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Abstract: Forecasters have been using various criteria to select the most appropriate model from a
pool of candidate models. This includes measurements on the in-sample accuracy of the models,
information criteria, and cross-validation, among others. Although the latter two options are generally
preferred due to their ability to tackle overfitting, in univariate time-series forecasting settings, limited
work has been conducted to confirm their superiority. In this study, we compared such popular
criteria for the case of the exponential smoothing family of models using a large data set of real series.
Our results suggest that there is significant disagreement between the suggestions of the examined
criteria and that, depending on the approach used, models of different complexity may be favored,
with possible negative effects on the forecasting accuracy. Moreover, we find that simple in-sample
error measures can effectively select forecasting models, especially when focused on the most recent
observations in the series.
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1. Introduction

The “no free lunch” theorem [1] suggests that “. . . for any algorithm, any elevated
performance over one class of problems is offset by performance over another class”. This theorem
also holds true in time-series forecasting settings, meaning that no model can optimally
forecast all series and, consequently, that the most appropriate model should be identified
per case to improve the overall forecasting accuracy. Indeed, if model selection could be
carried out perfectly, then the accuracy gains would be substantial [2]. Unfortunately, due to
the uncertainty involved in the process [3], the task of model selection has been proven to be
very challenging in practice, especially when performed for numerous series [4] or for data that
involve anomalies, outliers, and shifts [5]. To that end, the forecasting literature has developed
various criteria, rules, and methods to improve model selection and automate forecasting.

Early attempts at model selection involved utilizing information criteria, such as
Akaike’s information criterion (AIC; [6]) and the Bayesian information criterion (BIC; [7]),
and choosing the most appropriate model by comparing their ability to fit the historical
observations with the number of parameters used to produce forecasts. Other attempts
include rule-based selections [8], i.e., using a set of heuristics to define when a model
should be preferred over another. These rules, which typically build on time-series features
(e.g., strength of trend and seasonality), can also be determined analytically by processing
the forecast errors of various models across different series of diverse features [9]. The rise
of machine learning has facilitated the development of such feature-based model selection
algorithms, also called “meta-learners” [10]. Another promising alternative is to select
models judgmentally, thereby allowing the incorporation of human experience [11] and
avoiding making unreasonable choices [12]. In any case, particular emphasis should be
placed on the pool of candidate models considered for making selections [13].

Another direction for selecting forecasting models is based on cross-validation [14],
which is specifically designed to overcome issues related to overfitting and to enhance the
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generalization of the forecasting methods used. In time-series forecasting applications,
cross-validation variants include blocked approaches that mitigate the problem of serial
correlations [15,16] and techniques that omit data close to the period used to evaluate
performance [17]. Therefore, along with information criteria, cross-validation is among the
most popular approaches used nowadays for effective model selection [18].

Despite the development of several model selection approaches, researchers and
practitioners have been relatively indecisive about the criteria that they should use in
practice for identifying the most accurate forecasting models. Each criterion comes with
particular advantages and limitations, often rendering their use subject to the judgment
and experience of the forecaster or even the settings of the software utilized to produce
the forecasts. We argue that tuning model selection processes is critical for improving
accuracy and that empirical evidence should be exploited to define which criterion should
be considered for the data set and forecasting application at hand. To support our argument,
we evaluated some of the most widely used model selection criteria on a large data set
of real series with the exponential smoothing family of models, a standard method for
time-series forecasting. Our analysis focused on both the precision of the criteria and the
forecasting accuracy of the underlying selection approaches, providing evidence about the
way that the two measures are correlated. We also investigated the disagreement between
the examined criteria and discuss its implications for forecasting practice.

The rest of this paper is organized as follows. Section 2 provides an introduction to the
model selection criteria used in our study. Section 3 presents the exponential smoothing
family of models, forming the pool of candidate models used in our experiments. Section 4
empirically evaluates the performance of the selection criteria, describes the experimental
setup, and discusses the results. Finally, Section 5 concludes the paper.

2. Model Selection Criteria
2.1. Criteria Based on In-Sample Accuracy Measurements

The simplest and fastest approach to selecting a forecasting model from a pool of
candidate models is to compare their accuracy on the in-sample data of the series. This is
because in-sample accuracy can be directly measured when fitting the models, requiring
no further computations. The most common measures used in this direction are the mean
squared error (MSE) and the mean absolute error (MAE), defined as follows:

MSE =
1
n

n

∑
t=1

(yt − ft|n)
2, (1)

MAE =
1
n

n

∑
t=1
| yt − ft|n |, (2)

where n is the sample size (number of in-sample observations), yt is the observed value of
the series being forecast at point t, and ft|n is the forecast provided by the model given n
observations for estimating its parameters. Smaller values of MAE and MSE suggest a better fit.

Although other measures (e.g., measures based on percentage errors, relative errors,
relative measures, and measures based on scaled errors) can be used instead of MSE and
MAE, given their limitations [19] and the fact that model selection is typically performed in
a series-by-series fashion, the aforementioned scale-dependent measures can be considered
sufficient for the described task.

In terms of statistical properties, MAE is an appropriate measure for evaluating the
ability of a forecasting model to specify the median of the future values of a series [20], while
MSE is suitable for measuring the ability of a model to specify its mean [21]. Moreover,
since MSE builds on squared errors, it penalizes more large errors than small ones and is
therefore more sensitive to outliers than MAE [22]. Therefore, although MSE has long been
the standard measure of choice for selecting and optimizing time-series forecasting models,
it becomes evident that there may be settings where MAE provides superior results.
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Model selection criteria that build on in-sample measurements theoretically come with
two major issues. First, since they just focus on how well the model fits the historical observa-
tions, they are prone to overfitting. In general, sophisticated models that consist of multiple
parameters have the capacity to fit series better than simpler models, although the latter
may result in more accurate post-sample forecasts. Second, since in-sample measurements
evaluate accuracy across the complete sample of historical observations, they may favor
models that do not necessarily perform well in the most recent past. Typically, the latest
information available is of higher importance for producing accurate post-sample forecasts,
meaning that models should put particular emphasis on the last part of the series, especially
when its underlying patterns (e.g., seasonality and trend) have changed.

Although the first issue can be tackled by the criteria presented in the following two
subsections, the second one can be mitigated by simply adjusting the time window in
which the accuracy measures are computed. For the sake of simplicity, in this study, we
considered some variants of the MSE and MAE measures, called MSEh and MAEh, that
capture the in-sample accuracy of the examined models in the last h observations of the
series, as follows:

MSEh =
1
h

n

∑
t=n−h+1

(yt − ft|n)
2, (3)

MAEh =
1
h

n

∑
t=n−h+1

| yt − ft|n |, (4)

where h is the forecasting horizon, i.e., the number of periods the model is tasked to
forecast in the post-sample. Although h can in principle be selected based on the particular
requirements of the forecasting task at hand (e.g., set equal to a full calendar year or the last
observation), we argue that the forecasting horizon is a reasonable and practical alternative
for determining the time window. Moreover, by selecting a sufficiently large evaluation
window (e.g., greater than 1 observation), the results are expected to be more representative
and less sensitive to potential extreme values.

2.2. Information Criteria

Information criteria have become particularly popular for model selection, as they
are fast to compute but can also mitigate overfitting [23]. To do so, instead of selecting
the model that best fits the series, as measured by an accuracy measure in the in-sample
data, they make choices by penalizing the in-sample accuracy of the candidate models
according to their complexity, as realized based on the number of parameters that have to
be estimated to form each model.

Specifically, information criteria build on complexity-penalized maximum likelihood
estimations (as described in Section 3 for the case of exponential smoothing models). The
most notable variants of information criteria include AIC, AIC corrected for small sample
sizes (AICc), and BIC, defined as follows:

AIC = −2 ln(L) + 2k, (5)

AICc = AIC +
2k(k + 1)
n− k− 1

, (6)

BIC = AIC + k(ln(n)− 2), (7)

where L is the likelihood, and k is the total number of parameters. In all cases, smaller
values imply better performance. As seen in the equations, by definition, BIC assigns
larger penalties to more sophisticated models than AIC, thus favoring simpler models
of comparable likelihood. The same applies to AICc, provided that the sample size is
relatively small (AICc approximates AIC as the sample size increases).

Although there have been theoretical arguments over the use of particular information
criteria over others, Burnham and Anderson [24] demonstrate that AIC and AICc can be



Forecasting 2023, 5 490

derived in the same Bayesian framework as BIC, just by using different prior probabilities.
As a result, information criterion selection should be based on the assumptions made
about reality and models while also taking into consideration empirical evidence about the
forecasting performance of each criterion in the application at hand. Simulation studies
suggest that AICc tends to outperform BIC and also recommend its use over AIC, even
when sample sizes are relatively large [25,26]. This may justify the utilization of AICc in
popular model selection software, such as the auto.arima and ets functions of the forecast
package for R, which allow the automatic selection of ARIMA and exponential smoothing
models, respectively [27].

2.3. Criteria Based on Cross-Validation

Cross-validation is another approach for selecting among forecasting models. The
greatest advantage of this approach is that it focuses on the post-sample accuracy of the
candidate models, thus selecting models that perform well in their actual tasks, regardless
of how well they managed to fit the historical data, while also making no assumptions about
how model complexity should be measured or penalized. As a result, cross-validation
has become very popular for model selection and optimization, especially in applications
that involve sophisticated models (e.g., neural networks), where standard selection criteria
are either challenging to compute or sensitive to overfitting. On the negative side, cross-
validation is applicable only to series that have enough observations to allow the creation
of hold-out samples and is computationally expensive (the more hold-out samples created,
the greater the cost becomes).

In time-series forecasting settings, where data are non-stationary and have serial
dependencies, cross-validation is typically implemented using the rolling-origin evaluation
approach [28]. According to this approach, a period of historical data N ≤ n− h is first
used to fit a forecasting model. Then, the model is used to produce h-step-ahead forecasts,
and its accuracy is assessed based on the actual values of the series in the corresponding
period using the measure of choice (e.g., MSE or MAE). Subsequently, the forecast origin is
shifted by T periods, the model is re-fitted using the new in-sample data (N + T), and new
forecasts are produced, contributing another assessment. This process is repeated until
there are no data left for testing, and the overall performance of the model is determined
based on its average accuracy over the conducted evaluations.

For the sake of simplicity, and to accelerate computations, in this study, we considered
a fixed-origin evaluation, i.e., a single evaluation set that consists of the last h observations
of the original in-sample data (N = n− h). In addition, in accordance with the in-sample
selection measures used in our study, we used MSE and MAE to assess the post-sample
forecasting accuracy. The examined cross-validation approaches, called MSEv and MAEv,
are defined as follows:

MSEv =
1
h

n

∑
t=n−h+1

(yt − ft|n−h)
2, (8)

MAEv =
1
h

n

∑
t=n−h+1

| yt − ft|n−h | . (9)

Note that MSEv/MAEv are computed on the same sample as MSEh/MAEh. The
only difference is that the forecasts used with the MSEv/MAEv criteria are computed
using n− h observations, while the forecasts used with the MSEh/MAEh criteria use the
complete in-sample data (n observations).

3. Forecasting Models

Exponential smoothing, originally introduced by Brown [29], is considered the workhorse
of time-series forecasting, being among the oldest and simplest yet one of the most effective
and widely used methods for univariate predictions (for an encyclopedic review on expo-
nential smoothing, please refer to Section 2.3.1 of [30]). The key advantage of the method is
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that it is fast to compute [31], easy to implement in software [32], and results in competitive
accuracy compared to more sophisticated methods in various applications, including financial,
economic, demographic, and demand data, among others, as demonstrated empirically by re-
cent forecasting competitions [33,34]. In addition, the forecasts are produced based on intuitive
models that are closely connected to key time-series features (e.g., trend and seasonality), thus
being easy to communicate to managers or adjust based on judgment [12].

The key idea behind exponential smoothing is that more recent observations are more
valuable to forecasting. As a result, the method produces forecasts by putting exponentially
more weight on the most recent past of the series. The degree to which the weight is
decreased as we move further to the past is determined by the smoothing parameters
of the model. Moreover, according to its state-space expression [23], typically referred
to as ETS, exponential smoothing can be realized as a combination of three components,
namely, the error (E), trend (T), and seasonal (S) components. The error component can
be either additive (A) or multiplicative (M), while the trend and seasonal components can
be none (N), additive (A), or multiplicative (M). In addition, additive and multiplicative
trends can be damped (d), if needed. Consequently, the ETS framework involves a total
of 30 exponential smoothing models (or model forms) that can be acronymized using the
respective symbols of the three components, as shown in Table 1. From these models, some
may result in infinite forecast variances for long forecast horizons [35], while others involve
a multiplicative trend that is not recommended to use in practice [36]. Therefore, the ets
function of the forecast package for R, which was used to implement exponential smoothing
in our study, limits the candidate models to 15 for seasonal data and 6 for non-seasonal
data.

Table 1. Exponential smoothing family of models. Applicable models are highlighted in bold face.

Additive Error Multiplicative Error

Seasonality Seasonality

Trend N A M Trend N A M

N ANN ANA ANM N MNN MNA MNM
A AAN AAA AAM A MAN MAA MAM

Ad AAdN AAdA AAdM Ad MAdN MAdA MAdM
M AMN AMA AMM M MMN MMA MMM

Md AMdN AMdA AMdM Md MMdN MMdA MMdM

As an example, the simplest form of exponential smoothing that accounts just for level
variations (simple exponential smoothing or ANN) can be expressed as:

ŷt+h = lt,

lt = αyt + (1− α)lt−1,

where lt is the state of the level component at period t, and α is the smoothing parameter
of that level. Note that calculating the state of the component at t = 1 (l1) requires the
estimation of some initial state values (l0). Effectively, this is another parameter of the
model, and its estimation is part of the fitting process.

As more components are added to the model, more equations and parameters are
considered for producing the forecasts. This results in more generic models that can
effectively account for more complicated time-series patterns, such as the trend [37] and
seasonality [38]. However, as discussed earlier, more sophisticated models involve more
parameters and, as a result, higher parameter uncertainty [3], possibly rendering their use
less accurate compared to other, simpler model forms. By default, ets uses the likelihood
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to estimate the parameters of the models and AICc to select the most appropriate model
form. Depending on the form of the error component, likelihood is defined as follows:

LA = −n
2

ln

(
n

∑
t=1

(yt − ft|n)
2

)
, (10)

LM = −n
2

ln

 n

∑
t=1

(
yt − ft|n

ft|n

)2
− n

∑
t=1

ln(| ft|n |), (11)

where LA and LM correspond to the likelihood of models that involve additive and multi-
plicative error components, respectively.

In terms of the parameters k used, all exponential smoothing models involve a mini-
mum of three parameters, namely, α, l0, and σ, which corresponds to the standard deviation
of the residuals. Then, models with a trend component will involve two additional parame-
ters (for smoothing and initializing the trend), and models with a damped trend component
will involve three additional parameters (for initializing, smoothing, and damping the
trend), while models with a seasonal component will involve s + 1 additional parameters (s
for initializing and one for smoothing seasonality), where s is equal to the seasonal periods
of the data (e.g., 12 for monthly and 4 for quarterly series). For the sake of simplicity,
and to allow comparisons between series of different seasonal periods, in this study, we
categorized ETS models into four categories based on their complexity, namely, “Low”,
“Moderate”, “Significant”, and “High” complexity, as presented in Table 2. As can be seen,
models of low complexity involve only estimations about the level of the series, models of
moderate complexity involve estimations about either the trend or the seasonality of the
series, models of significant complexity involve estimations about either a damped trend
or seasonality, and models of high complexity are both damped and seasonal.

Table 2. Categorization of ETS models based on their complexity, i.e., number of estimated components.

Complexity Models

Low ANN, MNN
Moderate AAN, MAN, ANA, MNA, MNM
Significant AAdN, MAdN, AAA, MAA, MAM
High AAdA, MAdA, MAdM

4. Empirical Evaluation
4.1. Experimental Setup

To empirically evaluate the performance of the model selection criteria described in
Section 2, we considered a subset of the M4 competition data [33]. The M4 data set is
frequently used for benchmarking by the forecasting community, as it originally involves
100,000 series from various domains (micro, macro, industry, finance, demographic, and
other) and with varying frequencies (yearly, quarterly, monthly, weekly, daily, and hourly)
that are very diverse and representative of several real-life applications [39]. Moreover,
since it is publicly available, it facilitates the replication of results and allows comparisons
with past and future studies [40]. A detailed description of the data set and the structural
characteristics of its series, including their length, forecastability, trend, seasonality, linear-
ity, stability, skewness, kurtosis, non-linear autoregressive structure, and self-similarity, is
provided by Spiliotis et al. [39].

Specifically, we considered the yearly, quarterly, and monthly series of the M4 data set
(95,000 series) but excluded those that are too short in length to perform cross-validation.
Therefore, the data set used in our study involves a total of 91,444 series (20,077 yearly,
23,760 quarterly, and 47,607 monthly).

For each series, we fit all the exponential smoothing models that are recommended
to use with the forecast package, i.e., a total of 15 models for seasonal and 6 models for
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non-seasonal series, as presented in Table 1. Then, we employed the examined model
selection criteria and, based on their recommendations, we tracked the forecasting accuracy
of each approach, as measured by the mean absolute scaled error (MASE), defined as
follows:

MASE =
1
h

∑n+h
t=n+1 |yt − ft|n|

1
n−s ∑n

i=s+1 |yi − yi−s|
. (12)

MASE, originally proposed by Hyndman and Koehler [41], is equal to the mean
absolute error scaled by the in-sample one-step-ahead mean absolute error of seasonal
Naive. MASE was preferred over other accuracy measures, as it was officially used in M4
to rank the original submissions, and it has better statistical properties (it is independent of
the data scale, becomes infinite or undefined only when all the errors of the Naive method
are equal to zero, has a defined mean and finite variance, and equally penalizes positive
and negative forecast errors [19]).

In addition to MASE, we also tracked the number of series where the criteria success-
fully identified the most accurate model in terms of out-of-sample MASE accuracy. To that
end, it is possible to evaluate both the precision of the criteria (the proportion of selections
that were actually the “best”) and the effect of such a precision score on the post-sample
accuracy (absolute accuracy, as measured by MASE). This distinction is important since
higher precision may not necessarily lead to better accuracy, meaning that a criterion of
lower precision that somehow avoids selecting the worst alternatives could perform better
overall than an approach that more frequently selects the best option but also often chooses
some of the worst possible forecasting models [42].

Finally, in order to add depth to our analysis, and given that M4 considered the
symmetric mean absolute percentage error (sMAPE) in addition to MASE to evaluate the
forecasting accuracy of the submitted methods, we also utilized sMAPE, which is defined
as follows:

sMAPE =
2
h

n+h

∑
t=n+1

|yt − ft|n|
|yt|+ | ft|n|

∗ 100%. (13)

4.2. Results and Discussion

Table 3 summarizes the forecasting accuracy of the examined criteria, both per data
frequency and in total. As expected, criteria that build on cross-validation (MSEv and
MAEv) result in better forecasts overall. However, this result is mostly driven by the
superior performance of these criteria in the yearly data. If we focus on the seasonal series,
we find that criteria that build on in-sample accuracy measurements (MAE and MSE) lead
to more accurate forecasts. In fact, we can see that the average rank of the models selected
by MAE is the lowest among the criteria considered for all the examined data frequencies.
Interestingly enough, MAEh and MSEh are consistently less accurate approaches than
MAE and MSE, respectively, indicating that focusing on the last part of the series does not
guarantee better model selection performance.

When it comes to information criteria, we observe that balancing complexity with
in-sample accuracy is critical. Specifically, we find that AIC, which considers a relatively
small penalty for complexity, does not improve accuracy over L, being slightly worse
overall. This is also the case for BIC, probably because it applies a relatively large penalty to
more sophisticated models and, therefore, tends to select models with insufficient learning
capacity. This is evident in the seasonal series, where both L and AIC outperform BIC.
Thus, our results confirm the superiority of AICc among the information criteria examined,
supporting its utilization in popular forecasting software.

Note that, as presented in Appendix A, similar conclusions can be drawn when sMAPE
is used instead of MASE to measure the forecasting accuracy.

To validate our previous claims, we proceeded by computing the percentage of series
where the examined criteria selected a model of low, moderate, significant, and high
complexity in terms of the estimated components, as defined in Table 2. The results are
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presented in Table 4 along with the proportion of series where the most accurate model
truly falls in the respective categories. The results confirm that L and the criteria that build
on in-sample accuracy measurements are indeed more likely to select more sophisticated
models, especially when they are based on squared errors (MSE, MSEh, and L). Using the
most recent historical data (MSEh and MAEh) or considering some penalty for complexity
(AIC, AICc, and BIC) can mitigate this issue. However, it is evident that some of the former
approaches are more effective in properly balancing the in-sample accuracy with complexity.
For example, we find that although all information criteria tend to use low-complexity models
more often than is actually required, BIC is clearly more extreme, selecting high-complexity
models in just 6% of the cases and low-complexity models in 42% of the series. Overall, the
criteria that build on cross-validation and, to some degree, AICc are proven to be the most
balanced approaches, following the actual tendencies of the data set more precisely.

Table 3. Forecasting accuracy (MASE) of the examined criteria used for model selection. The average
ranks of the selected models are also displayed. The results are presented per data frequency and for
the complete data set. The bold numbers highlight the most accurate criterion per case.

Criterion MASE Average Rank
Yearly Quarterly Monthly Total Yearly Quarterly Monthly Total

MSE 3.471 1.151 0.923 1.542 3.200 6.865 6.675 5.962
MAE 3.441 1.141 0.921 1.531 3.177 6.721 6.543 5.850
MSEh 3.485 1.162 0.925 1.548 3.240 6.962 6.663 5.989
MAEh 3.459 1.163 0.924 1.543 3.219 6.959 6.656 5.980
L 3.432 1.159 0.934 1.541 3.180 6.906 6.728 5.995
AIC 3.436 1.158 0.936 1.543 3.246 6.900 6.739 6.014
AICc 3.407 1.158 0.939 1.538 3.256 6.924 6.795 6.051
BIC 3.426 1.162 0.948 1.548 3.265 7.057 6.971 6.180
MSEv 3.349 1.175 0.940 1.530 3.178 7.194 6.887 6.152
MAEv 3.367 1.175 0.940 1.534 3.187 7.190 6.881 6.150

Table 4. Percentage of time series where the examined criteria selected a model of low, moderate,
significant, and high complexity in terms of estimated components. The last column displays the
percentage of time series where the most accurate model truly falls in the respective categories. The
figures are computed based on the complete data set (91,444 series).

Complexity MSE MAE MSEh MAEh L AIC AICc BIC MSEv MAEv Actual

Low 1.81 8.15 7.04 8.92 1.96 23.77 27.99 41.78 12.31 12.44 12.12
Moderate 22.59 25.85 36.13 35.93 24.82 39.48 39.18 36.98 40.06 39.94 37.14
Significant 33.11 32.92 37.20 36.38 32.93 23.27 21.16 15.51 36.17 35.92 38.68
High 42.49 33.08 19.63 18.77 40.30 13.48 11.67 5.74 11.45 11.70 12.07

Table 5 presents the precision of the examined criteria used for model selection, both
per data frequency and in total. In contrast to the results in Table 3, we observe that,
on average, the MSEh and MAEh approaches manage to more frequently identify the
most accurate model. This finding supports our claim that precision does not always
guarantee accuracy and demonstrates the value added by less precise yet more robust
model selection approaches, such as cross-validation and information criteria. Moreover,
our findings are in agreement with those reported by [43], demonstrating that forecasting
models should be able both to fit the historical data well and to result in “representative”
forecasts in the sense that the predictions should mimic the most recent patterns of the
series. Consequently, future research could focus on the further development of informa-
tion criteria, expanding their formulas to simultaneously account for in-sample accuracy,
forecast representativeness, and model complexity.
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Table 5. Percentage of time series where the examined criteria used for model selection successfully
identified the most accurate alternative. The results are presented per data frequency and for the
complete data set. The bold numbers highlight the most successful criterion per case.

Criterion Yearly Quarterly Monthly Total

MSE 19.95 7.62 7.77 10.40
MAE 20.70 9.26 8.94 11.61
MSEh 22.11 11.68 11.76 14.01
MAEh 22.33 11.47 11.70 13.97
L 19.86 8.17 8.09 10.69
AIC 20.46 9.25 8.46 11.30
AICc 20.44 9.28 8.36 11.25
BIC 20.39 9.02 7.86 10.91
MSEv 20.86 11.27 11.37 13.43
MAEv 20.76 11.14 11.38 13.38

As the final step in our analysis, we determined the percentage of series where the
model being selected based on a particular criterion is the same as that being selected
according to another criterion. Our results are visualized in Figure 1. We find that informa-
tion criteria, especially AIC and AICc, tend to agree significantly with each other, resulting,
however, in very different suggestions to those of other criteria. This is particularly true
for the criteria that build on cross-validation, displaying less than 16% agreement with the
rest of the model selection approaches, on average. Moreover, we observe that, although
changing the measure used to evaluate accuracy (MAE versus MSE) can affect the model
being selected, the impact of this choice is relatively small compared to the model selection
approach itself. Thus, we conclude that the disagreement between existing forecasting
model selection criteria can be substantial and that the selection of the most appropriate
approach should be primarily based on the data set and application at hand, with additional
support provided by empirical investigations.
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Figure 1. Percentage of time series where the model being selected based on a particular criterion is
the same as that being selected according to another criterion. The percentages are computed in a
pairwise fashion by considering the complete data set (91,444 series).
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5. Conclusions

We empirically evaluated the forecasting performance of popular model selection
criteria using more than 90,000 real-time series and considering 15 models from the ex-
ponential smoothing family. We found that criteria that build on cross-validation can
result in better forecasts overall but observed cases (seasonal data) where simple in-sample
accuracy measurements can produce significantly more accurate results. We also noticed
that information criteria offered a fair balance between the approaches that build on either
in-sample or post-sample accuracy measurements but identified notable discrepancies
among their choices, driven by the different penalties they impose to avoid the use of
unnecessarily sophisticated models. Moreover, we concluded that the measure used to
assess the forecasting accuracy (e.g., absolute versus squared errors) has a lower impact on
forecasting performance compared to the criteria used for model selection per se.

A key finding of our study is that, when it comes to model selection, robustness is probably
more important than precision. In other words, in order for a selection criterion to result in
accurate forecasts, it is more crucial to systematically avoid choosing the worst forecasting
models than to more frequently select the most accurate model. In this respect, it should not be
surprising that two criteria with significant disagreement and different precision scores resulted
in similar forecasting performance. An interesting direction to improve the robustness of model
selection approaches would be to introduce criteria that concurrently balance the in-sample
accuracy, forecast representativeness, and model complexity. According to our results, the
first component allows the use of sufficiently sophisticated models, the second improves the
precision of the selection process, and the third offers a “safety net” against overfitting.

Our findings are relevant to forecasting research and practice. Over the years, some
model selection approaches have become so standard that forecasters often ignore the
alternatives available and overlook the improvements that more appropriate criteria could
offer. This is especially true in large-scale forecasting applications, such as in the retail,
energy, and financial industries, where the number of series to be forecast is so great that
using automated and off-the-shelf forecasting software has become a necessity. We argue
that tuning the model selection options provided by such software is critical, yet practical
if based on empirical assessments. Moreover, in some cases, they may even prove to be
more computationally efficient with no loss in forecasting accuracy. Therefore, future work
could expand the findings of our study by examining the performance of model selection
criteria on data sets that are more focused on particular forecasting applications and also
extending their examination to different families of models commonly used for automatic
batch forecasting, such as ARIMA, regression trees, and neural networks.
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Appendix A. Forecasting Accuracy According to sMAPE

Table A1 summarizes the forecasting accuracy of the examined criteria in terms of
sMAPE in a similar fashion to Table 3.

https://github.com/Mcompetitions/M4-methods
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Table A1. Forecasting accuracy (sMAPE) of the examined criteria used for model selection.
The average ranks of the selected models are also displayed. The results are presented per data frequency
and for the complete data set. The bold numbers highlight the most accurate criterion per case.

Criterion MASE Average Rank
Yearly Quarterly Monthly Total Yearly Quarterly Monthly Total

MSE 15.065 10.212 13.176 12.821 3.190 6.868 6.692 5.969
MAE 15.022 10.050 13.013 12.684 3.165 6.723 6.553 5.853
MSEh 15.183 10.306 13.084 12.823 3.230 6.964 6.671 5.992
MAEh 15.258 10.256 13.025 12.796 3.206 6.957 6.665 5.981
L 15.307 10.276 13.173 12.889 3.168 6.901 6.728 5.991
AIC 15.039 10.211 13.194 12.824 3.235 6.896 6.734 6.008
AICc 14.784 10.200 13.272 12.805 3.245 6.919 6.789 6.045
BIC 14.802 10.143 13.359 12.840 3.256 7.059 6.963 6.174
MSEv 14.463 10.401 13.331 12.818 3.168 7.190 6.893 6.152
MAEv 14.543 10.399 13.309 12.824 3.177 7.188 6.886 6.150
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