher intra-hour, trans-
day, and trans-week return variations, thus, showing the challenging market dynamic faced
by the proposed electricity price forecasting model.

Table 1. Return variations for T = 3 corresponding to the years 2019, 2020, and 2021 (unit-less
numbers).

3-Year Period

σ1,3 σ24,3 σ168,3

Alberta 0.92 1.74 2.11
Ontario 0.35 0.41 0.43
New York-RT 0.13 0.18 0.22
New York-DA 0.14 0.31 0.57

2.2. Long Short-Term Memory Networks

Deep learning techniques have recently gained strength in the field of electricity price
forecasting, mainly associated with the available computational power, volumes of data,
and complexities of modern electricity markets [20]. Recurrent neural networks (RNNs) are
a popular method in time series forecasting. The structure of RNN consists of an input layer,
one or more hidden layers, and an output layer. RNNs have a chain-like structure where
connections between nodes form a directed graph along a temporal sequence. In contrast
to feed-forward neural networks, RNNs include a feedback loop that allows the neural
network to receive a sequence of inputs. In other words, in RNNs, the output of t− 1 is fed
back into the network, having an impact on the outcome of step t and for each subsequent
step, allowing information to persist. For this reason, different types of RNNs, like long
short-term memory (LSTM) or gated recurrent units (GRUs) have been used for electricity
price forecasting [20,33]. In RNN, the backpropagation algorithm is used to calculate
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gradients and adjust weights between network layers during training [34]. Nevertheless,
the weights update scheme could stop the neural network from further training. The
reason is that after a long chain, the gradient could vanish or increase notoriously. In other
words, RNNs face many difficulties in learning from a long-term dependency [35]. Long
short-term memory neural networks are a variant of RNNs. They were proposed to address
the drawbacks of the RNN on learning long-term dependencies [18] by including more
interactions per module or cell and by remembering information for prolonged periods [36].

A typical LSTM network consists of memory blocks called cells. The cell state and
the hidden state are transferred to the next cell. The main chain of data flow is given by
the cell state, which permits the data to flow forward basically unchanged. Nevertheless,
some linear transformations can happen and, via sigmoid gates, some data can be removed
or added to the cell state. A gate is similar to a series of matrix operations that comprise
distinct individual weights. Since the gates control the memorizing process, the LSTM
networks can avoid the long-term dependency problem [36]. The operation of the LSTM
network is illustrated in (3a)–(3f):

ft = sigmoid(W f [ht−1, xt] + b f ) (3a)

it = sigmoid(Wi[ht−1, xt] + bi) (3b)

ot = sigmoid(Wo[ht−1, xt] + bo) (3c)

gt = tanh(Wg[ht−1, Xt] + bg) (3d)

ct = ft � ct−1 + it � gt (3e)

ht = ot � tanh(ct) (3f)

where ft is the forget gate that by the sigmoid function decides which information is not
required and is going to be omitted or forgotten from the cell. In (3b), it is the input gate
that determines the amount of information of the network input, xt, but also the previous
hidden state, ht−1, that can pass into the memory cell. In (3c) and (3d), gt is the update gate
that creates a vector of new cell values, and ot is the output gate that controls the amount of
information of the current memory cell that can pass to the hidden state (ht) in (3f). In (3e),
ct is the cell state that updates itself recursively by the interaction of its old value (ct−1) with
forget and input gates’ values. In addition, W f , Wi, Wo, and Wg are the weights matrices
of the forget gate, input gate, output gate, and update gate, respectively. The biases of the
forget gate, input gate, output gate, and update gate are represented by b f , bi, bo, and bg.

Among others, electricity price forecasting is one of the research fields where LSTM
neural networks have been used. By analyzing the market coupling impact on electricity
price forecasts, different hybrid topologies of autoencoders based on LSTM and convo-
lutional neural networks have been used to forecast the day-ahead electricity prices in
the Nord Pool electricity market [37]. Similarly, considering European market integration,
ref. [20] used different deep learning topologies, one consisting of a hybrid deep learning
forecasting model based on an LSTM and a convolutional neural network, to generate
day-ahead price forecasts for several European countries. In [15], different forecasting
models consisting of a single LSTM neural network and an LSTM part of one hybrid and
two ensemble forecasting models were used to forecast day-ahead prices for the German
market at one-, seven-, and thirty-day-ahead forecasting horizons. Similarly, ref. [38] used
a statistical spike filter [8,20,39], Wavelet decomposition on the spot prices time series, in
combination with an Adam-optimized LSTM neural network, to forecast electricity prices
for the New South Wales region in Australia and French electricity markets. In [33], shallow
and deep architectures of LSTM neural networks were used to forecast day-ahead electricity
prices for the Turkish electricity market.

2.3. Extreme Gradient Boosting

Extreme gradient boosting, also called XGBoost, is a scalable machine learning for tree
boosting that was proposed by [19]. XGBoost is optimized under the gradient boosting
framework. The concept of boosting is to combine a series of models with low accuracy
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(weak models) to build a more robust model with better prediction performance. Gradient
boosting uses the residual of previous models to correct the next model. It is called gradient
boosting because it uses the gradient descent algorithm to minimize the loss function when
adding new models. As an improvement, XGBoost adds regularization to the loss function,
having, in this way, a better performance against over-fitting.

Let us consider a data set, S = {(xl , pl) : l = 1, . . . , n, xl ∈ Rm, pl ∈ R}, where there
are n samples with m features or variables. The predicted value of the model is defined
as follows:

p̂l =
K

∑
a=1

fa(xl), fa ∈ F , (4)

where xl is the l-th training sample, fa represents an independent decision tree, fa(xl)
indicates the prediction score given by the a-th tree to the l-th sample, and F is the space of
functions containing all the regression trees. XGBoost uses the same concept of gradient
boosting but improves it by a adding regularization to the objective function to measure
the model performance:

J =
n

∑
l=1

L(pl , p̂l) +
K

∑
a=1

Ω( fa) . (5)

The L term represents a training loss function, which measures how well the model
fits on training data. Ω is the regularization term that avoids over-fitting by penalizing the
complexity of the model (i.e., the regression tree functions), and is given by [19]:

Ω( fa) = γ T +
1
2

λ
T

∑
s=1

ws
2 , (6)

where T is the number of leaves in a decision tree, λ is a parameter to scale the penalty, γ
is the complexity of each leaf, and w is the vector of scores on leaves. The tree ensemble
model is trained in an additive manner. Each time a new tree is added, the score is equal
to the previous score plus the new tree’s score. Considering p̂l

(b), the prediction of the
l-th sample at the b-th iteration, the objective function at the b-ith iteration is given by
the following:

J(b) =
n

∑
l=1

L
(

pl , p̂(b−1)
l + fb(xl)

)
+ Ω( fb) . (7)

Then, the second-order Taylor expansion is used to optimize the objective in the
general setting. Assuming the loss function, L, is the mean square error (MSE), the objective
function can finally be estimated as follows:

J̃(b) =
n

∑
l=1

[
δl fb(xl) +

1
2

θl fb(xl)
2
]
+ Ω( fb) , (8)

where δl = ∂
p̂(b−1)

l
L
(

pl , p̂(b−1)
l

)
and θl = ∂2

p̂(b−1)
l

L
(

pl , p̂(b−1)
l

)
are the first and second

gradient of the loss function, L. The objective function can finally be rewritten as:

J̃(b) =
n

∑
l=1

[
δl fb(xl) +

1
2

θl fb(xl)
2
]
+ γ T +

1
2

λ
T

∑
s=1

ws
2, (9a)

J̃(b) =
T

∑
s=1

[(
∑
l∈Is

δl

)
ws +

1
2

(
∑
l∈Is

θl + λ

)
ws

2

]
+ γ T , (9b)



Forecasting 2023, 5 507

where Is = {l | q(xl) = s} denotes the instance set of a leaf, s. For a fixed tree structure, q,
the optimal weight, w∗s , of a leaf, s, and the corresponding optimal value can be obtained by:

w∗s = − ∑l∈Is δl

∑l∈Is θl + λ
, (10a)

J̃∗ = −1
2

T

∑
s=1

(
∑l∈Is δl

)2

∑l∈Is θl + λ
+ γ T . (10b)

Equation (10b) can be used as a scoring function to measure the quality of a tree
structure, q. A smaller value J̃ means a better structure of the tree. Since it is impossible to
enumerate all the possible tree structures, q, a greedy algorithm that starts from a single leaf
and iteratively adds branches to the tree is used instead. IL and IR are the instance sets of the
left and right nodes after the split, with I = IL ∪ IR. The gain formula, which is often used
for evaluating the split candidates, is obtained by enumerating the feasible segmentation
points and selecting the maximum gain partition and the minimum target function:

G =
1
2

[ (
∑l∈IL

δl
)2

∑l∈IL
θl + λ

+

(
∑l∈IR

δl
)2

∑l∈IR
θl + λ

− (∑l∈I δl)
2

∑l∈I θl + λ

]
− γ (11)

Among others, boosting tree-ensemble-based algorithms have been part of the model-
ing strategies of leader-board teams in important energy forecasting competitions,
e.g., GEFCom2014 [40,41]. XGBoost is not the exception, and its robustness postulates
it as a good candidate within the energy forecasting research field. For example, [42] used
an ensemble model to generate one-hour-ahead locational marginal price forecasts for the
New England day-ahead electricity market. The forecasting model is composed of two “rel-
evance support vector machines” and an XGBoost regressor. Particularly, the latter is used
to model the complex behavior of the price spikes. Additionally, [43] developed a hybrid
forecasting model based on ANN with entity embedding to pre-process categorical data
and an XGBoost regressor to forecast the day-ahead electricity prices in the PJM market.

2.4. Related Works

Hybrid electricity price forecasting systems consist of a combination of two or more
existing price forecasting methods. These systems can be composed of only parametric, non-
parametric, or a combination of both types of modeling approaches [15,44]. For example,
in [45], a hybrid system consisting of committee machines was employed to recursively
generate electricity price forecasts within a 4-hour-ahead forecasting horizon. Each of the
two forecasting models is composed of two support vector machines and two multi-layer
perceptron Levenberg–Marquardt ANNs. This hybrid system was tested using data from
real-time and day-ahead electricity markets, i.e., the Alberta and West Denmark Zone
(Nordic) electricity markets, respectively.

A hybrid system composed of a seasonal auto-regressive integrated moving average
model and a deep belief network was used by [46] to forecast half-hourly and hourly
electricity normal and spiky prices, respectively. The analyzed markets correspond to the
Australian, Spanish, and PJM electricity markets. Similarly, ref. [8] proposed a hybrid
forecasting model purely based on ANNs to forecast normal and spiky prices in the real-
time electricity market of Ontario. Forecasts were generated for a 24-hour-ahead forecasting
horizon. In [47], a hybrid mid-term electricity price forecasting system was proposed. Each
of the three models consists of an auto-regressive integrated moving average model, along
with principal component analysis, and an ANN model. The system is used to recursively
generate forecasts of weekly average electricity prices for a 12-week forecasting horizon in
the Brazilian electricity market.

Some previous studies have focused on building forecasting models for volatile, real-
time markets [8]. For example, using data from the Ontario electricity market, ref. [9]



Forecasting 2023, 5 508

forecasted 24-hour-ahead HOEP with ANN and fuzzy logic systems. Similarly, ref. [48]
generated 3- and 24-hour-ahead electricity price forecasts using time series models and
ANN in the Ontario market. In [49], half-hour-ahead forecasts for the Australian electricity
market were generated using an extreme learning machine. Using daily electricity spot
prices and a higher-order hidden Markov chain model in discrete time, the work in [50]
generated one-step-ahead forecasts on a daily forecasting horizon for the Alberta electricity
market. The model estimation was conducted through the decomposition of the time series
of spot prices into a seasonal and stochastic component, like in [51,52]. The former was
modeled as the combination of sinusoidal functions, and the latter as the combination of an
Ornstein–Uhlenbeck process and an additive compound Poisson component.

Some of the existing works have focused specifically on modeling and forecasting price
spikes in electricity markets. In [2], the demand-to-capacity ratio was used to estimate the
probability of the occurrence of price spikes in the UK electricity market using a forecasting
horizon that extends from 2 days up to 2 weeks ahead. The authors in [53] proposed an auto-
regressive Poisson model to forecast one-day-ahead price spikes in different interconnected
regions of the Australian electricity market. The model used three exogenous variables and
the short-term history of price spike occurrence. In reference [54], the authors studied the
mutual effects of interconnected regions within the Australian electricity market on the
occurrence of price spikes. To do so, a dynamic copula-based multivariate discrete choice
model generated one-step-ahead predictions of the probability of price spike occurrence
using half-hourly historical prices of electricity. In a classification approach, reference [55]
used a variable threshold, along with feature selection via the Fisher score, to classify price
spikes using a support vector machine for the Australian electricity market. However, the
horizon over which the classification of new spikes was made was not specified.

Our proposed method distinguishes itself from the existing approaches by employing
a different approach to model combination in two dimensions. Conventional methods
typically combine models in a “vertical” dimension, where multiple models are ensem-
bled to generate forecasts for the same fixed forecast horizon. In contrast, our method
combines models vertically, specifically focusing on enhancing the predictive ability of
our model in detecting and predicting price spikes. Additionally, we combine models
at a “horizontal” dimension to take advantage of available market data for each forecast
horizon and generate forecasts for an extended 96-hour-ahead forecasting horizon. In other
words, we break the forecast horizon into multiple segments and train and build a model
for each segment, depending on what explanatory features are available at each horizontal
dimension. Furthermore, in the existing works that have used Alberta’s market prices
for their base case, no particular emphasis has been made on enhancing the ability of the
models to predict the price spikes.

3. Methodology

Let us denote the hourly market price at time, t, with pt. Furthermore, we refer to
the feature space as X = {xj, j = 1, . . . , N}, where xj is the jth feature. The proposed
method is composed of five horizontally cascaded forecasting models, i.e., Ei, {i = 1, . . . , 5}.
Each model uses a subset of X, referred to here as Φi. Furthermore, each Φi contains a
set of observed and predicted inputs that are selected depending on their availability and
usefulness. Eis are only different in their corresponding set of features and the associated
forecasting horizons. More specifically, E1 to E5 are used to generate 1-hour-ahead, 2- to
3-hour-ahead, 4-hour-ahead, 5- to 24-hour-ahead, and 25- to 96-hour-ahead price forecasts,
respectively. Let us refer to the final ki-step-ahead price forecasts generated by model Ei
using the feature set, Φi, as { p̂t+ki

|Φi}; thus, ki can be specified as k1 = 1, k2 ∈ {2, 3},
k3 = 4, k4 ∈ {5, . . . , 24}, and k5 ∈ {25, . . . , 96}. This horizontal cascading of the five models
is shown in Figure 3. Observe from Figure 3 that a set of 96 price forecasts are generated at
each time step, i.e., hourly, at the forecasting origin, t.

Each model ,Ei, is composed of two predictors, i.e., an LSTM and an XGBoost. The
predictors are “vertically” stacked up and independently produce what we call preliminary
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price forecasts for each of the associated forecasting horizons. The final price forecasts, i.e.,
p̂t+ki

, are defined accordingly as follows:

p̂t+ki
=





p̃(XGB)
t+ki

if p̃(LSTM)
t+ki

< T1

p̃(LSTM)
t+ki

if T1 ≤ p̃(LSTM)
t+ki

< T2

p̃(XGB)
t+ki

if p̃(LSTM)
t+ki

≥ T2

(12)

E1 E2 E3 E4 E5

Φ1 Φ2 Φ3 Φ4 Φ5

t t + 1 t + 2 t + 3 t + 4 t + 5 · · · t + 24 t + 25 · · · t + 96

History Future

Figure 3. The horizontal dimension of the forecasting system. The width of each model represents
how many forecasts are generated at each forecasting horizon. Moreover, each Ei uses a different
input set of features, Φi.

In (12), we refer to the preliminary forecasts produced by the two predictors for
the k step ahead as p̃(LSTM)

t+ki
and p̃(XGB)

t+ki
. The preliminary price forecasts generated by

the LSTM models are compared against two price spike thresholds, T1 and T2, where
T1 < T2. Essentially, the final forecasts are picked from either the LSTM model or
the XGBoost models, depending on if they are normal, i.e., p̃(LSTM)

t+ki
< T1; a spike,

i.e., T1 ≤ p̃(LSTM)
t+ki

< T2; or a super-spike, i.e., p̃(LSTM)
t+ki

≥ T2. The observation is that the
LSTM model performed better in predicting the trends and the sequences of prices, as
expected. However, the XGBoost models outperformed the LSTM models for both low and
very high prices. In this paper, finding the exact values of the two thresholds is conducted
by examining the models’ performance on the training data sets with some trial and error.
However, determining the thresholds and even the weight of combining the two forecasts
could be automated and optimized, which is left for future work. Figure 4 presents how
the LSTM models and XGBoost models are integrated in this methodology and how they
contribute to obtain the final price forecasts, p̂t+ki

, for each Ei model along each forecasting
horizon, ki (i.e., the horizontal dimension). Here, a different input set, φi, is used (i.e., the
vertical dimension) depending on ki.
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Figure 4. Integration of XGBoost and LSTM models in the proposed methodolody to obtain final
price forecasts p̂t+ki
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Figure 4. Integration of XGBoost and LSTM models in the proposed methodology to obtain final
price forecasts, p̂t+ki

, for each Ei model that deploys a different input set of features, Φi.

A key factor to enhance the performance of the proposed model is to identify as many
publicly input features that are available for a given forecast horizon. Here, we describe
the features that we identified for Alberta’s market. Electricity price time series show
significant autocorrelation, and the literature is accordingly rich on how to choose the
most informative lags using tools such as autocorrelation functions [48,56]. We define the
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subset feature, x1 = pt−l , to include the autocorrelated lagged values of the prices [56,57]
up to 168 previous hours. The AESO [27] publishes hourly load forecasts [9,11,58], wind
energy production forecasts [11], and the total generation availability forecasts [20] for
each technology for up to seven days ahead; we refer to these features as x2, x3, and x4,
respectively. On the other hand, the AESO publishes the forecast imports/exports of energy
into and from Alberta for the next 48 h. This feature is referred to here by x5. Although
they do not use forecasts of the imports/exports, some works have used historical values
of this variable (for example, [37,59,60]).

We propose to employ a new feature for price forecasting in this paper. Thermal
generators often play a key role in electricity markets where they make up a significant
portion of the supply side. This is the case, for example, in Alberta where coal and gas
units make up 75% [26] of the total installed capacity (end of 2021). A sudden change in
the output of the thermal units could indicate a change in the market supply curve and
could help predict sharp changes in the prices in the short term. Thus, we propose to use
the slope of the output of the online thermal generation capacity as a new feature, and
we refer to it as x6. The slope is defined as the change in the output power over the past
10 min period. Moreover, the AESO also publishes pool price forecasts [61] for the next
three hours. We, hence, define this feature subset as x7. Additionally, the latest system
marginal price (SMP) values are found to be a useful input [61] in price forecasting models.
The modeler may choose to feed its model with one or more of the latest available SMP
values before the model is run. This feature is referred to as x8 here.

Based on the availability of the identified features, the following feature subsets, Φi,
are proposed:

Φ1 =
{

x1, x2, x3, x4, x5, x6, x7, x8

}
(13a)

Φ2 =
{

x1, x2, x3, x4, x5, x6, x7

}
(13b)

Φ3 = {x1, x2, x3, x4, x5, x6} (13c)

Φ4 = {x1, x2, x3, x4, x5} (13d)

Φ5 = {x1, x2, x3, x4} (13e)

In (13a)–(13e), Φi corresponds to a multiple input to each Ei, and depending on
the forecasting horizon, the output of Ei is single (i.e., k = 1, 4-hour-ahead) or multiple
(i.e., k = 2–3-, 5–24-, or 25–96-hour-ahead) point forecast(s). E1 takes advantage of all the
information that we have, including the latest SMPs, the slope of the thermal generation,
and the AESO price forecasts. On the other hand, we discovered that including the latest
SMP does not improve model accuracy; thus, x8 is excluded from E2. AESO price forecasts
are not available for a 4-hour-ahead forecasting horizon; thus, the model for this horizon
does not include x7. However, it is often observed in Alberta that price spikes last longer
than one hour; thus, the slope of thermal generators, i.e., x6 is included in the input set for
E3. When it comes to import/export forecasts, their accuracy often drops for the second
day. Thus, their forecasts are only considered for the next 24 h. This is the main reason for
creating model E4, to focus on 5 to 24 hours ahead, where x5 is included in the input set of
this model. The last model, i.e., E5, benefits from the least available information, simply
because not all of the identified features are available or useful for a long horizon for up to
96 h.

4. Numerical Results

In this section, we present the numerical results of the proposed hybrid forecasting
system. Furthermore, we show the convenience of using the slope of the online thermal
generators’ output power as a feature, i.e., x6. Alberta’s electricity market dataset comprises
three years of data, ranging from January 2017 to December 2019. The training set considers
data from January 2017 to July 2018; likewise, a validation set considers data from August
2018 to December 2018. The rest of the data, i.e., January 2019 to December 2019, is used
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for testing. In general, we use two years of data for training and validation, and one year
for testing [11]. Moreover, ki-step-ahead hourly price forecasts are generated following a
forward rolling window. This is a common practice in electricity price forecasting [11,62].
However, in our case, the computational burden makes it challenging for the model to be
recalibrated daily; thus, monthly recalibration results in a better choice.

The input data from where the LSTM [18] and XGBoost [19] models are estimated
is scaled between [−1, 1] [20]. The inverse of this transformation is applied to the price
forecasts at the error calculation stage [20]. Furthermore, hyperparameter tuning for each
Ei is conducted via grid search and evaluated on the validation set [11]. Likewise, due
to its simple implementation, computational efficiency, and small memory requirements,
the Adam algorithm [63] is selected to optimize the LSTM models. The correspond-
ing hyperparameter search spaces for the LSTM and XGBoost models are presented in
Tables 2 and 3, respectively.

Table 2. Hyperparameter search space for the LSTM models.

Hyperparameter Values

Neurons in 1st LSTM layer 4, 8, 16, 32, 64, 96, 128
Neurons in 2nd LSTM layer 4, 8, 16, 32, 64, 96, 128

Activation function of 1st layer Sigmoid, tanh, relu, linear
Activation function of 2nd layer Sigmoid, tanh, relu, linear

Dimension of 1st dense layer 7, 14, 21, 28, 35

Table 3. Hyperparameter search space for the XGBoost models.

Hyper-Parameter Values

Regularization (λ) 0.3, 0.5, 0.7
Minimum split loss γ 0.3, 0.5, 0.7

Tree depth 6, 8, 10
Learning rate (η) 0.1, 0.3, 0.5

Loss Root-mean-square error

The grid search algorithm systematically explores all possible combinations of hyper-
parameter values from Tables 2 and 3. For each combination of hyperparameters, the model
is trained on the training set, and its performance is evaluated using the mean squared
error as the chosen metric on the validation set. The hyperparameter combination that
yields the best result, based on the chosen evaluation metric, is selected. Finally, once
the best hyperparameters are identified, the model is retrained using the training dataset,
incorporating the optimized hyperparameter values.

The forecasting accuracy evaluation is conducted using two performance metrics,
i.e., the root-mean-square error (RMSE) and the mean absolute error (MAE). Both can be
expressed as follows:

MAE =
1

Nh

Nh

∑
e=1
|pme − p̂me | (14a)

RMSE =

√√√√ 1
Nh

Nh

∑
e=1

(
pme − p̂me

)2
(14b)

In (14a) and (14b), m ∈ {1, 2, 3, . . . , 96}, Nh is the number of hours in the evaluation
period, i.e., the test period. Likewise, pme and p̂me are the actual and predicted pool prices,
respectively. Finally, the fixed price thresholds [5,53] presented in (12) correspond to
T1 ≥ CAD 150/MWh and T2 ≥ CAD 400/MWh.
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4.1. Electricity Price Forecasting with the Proposed Model

The proposed multi-horizon price forecasting system generates forecasts using a
different set of regressors, Ei (i.e., the vertical dimension), throughout the forecasting
horizons (i.e., the horizontal dimension) k1 = 1, k2 ∈ {2, 3}, k3 = 4, k4 ∈ {5, . . . , 24}, and
k5 ∈ {25, . . . , 96}. Furthermore, each Ei uses a different input set, Φi, depending on the
market data availability at the forecasting origin (see Section 3).

Figure 5 displays a comparison of the RMSE and MAE between the proposed fore-
casting system and a set of benchmark models. These benchmark models consist of a
decision tree regressor (DTR), an LSTM, and an XGBoost. All models have the same inputs
and training periods. Observe that the proposed hybrid forecasting system consistently
outperforms the benchmark models along all the forecasting horizons, i.e., k1 = 1 hour
ahead, k2 ∈ {2, 3} hours ahead, k3 = 4 hours ahead, k4 ∈ {5, . . . , 24} hours ahead, and
k5 ∈ {25, . . . , 96} hours ahead. As expected, shorter forecasting horizons present the
lowest error rates. Observe, for example, the RMSE and MAE for k1 = 1 hour ahead,
k2 ∈ {2, 3} hours ahead, and k3 = 4 hours ahead are somewhere around CAD 38-65/MWh
and CAD 10-24/MWh, respectively. The reason is because these forecasts contain the most
recent market information (i.e., close to real time) from x6, x7, and x8 (see Section 3).
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Figure 5. Performance comparison between the proposed model (dashed line) and a set of benchmark
models (dotted lines) for the testing period. (Top): root-mean-square error (RMSE). (Bottom): mean
absolute error (MAE).

Beyond k3 = 4 hours ahead, i.e., from k4 ∈ {5, . . . , 24} hours ahead up to
k5 ∈ {25, . . . , 96} hours ahead, both the RMSE and MAE increase by approximately CAD
15/MWh and CAD 10/MWh, respectively. Observe that once they reach somewhere
around CAD 80/MWh (RMSE) and CAD 35/MWh (MAE), both error metrics are kept
almost constant. This demonstrates the capabilities of the proposed hybrid forecasting
system to forecast long sequences of data without considerably decreasing its performance,
i.e., significantly increasing the error.

Likewise, we demonstrate the usefulness of deploying different forecasting regressors
following the proposed methodology. To do so, we compare the proposed hybrid fore-
casting system against a single LSTM forecaster, i.e., a single regressor that generates pool
price predictions p̂(LSTM)

t+k{1−96}
. Observe that these predictions are made for all the forecasting

horizons, from k1 = 1 hour ahead up to k96 = 96 hours ahead. The single forecaster is
trained, validated, and tested using all input variables. Figure 6 shows the 96-hour-ahead
forecasts made by the proposed forecasting system and the single forecaster for an arbitrary
test period. Observe that the proposed model could effectively predict more price spikes
(i.e., pt > T1) than the single forecaster model. For example, the group of spikes between
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August 14 and 15 in Figure 6 is better captured by the proposed multi-horizon forecasting
system than from the single forecaster. Similarly, this can be observed on 16 August 2019.

Based on the results shown in Figure 6, we estimate and compare the average RMSE
and MAE along all kis for the proposed forecasting model and a single forecaster. The
average RMSE for the proposed forecasting model is CAD 66.41/MWh, compared to
CAD 70.81/MWh for the single forecaster. Likewise, the average MAE for the proposed
forecasting model is CAD 20.06/MWh, compared to CAD 21.78/MWh for the single
forecaster. Overall, the proposed hybrid cascading forecasting model enhances the accuracy
of the price spike predictions.
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Figure 6. Forecast comparison between the proposed model and a single forecaster for the 96-hour-
ahead forecasting horizon between 8 August 2019 and 22 August 2019.

4.2. Impact of the Slope of Power Production of Thermal Generators on the Performance of the
Developed Forecasting System

The slope of power production of thermal generators during the initial minutes of
the first predicted hour is a novel feature (i.e., x6) of the proposed forecasting system. For
example, coal generators usually offer blocks of power at low prices; thus, a reduction in
output power could be indicative of price spikes in Alberta’s electricity market. Further-
more, thermal generators (e.g., coal generators) have a steady ramp-up and ramp-down
curve; therefore, their power production slope can help to determine if they are going to be
available for the next two or three hours.

Figure 7 (left) shows an example case where three price spikes occurred in Alberta’s
market on 8 August 2019. Each price spike is shown with a value of CAD 762.83/MWh,
CAD 507.4/MWh, and CAD 801.68/MWh. Furthermore, their occurrence is within the
on-peak hours window, i.e., between 2:00 p.m. and 5:00 p.m. The main cause of these
price spikes is associated with a reduction in thermal generation availability. Observe in
Figure 7 (left) how the thermal units Thermal Gen 1 and Thermal Gen 2 reduced their
power production considerably after midday. Thermal Gen 1 goes completely offline at
2:15 p.m., and Thermal Gen 2 reduces its production around 2:00 p.m., 3:00 p.m., and, again,
at 4:00 p.m. during that day.

For the same period shown in Figure 7 (left), the dispatched energy of the economic
merit order table from the AESO [27] indicates that high-price power blocks of other thermal
generation units set high spot prices during these hours. To demonstrate the contribution
that the slope of power production of thermal generators (i.e., x6) has on the model’s
capabilities to better predict price spikes, Figure 7 (right) compares the one-hour-ahead
forecasts (i.e., p̂t+1) produced by E1 for the same period on 8 August 2019. As an example,
we present the RMSE and MAE for this specific period. When using x6, the RMSE and
MAE are CAD 140.63/MWh and CAD 46.74/MWh, respectively. Likewise, if x6 is not
used, the RMSE and MAE are CAD 197.79/MWh and CAD 75.09/MWh, respectively. This
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example shows the impact of x6 on the proposed model’s performance. In other words,
using x6 enhances the model’s ability to forecast price spikes.
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Figure 7. The arbitrarily selected period of 8 August 2019. (Left): Pool price dynamic reaction to
changes in thermal generation. (Right): One-hour-ahead forecast (i.e., p̂tk+1 ) with and without using
x6 as a feature.

4.3. Price Spike Predictions Accuracy Assessment

As previously emphasized, the proposed forecasting model is designed to enhance
the prediction of price spikes. Thus, we analyze its performance to detect price spikes
for the one-hour-ahead and four-hour-ahead forecasting horizons. The selection of these
forecasting horizons is because, in Alberta’s market, different market participants benefit
from these forecasts (see Section 1). For example, large load consumers benefit from the one-
hour-ahead forecasts to decide if they need to reduce their demand. Likewise, generators
benefit from the four-hour-ahead price forecasts to decide if they need to modify their
bidding strategies. To conduct the analysis, we use the spike prediction confidence (SPC)
and spike prediction accuracy (SPA) metrics [60]:

SPC(%) =
Ncorr

Nas
(15)

SPA(%) =
Ncorr

Nsp
(16)

In (15) and (16), Ncorr corresponds to the number of correctly predicted price spikes.
Similarly, Nas is the total number of predicted price spikes , and Nsp is the actual number of
price spikes. Moreover, prices greater than or equal to CAD 150/MWh (see definition of T1
in Section 4) are used to decide whether a price is considered a spike, normal, or otherwise.
The SPA and SPC metrics are computed for each month [61] in the test period, i.e., the year
2019. In each case, the final spike detection performance of the models is assessed with
the average over this period. The higher the values of both SPA and SPC, the better the
performance of the model.

Table 4 shows the results for the SPC corresponding to the one-hour-ahead forecasts.
Observe that the proposed model has the highest SPC compared to the benchmark models.
In other words, the proposed model outperforms the benchmark models in not labeling
normal prices as price spikes. Similarly, Table 5 shows the performance of the proposed
model and the benchmark models on the SPA metric for the one-hour-ahead forecasts. Here,
the proposed model has the highest SPA compared to the benchmark models. Consequently,
the proposed model is better at detecting price spikes compared to the benchmark models.
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Table 4. SPCs (%) for one-hour-ahead price forecasts for the different models.

Month Proposed Model DTR LSTM XGB

January 100 12.5 66.7 12.5
February 87.5 44.7 72 44.7

March 87.1 61.5 84.4 70.5
April 77.8 41.1 80 56.2
May 91.7 67.1 88.2 71.4
June 83.3 75 83.3 69.7
July 69.2 54.5 75 33.3

August 70.5 40 68.8 57.1
September 83.3 64.2 89.4 44.1

October 72.7 19.3 58.3 22.2
November 72.7 65.5 82.6 43.7
December 68.7 44.4 66.7 28.6

Average 80.4 49.1 76.3 46.2

Table 5. SPAs (%) for one-hour-ahead price forecasts for the different models.

Month Proposed Model DTR LSTM XGB

January 25 25 50 25
February 65.3 62.6 72 62.7

March 71.1 63.1 71 63.2
April 58.3 58.3 66.7 75
May 78.6 87.5 80.4 80.4
June 75.8 63.6 75.8 69.7
July 64.3 42.8 64.3 57.1

August 75 50 68.8 75
September 87 78.2 73.9 65.2

October 66.7 50 58.3 33.3
November 80 63.3 63.3 46.7
December 91.7 66.6 66.7 66.7

Average 69.9 59.3 67.6 60

Likewise, Tables 6 and 7 show the four-hour-ahead SPC and SPA of the proposed
model and the benchmark models. As expected, the performance of all the models in
terms of the four-hour-ahead SPC and SPA is lower than the performance shown for the
one-hour-ahead. The reason for this is that as we move forward to further forecasting
horizons, the spike detection capability of the models tends to decrease. Moreover, we
can observe from Tables 6 and 7 that the proposed model has again the highest SPC and
SPA when compared to the benchmark models. For the SPC, the proposed model is better
than the benchmark models in not labeling normal prices as price spikes. Similarly, for
the SPA, the proposed model is better at detecting price spikes. Observe that for both of
the analyzed forecasting horizons, the proposed model demonstrates a superior balance
between SPC and SPA when compared to the benchmarks.

Finally, observe that the differences between the proposed model and the XGBoost are
relatively small in terms of the RMSE and MAE ( see Figure 5). However, when evaluating
their performance based on the SPC and SPA metrics (Tables 4–7), it is evident that the
proposed model outperforms the XGBoost. Thus, when enhancing the capabilities of a
forecasting model to predict price spikes, it is important to evaluate not only the accuracy
of the point predictions but the spike detection ability of the model.
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Table 6. SPCs (%) for four-hour-ahead price forecasts for the different models.

Month Proposed Model DTR LSTM XGB

January 23 5.8 0 5.8
February 35.7 32.2 61.7 32.2

March 43.5 28.5 22.2 6.4
April 85.7 16.7 50 26.6
May 67.1 44.1 60 32.7
June 73.3 4.0 60 24
July 42.8 53.8 14.3 12.5

August 42.8 37.5 29.6 24
September 71.4 35.7 66.7 15.6

October 29.7 12.5 36.8 11.5
November 45 30.7 58.5 18.8
December 15.3 0 13.3 9.5

Average 47.9 25.1 39.4 18.3

Table 7. SPAs (%) for four-hour-ahead price forecasts for the different models.

Month Proposed Model DTR LSTM XGB

January 75 25 0 25
February 86.7 49.3 38.7 49.3

March 44.7 15.7 5.2 7.8
April 50 33.3 8.3 33.3
May 83.9 60.7 80.4 33.9
June 66.7 3.0 27.3 18.18
July 42.8 100 7.1 7.14

August 37.5 37.5 50 37.5
September 65.2 43.4 34.8 30.4

October 91.7 16.7 58.3 25
November 76.7 80 76.7 50
December 16.7 0 16.7 33.3

Average 61.5 38.7 33.6 29.2

5. Evaluation of the Economic Value of the Developed Price Forecasting Model
in Alberta

In this section, we evaluate the economic advantage of the proposed price forecasting
model in the ancillary services market, in particular, to the spinning reserve offers of
one generation facility. Moreover, an optimization problem is proposed to maximize the
revenues from the contingency reserve volume offers based on the electricity price forecasts,
p̂t+ki

, of each Ei.
For the generation facility, the optimization considers the maximum power (MW) to

distribute active and standby operating reserves across the daily on-peak and off-peak
periods. Likewise, the prices of each offer are not changed in the optimization problem
and are assumed to be low enough to be dispatched first on their respective merit order
tables. In other words, the generation facility is assumed to be a price-taker, so its operation
in the market does not affect the prices. Unlike the two optimized models, which both
consider maximum power for the offers in the spinning reserves market, we consider
the other three approaches, i.e., the first, second, and third approach. The first approach
considers 10 MW and 5 MW of the volume offers for the active and standby spinning
market, respectively. Similarly, the second (third) approach uses 12 MW (8 MW) and 3 MW
(7 MW). The offers for the second and third approaches also correspond to the active and
standby spinning market.

The total actual revenues from January to December 2019 are calculated using daily
volume offers and the actual electricity prices from both the energy and ancillary services
markets. The total possible revenues are obtained using the actual electricity price to
solve the optimization problem, i.e., the perfect approach. Similarly, we solve, again, the
optimization problem using price forecasts, p̂t+ki

, instead of the actual electricity price to
calculate the revenues in this scenario. We call this approach the proposed model.
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The difference between the perfect approach and the proposed model revenues rep-
resents the effect of the price forecast inaccuracies in the proposed forecasting system.
Likewise, the total actual revenues are also compared against the other three approaches
that do not consider any optimization techniques on their volume offers, i.e., the first,
second, and third approaches.

Table 8 presents the total obtained revenues from each approach at the spinning
reserves market. Observe that the proposed model provides the highest revenues when
compared with the first, second, and third approaches. Its total revenues represent 89.67%
of the maximum revenues that could have been obtained from the perfect approach.
The difference in revenues between the developed model and the perfect approach is
approximately CAD 450,000 per year. This difference represents the economic losses
brought by the forecast inaccuracies, e.g., approximately equivalent to 10% per year of
the maximum possible revenues. We recognize these inaccuracies are related to the ideas
presented in Section 1 on the challenges of producing single-digit price forecast errors in
real-time electricity markets.

Table 8. Total revenues from the spinning reserve volume offers between January and December
2019, i.e., the test period.

Methodology Revenue (Million CAD)

Perfect approach 4.35
Proposed model 3.90
First approach 2.70

Second approach 2.98
Third approach 2.43

Observe also from Table 8 that the proposed model outperforms, on average, by more
than 30 % or approximately CAD 1,197,000 per year compared to the revenues obtained
from fixed volume offers, i.e., first, second, and third approaches. Table 8 also shows
that for the case of the fixed volume offers, it is more profitable to increase the offers in
the active spinning reserve market and decrease those in the standby spinning reserve
market. Observe, for example, the difference in revenues of approximately more than CAD
500,000 per year between the second and third approaches.

Finally, Figure 8 shows the combined cumulative revenues for both types of spinning
reserves (i.e., active and standby) for the analyzed period in 2019. It is possible to observe
that the revenues between the perfect approach and the developed model significantly differ
from the other three approaches approximately after February 2019. Likewise, observe the
impact of the forecast error between the perfect approach and the developed model after
March 2019. Such a tendency prevails and increases towards the end of the analyzed period.
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Figure 8. Total cumulative revenues from the spinning reserve volume offers in the test period.
These results correspond to the economic evaluation of the proposed forecasting system compared to
other approaches.
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6. Conclusions

A hybrid electricity price forecasting model that takes advantage of a two-dimension
strategy was presented in this paper. At the vertical dimension, the different forecasting
regressors generated price predictions based on a stack array of an XGBoost and an LSTM
model. Likewise, at the horizontal dimension, the proposed model took advantage of
the available market information at the forecasting origin to generate price forecasts from
1 h ahead up to 96 h ahead. In addition, the novel input feature based on the slope of the
output power production of thermal generators demonstrated and improvement in the
price spike prediction accuracy of the proposed forecasting model.

Extensive numerical results were conducted to evaluate the accuracy of the proposed
point forecasting model, and also to evaluate its ability to detect the occurrence of price
spikes in the Alberta electricity market for the year 2019. In terms of MAE and RMSE,
the proposed forecasting model outperformed the other benchmark models along all the
forecasting horizons. The MAE and RMSE errors for price predictions from one to four
hours ahead range between CAD 10–24/MWh and CAD 38–65/MWh, respectively. From
five to ninety-six hours ahead, the MAE and RMSE increased by approximately CAD
10/MWh and CAD 15/MWh, respectively. Both error metrics also kept almost constant
during this forecasting horizon, which demonstrates the capabilities of the proposed hybrid
forecasting system to forecast long sequences of data without considerably decreasing its
performance. Furthermore, our experiments showed that the proposed forecasting model
enhanced the prediction of price spikes at further forecasting horizons when compared to a
single forecaster. Moreover, in terms of the price spike detection assessment, we showed
that the proposed forecasting model outperformed, on average, the benchmark models for
both the SPC and SPA metrics. This demonstrates the importance of conducting a specific
spike detection evaluation of the models to assure their performance not only in predicting,
but also in detecting the occurrence of price spikes at different forecasting horizons.

Finally, the proposed price forecasting model was effectively employed to allocate, in
the most profitable way possible, the contingency reserve volume offers of a hypothetical
generation facility in the ancillary services market in Alberta. The output of the optimization
problem showed that the proposed forecasting model was able to provide higher revenues
for the generation facility when compared to the other presented approaches. Moreover, we
also demonstrated that the impact of the forecast error in our study case represents a loss
in revenues of approximately 10% per year of what could have been if a perfect approach
was used.

One limitation of this study is that the proposed price forecasting model does not
directly consider the historical offers and bids submitted by market players. By not con-
sidering these crucial inputs, the model may overlook important market dynamics and
potential strategic behaviors, which could impact the accuracy of its forecasts. Incorpo-
rating the offers and bids of market players into the model has the potential to enhance
its performance by capturing the influence of participant strategies and optimizing the
forecasting outcomes. However, it is important to note that such types of input data are not
publicly available in all markets. Future research should explore the integration of these
additional inputs to further refine and strengthen the predictive capabilities of the model.
Several other limitations should also be noted:

• The input of recent variations in the output power of thermal units as an indicator
of unplanned outages or shifts in the supply stack may be more relevant to coal
generators, as their ramp-up and ramp-down times are typically longer compared
to gas generators. The proposed methodology was tested using data from Alberta’s
electricity market, where more than five coal generators were still operational (the
year 2019).

• The literature presents some benchmark models for comparison for day-ahead market
price forecasts [11]. However, it lacks a standard benchmark model for testing price
forecasting methods for real-time markets focused on price spike detection. Thus,
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we have reported the results of comparing the proposed method with two baseline
models that we have developed to evaluate the performance of the proposed method.

• The price spike thresholds (T1 and T2) will vary among different electricity markets
and depend on the frequency and magnitude of price spikes. The optimal selection
of these thresholds should be based on the training dataset specific to the electricity
market under study. Automating and optimizing the process of determining these
thresholds is recommended for future research.

• The proposed methodology was only tested on the Alberta electricity market, which
features the presence of more than five coal generators (the year 2019). However, it can
be applied to other electricity markets where the presence of large generation units
can have an impact on prices.

Furthermore, it is essential to acknowledge the significance of quantifying uncer-
tainties associated with deterministic forecasts. As part of future research, developing
a probabilistic forecasting model based on the proposed strategy would be valuable in
addressing this aspect.

Author Contributions: Conceptualization, H.Z. and M.Q.; methodology, D.M.J.; software, D.M.J.
and M.Z.L.; validation, D.M.J., M.Z.L. and H.Z.; formal analysis, D.M.J. and M.Z.L.; investigation,
D.M.J.; resources, D.M.J.; data curation, D.M.J. and M.Z.L.; writing—original draft preparation,
D.M.J.; writing—review and editing, D.M.J. and M.Z.L.; visualization, M.Z.L.; supervision, H.Z. and
M.Q.; project administration, D.M.J. and M.Q.; funding acquisition, H.Z. and M.Q. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was partially supported by NSERC Discovery Grants.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank Arcus Power and NRGStream for granting
access to their databases.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mayer, K.; Trück, S. Electricity Markets around the World. J. Commod. Mark. 2018, 9, 77–100. [CrossRef]
2. Maryniak, P.; Weron, R. What is the Probability of an Electricity Price Spike? Evidence from the UK Power Market. In Handbook of

Energy Finance: Theories, Practices Furthermore, Simulations; Goutte, S., Nguyen, D., Eds.; World Scientific: Hackensack, NJ, USA,
2019; pp. 231–245

3. Ciarreta, A.; Martinez, B.; Nasirov, S. Forecasting electricity prices using bid data. Int. J. Forecast. 2022, 39, 1253–1271. [CrossRef]
4. Weron, R. Electricity price forecasting: A review of the state-of-the-art with a look into the future. Int. J. Forecast. 2014, 30,

1030–1081. [CrossRef]
5. Christensen, T.; Hurn, A.; Lindsay, K. Forecasting spikes in electricity prices. Int. J. Forecast. 2012, 28, 400–411. [CrossRef]
6. Haben, S.; Caudron, J.; Verma, J. Probabilistic Day-Ahead Wholesale Price Forecast: A Case Study in Great Britain. Forecasting

2021, 3, 596–632. [CrossRef]
7. Tschora, L.; Pierre, E.; Plantevit, M.; Robardet, C. Electricity price forecasting on the day-ahead market using machine learning.

Appl. Energy 2022, 313, 118752. [CrossRef]
8. Sandhu, H.; Fang, L.; Guan, L. Forecasting day-ahead price spikes for the Ontario electricity market. Electr. Power Syst. Res. 2016,

141, 450–459. [CrossRef]
9. Rodriguez, C.; Anders, G. Energy Price Forecasting in the Ontario Competitive Power System Market. IEEE Trans. Power Syst.

2004, 19, 366–374. [CrossRef]
10. Aggarwal, S.K.; Saini, L.M.; Kumar, A. Electricity Price Forecasting in Ontario Electricity Market Using Wavelet Transform in

Artificial Neural Network Based Model. Int. J. Control Autom. Syst. 2008, 6, 639–650.
11. Lago, J.; Marcjasz, G.; De Schutter, B.; Weron, R. Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms,

best practices and an open-access benchmark. Appl. Energy 2021, 293, 116983. [CrossRef]
12. Gomez, T.; Herrero, I.; Rodilla, P.; Escobar, R.; Lanza, S.; de la Fuente, I.; Llorens, M.L.; Junco, P. European Union Electricity

Markets: Current Practice and Future View. IEEE Power Energy Mag. 2019, 17, 20–31. [CrossRef]
13. Aggarwal, S.K.; Saini, L.M.; Kumar, A. Electricity Price Forecasting in Deregulated Markets: A Review and Evaluation. Int. J.

Electr. Power Energy Syst. 2009, 31, 13–22. [CrossRef]
14. Sgarlato, R.; Ziel, F. The Role of Weather Predictions in Electricity Price Forecasting Beyond the Day-Ahead Horizon. IEEE Trans.

Power Syst. 2022, 38, 2500–2511. [CrossRef]

http://doi.org/10.1016/j.jcomm.2018.02.001
http://dx.doi.org/10.1016/j.ijforecast.2022.05.011
http://dx.doi.org/10.1016/j.ijforecast.2014.08.008
http://dx.doi.org/10.1016/j.ijforecast.2011.02.019
http://dx.doi.org/10.3390/forecast3030038
http://dx.doi.org/10.1016/j.apenergy.2022.118752
http://dx.doi.org/10.1016/j.epsr.2016.08.005
http://dx.doi.org/10.1109/TPWRS.2003.821470
http://dx.doi.org/10.1016/j.apenergy.2021.116983
http://dx.doi.org/10.1109/MPE.2018.2871739
http://dx.doi.org/10.1016/j.ijepes.2008.09.003
http://dx.doi.org/10.1109/TPWRS.2022.3180119


Forecasting 2023, 5 520

15. Lehna, M.; Scheller, F.; Herwartz, H. Forecasting Day-Ahead Electricity Prices: A Comparison of Time Series and Neural Network
Models Taking External Regressors into Account. Energy Econ. 2022, 106, 105742. [CrossRef]

16. Complete Set of ISO Rules. Available online: https://www.aeso.ca/rules-standards-and-tariff/iso-rules/complete-set-of-iso-
rules/(accessed on 7 July 2020).

17. Liu, L.; Bai, F.; Su, C.; Ma, C.; Yan, R.; Li, H.; Sun, Q.; Wennersten, R. Forecasting the occurrence of extreme electricity prices using
a multivariate logistic regression model. Energy 2022 , 247, 123417. [CrossRef]

18. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
19. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International

Conference On Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794
20. Lago, J.; De Ridder, F.; De Schutter, B. Forecasting spot electricity prices: Deep learning approaches and empirical comparison of

traditional algorithms. Appl. Energy 2018, 221, 386–405. [CrossRef]
21. International Institute of Forecasters. Available online: https://forecasters.org/foresight/beyond-error-measures/ (accessed on

18 July 2022).
22. Wu, H.; Levinson, D. The ensemble approach to forecasting: A review and synthesis. Transp. Res. Part Emerg. Technol. 2021,

132, 103357. [CrossRef]
23. AESO. Electricity in Alberta. Available online: https://www.aeso.ca/aeso/electricity-in-alberta/ (accessed on 23 March 2020).
24. AESO. Understanding the Market. Available online: https://www.aeso.ca/market/understanding-the-market/(accessed on

24 March 2020).
25. AESO. Guide to Understanding Alberta’s Electricity Market. Available online: https://www.aeso.ca/aeso/understanding-

electricity-in-alberta/continuing-education/guide-to-understanding-albertas-electricity-market/ (accessed on 23 March 2020).
26. AESO. 2021 Annual Market Statistics. Available online: https://www.aeso.ca/market/market-and-system-reporting/annual-

market-statistic-reports/(accessed on 28 September 2022).
27. AESO. Available online: http://www.aeso.ca (accessed on 19 August 2022).
28. IESO. Available online: http://www.ieso.ca (accessed on 28 July 2022).
29. NYISO. Available online: http://www.nyiso.com (accessed on 28 July 2022).
30. Weron, R. Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach; John Wiley & Sons: Chichester, UK; Hoboken,

NJ, USA, 2006; pp. 25–64.
31. Zareipour, H.; Bhattacharya, K.; Cañizares, C.A. Electricity market price volatility: The case of Ontario. Energy Policy 2007, 35,

4739–4748. [CrossRef]
32. Uniejewski, B.; Weron, R.; Ziel, F. Variance Stabilizing Transformations for Electricity Spot Price Forecasting. IEEE Trans. Power

Syst. 2018, 33, 2219–2229. [CrossRef]
33. Ugurlu, U.; Oksuz, I.; Tas, O. Electricity Price Forecasting Using Recurrent Neural Networks. Energies 2018, 11, 1255. [CrossRef]
34. Jiang, L.; Hu, G. Day-Ahead Price Forecasting for Electricity Market using Long-Short Term Memory Recurrent Neural Network.

In Proceedings of the 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore,
18–21 November 2018; pp. 949–954. [CrossRef]

35. Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw.
1994, 5, 157–166. [CrossRef] [PubMed]

36. Le, X.H.; Ho, H.V.; Lee, G.; Jung, S. Application of Long Short-Term Memory (LSTM) Neural Network for Flood Forecasting.
Water 2019, 11, 1387. [CrossRef]

37. Li, W.; Becker, D.M. Day-Ahead Electricity Price Prediction Applying Hybrid Models of LSTM-based Deep Learning Methods
and Feature Selection Algorithms under Consideration of Market Coupling. Energy 2021, 237, 121543 . [CrossRef]

38. Chang, Z.; Zhang, Y.; Chen, W. Electricity Price Prediction Based on Hybrid Model of Adam Optimized LSTM Neural Network
and Wavelet Transform. Energy 2019, 187, 115804. [CrossRef]

39. Lu, X.; Dong, Z.Y.; Li, X. Electricity market price spike forecast with data mining techniques. Electr. Power Syst. Res. 2005, 73,
19–29. [CrossRef]

40. Gaillard, P.; Goude, Y.; Nedellec, R. Additive Models and Robust Aggregation for GEFCom2014 Probabilistic Electric Load and
Electricity Price Forecasting. Int. J. Forecast. 2016, 32, 1038–1050. [CrossRef]

41. Hong, T.; Pinson, P.; Fan, S.; Zareipour, H.; Troccoli, A.; Hyndman, R.J. Probabilistic Energy Forecasting: Global Energy
Forecasting Competition 2014 and Beyond. Int. J. Forecast. 2016, 32, 896–913. [CrossRef]

42. Agrawal, R.K.; Muchahary, F.; Tripathi, M.M. Ensemble of Relevance Vector Machines and Boosted Trees for Electricity Price
Forecasting. Appl. Energy 2019, 250, 540–548. [CrossRef]

43. Xie, H.; Chen, S.; Lai, C.; Ma, G.; Huang, W. Forecasting the Clearing Price in the Day-Ahead Spot Market Using eXtreme
Gradient Boosting. Electr. Eng. 2022, 104, 1607–1621. [CrossRef]

44. Weron, R.; Bierbrauer, M.; Trück, S. Modeling electricity prices: Jump diffusion and regime switching. Phys. Stat. Mech. Its Appl.
2004, 336, 39–48. [CrossRef]

45. Motamedi, A.; Geidel, C.; Zareipour, H.; Rosehart, W.D. Electricity price forecasting considering residual demand. In Proceedings
of the 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), Berlin, Germany, 14–17 October 2012;
pp. 1–8. [CrossRef]

http://dx.doi.org/10.1016/j.eneco.2021.105742
https://www.aeso.ca/rules-standards-and-tariff/iso-rules/complete-set-of-iso-rules/
https://www.aeso.ca/rules-standards-and-tariff/iso-rules/complete-set-of-iso-rules/
http://dx.doi.org/10.1016/j.energy.2022.123417
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1016/j.apenergy.2018.02.069
https://forecasters.org/foresight/beyond-error-measures/
http://dx.doi.org/10.1016/j.trc.2021.103357
https://www.aeso.ca/aeso/electricity-in-alberta/
https://www.aeso.ca/market/understanding-the-market/
https://www.aeso.ca/aeso/understanding- electricity-in-alberta/continuing-education/guide-to-understanding-albertas-electricity-market/
https://www.aeso.ca/aeso/understanding- electricity-in-alberta/continuing-education/guide-to-understanding-albertas-electricity-market/
https://www.aeso.ca/market/market-and-system-reporting/annual-market-statistic-reports/
https://www.aeso.ca/market/market-and-system-reporting/annual-market-statistic-reports/
http://www.aeso.ca
http://www.ieso.ca 
http://www.nyiso.com
http://dx.doi.org/10.1016/j.enpol.2007.04.006
http://dx.doi.org/10.1109/TPWRS.2017.2734563
http://dx.doi.org/10.3390/en11051255
http://dx.doi.org/10.1109/ICARCV.2018.8581235
http://dx.doi.org/10.1109/72.279181
http://www.ncbi.nlm.nih.gov/pubmed/18267787
http://dx.doi.org/10.3390/w11071387
http://dx.doi.org/10.1016/j.energy.2021.121543
http://dx.doi.org/10.1016/j.energy.2019.07.134
http://dx.doi.org/10.1016/S0378-7796(04)00125-7
http://dx.doi.org/10.1016/j.ijforecast.2015.12.001
http://dx.doi.org/10.1016/j.ijforecast.2016.02.001
http://dx.doi.org/10.1016/j.apenergy.2019.05.062
http://dx.doi.org/10.1007/s00202-021-01410-6
http://dx.doi.org/10.1016/j.physa.2004.01.008
http://dx.doi.org/10.1109/ISGTEurope.2012.6465677


Forecasting 2023, 5 521

46. Zhang, J.; Tan, Z.; Wei, Y. An Adaptive Hybrid Model for Short Term Electricity Price Forecasting. Appl. Energy 2020, 258, 114087.
[CrossRef]

47. Filho, J.C.R.; Affonso, C.d.M.; De Oliveira, R.C. Energy Price Prediction Multi-Step Ahead Using Hybrid Model in the Brazilian
Market. Electr. Power Syst. Res. 2014, 117, 115–122. [CrossRef]

48. Zareipour, H.; Canizares, C.; Bhattacharya, K.; Thomson, J. Application of Public-Domain Market Information to Forecast
Ontario’s Wholesale Electricity Prices. IEEE Trans. Power Syst. 2006, 21, 1707–1717. [CrossRef]

49. Chen, X.; Dong, Z.Y.; Meng, K.; Xu, Y.; Wong, K.P.; Ngan, H.W. Electricity Price Forecasting With Extreme Learning Machine and
Bootstrapping. IEEE Trans. Power Syst. 2012, 27, 2055–2062. [CrossRef]

50. Xiong, H.; Mamon, R. A higher-order Markov chain-modulated model for electricity spot-price dynamics. newblock Appl. Energy
2019, 233–234, 495–515. [CrossRef]

51. Janczura, J.; Trück, S.; Weron, R.; Wolff, R.C. Identifying Spikes and Seasonal Components in Electricity Spot Price Data: A Guide
to Robust Modeling. Energy Econ. 2013, 38, 96–110. [CrossRef]

52. Afanasyev, D.O.; Fedorova, E.A. On the Impact of Outlier Filtering on the Electricity Price Forecasting Accuracy. Appl. Energy
2019, 236, 196–210. [CrossRef]

53. Christensen, T.; Hurn, S.; Lindsay, K. It Never Rains but It Pours: Modeling the Persistence of Spikes in Electricity Prices. Energy
J. 2009, 30. [CrossRef]

54. Manner, H.; Türk, D.; Eichler, M. Modeling and Forecasting Multivariate Electricity Price Spikes. Energy Econ. 2016, 60, 255–265.
[CrossRef]

55. Vu, D.H.; Muttaqi, K.M.; Agalgaonkar, A.P.; Bouzerdoum, A. A Multi-Feature Based Approach Incorporating Variable Thresholds
for Detecting Price Spikes in the National Electricity Market of Australia. IEEE Access 2021, 9, 13960–13969. [CrossRef]

56. Contreras, J.; Espinola, R.; Nogales, F.; Conejo, A.J. ARIMA models to predict next-day electricity prices. IEEE Trans. Power Syst.
2003, 18, 1014–1020. [CrossRef]

57. Conejo, A.J.; Contreras, J.; Espínola, R.; Plazas, M.A. Forecasting Electricity Prices for a Day-Ahead Pool-Based Electric Energy
Market. Int. J. Forecast. 2005, 21, 435–462. [CrossRef]

58. Marcjasz, G.; Uniejewski, B.; Weron, R. Probabilistic Electricity Price Forecasting with NARX Networks: Combine Point or
Probabilistic Forecasts? Int. J. Forecast. 2020, 36, 466–479. [CrossRef]

59. Van Der Heijden, T.; Lago, J.; Palensky, P.; Abraham, E. Electricity Price Forecasting in European Day Ahead Markets: A Greedy
Consideration of Market Integration. IEEE Access 2021, 9, 119954–119966. [CrossRef]

60. Zhao, J.H.; Dong, Z.Y.; Li, X.; Wong, K.P. A Framework for Electricity Price Spike Analysis With Advanced Data Mining Methods.
IEEE Trans. Power Syst. 2007, 22, 376–385. [CrossRef]

61. Chitsaz, H.; Zamani-Dehkordi, P.; Zareipour, H.; Parikh, P.P. Electricity Price Forecasting for Operational Scheduling of
Behind-the-Meter Storage Systems. IEEE Trans. Smart Grid 2018, 9, 6612–6622. [CrossRef]

62. Marcjasz, G.; Uniejewski, B.; Weron, R. On the Importance of the Long-Term Seasonal Component in Day-Ahead Electricity Price
Forecasting with NARX Neural Networks. Int. J. Forecast. 2019, 35, 1520–1532. [CrossRef]

63. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning
Representations, San Diego, CA, USA, 7–9 May 2015. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.apenergy.2019.114087
http://dx.doi.org/10.1016/j.epsr.2014.08.006
http://dx.doi.org/10.1109/TPWRS.2006.883688
http://dx.doi.org/10.1109/TPWRS.2012.2190627
http://dx.doi.org/10.1016/j.apenergy.2018.09.039
http://dx.doi.org/10.1016/j.eneco.2013.03.013
http://dx.doi.org/10.1016/j.apenergy.2018.11.076
http://dx.doi.org/10.5547/ISSN0195-6574-EJ-Vol30-No1-2
http://dx.doi.org/10.1016/j.eneco.2016.10.006
http://dx.doi.org/10.1109/ACCESS.2021.3051313
http://dx.doi.org/10.1109/TPWRS.2002.804943
http://dx.doi.org/10.1016/j.ijforecast.2004.12.005
http://dx.doi.org/10.1016/j.ijforecast.2019.07.002
http://dx.doi.org/10.1109/ACCESS.2021.3108629
http://dx.doi.org/10.1109/TPWRS.2006.889139
http://dx.doi.org/10.1109/TSG.2017.2717282
http://dx.doi.org/10.1016/j.ijforecast.2017.11.009
http://dx.doi.org/10.48550/arXiv.1412.6980

	Introduction
	Background and Related Work
	Alberta's Electricity Market
	Long Short-Term Memory Networks
	Extreme Gradient Boosting
	Related Works

	Methodology
	Numerical Results
	Electricity Price Forecasting with the Proposed Model
	Impact of the Slope of Power Production of Thermal Generators on the Performance of the Developed Forecasting System
	Price Spike Predictions Accuracy Assessment

	Evaluation of the Economic Value of the Developed Price Forecasting Model in Alberta
	Conclusions
	References

