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Abstract: Subnational jurisdictions, compared to the apparatuses of countries and large institutions,
have less resources and human capital available to carry out an updated conjunctural follow-up of the
economy (nowcasting) and for generating economic predictions (forecasting). This paper presents the
results of our research aimed at facilitating the economic decision making of regional public agents.
On the one hand, we present an interactive app that, based on dynamic factor analysis, simplifies
and automates the construction of economic synthetic indicators and, on the other hand, we evaluate
how to measure the uncertainty associated with the synthetic indicator. Theoretical and empirical
developments show the suitability of the methodology and the approach for measuring and predicting
the underlying aggregate evolution of the economy and, given the complexity associated with the
dynamic factor analysis methodology, for using bootstrap techniques to measure the error. We also
show that, when we combine different economic series by dynamic factor analysis, approximately
1000 resamples is sufficient to properly calculate the confidence intervals of the synthetic index in the
different time instants.

Keywords: synthetic indicator; dynamic factor analysis; short-term analysis; economic cycle; regional
economy; economic forecasting

1. Introduction

Since time immemorial, humans have looked to reduce the uncertainty of what the
future holds or even directly predict the future. Uncertainty generates anxiety and can
intensify the sensation of a potential threat caused by a situation. It is not surprising,
therefore, that our ancestors have sought to foresee the future in dreams, the sky or even
the entrails of animals. While these efforts to predict the future have not diminished, the
way in which we seek answers to this challenge has changed. Since the Wall Street crash
of 1929 to the present day, the techniques and statistical measures used have undergone
significant transformation [1,2].

The need for educated predictions is especially intense in the macroeconomic and
business fields where decision making is vital in choosing one option over various alterna-
tives [3]. The acceleration of social processes, the increasing interconnection of the markets
and the hypersensitivity of agents in the face of excess signals have caused the speed at
which shocks are transferred between markets to grow substantially [4–8], as demonstrated
by recent events such as the COVID-19 pandemic, the Ukraine War, or the global supply
chain crisis.

This has created an even greater need to have adequate tools for economic prediction
and measuring uncertainty. It is not surprising, therefore, that in recent decades, there
has been a notable increase in the awareness of the importance of predicting the economic
future, with the objective of being able to react properly, make good decisions and do so
quickly (e.g., [9–11]).

Incorrect or untimely decision making by policy makers and government agents could
have serious consequences for a region or country, with effects on debt sustainability or
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the continuity of the social security system [12]. As a consequence of an erroneous or
late economic forecast, problems in public finances may occur due to flaws in the fiscal
balance, for example, causing an increase in public spending at a time in the cycle when
it would be optimal to do the opposite. Bad decision making can even lead to countries
going bankrupt [13]. In these environments, public decision makers need to rapidly react
to changes in the economic cycle, and this is only possible if the economic reality of the
region or country is fully understood [14–16].

Unfortunately, compared to the machinery of countries and large institutions, which
are capable of developing and managing complex methods including Bayesian and/or
machine learning approaches [3,17], subnational jurisdictions have fewer resources and
human capital to be able to carry out an updated and adjusted short-term monitoring of
the economic reality [9]. This paper presents the results of research carried out by the
authors through a collaborative agreement signed between the university and the regional
government of the Comunitat Valenciana (The Valencian Region; one of the nineteen
autonomous regions and cities that make up Spain). The objective of this study was to look
for a way to facilitate the economic decision making of regional public agents.

This paper presents a (semi-)automatic tool that allows a synthetic index of the regional
economy of the Comunitat Valenciana to be generated through the dynamic combination
of individual economic indicators. It also evaluates how to measure the uncertainty that
the predictions of the individual series and the index construction process induce in the
synthetic index.

The synthetic index is obtained through an interactive web application specially de-
signed to be used with minimal theoretical knowledge and with a calculation methodology
adapted to the idiosyncratic characteristics of the Comunitat Valenciana. Nevertheless,
although the tool was designed with the Comunitat Valenciana in mind, its flexibility
allows other analysts to use it to build their own synthetic indices.

With the help of the tool, regional economic policy makers can easily and autonomously
update the synthetic indicator as many times as necessary, using it as a proxy for regional
economic growth at that moment and in the immediate future, to reduce their uncertainty
when making decisions. Likewise, the estimate of its errors and confidence intervals, as
measures of uncertainty, helps limit the range of values between which the path of eco-
nomic evolution and the set of possible scenarios may be found. This facilitates a better
assessment of the situation and increases the reaction capacity of the managers in their
decision making.

The rest of this paper is structured as follows. Section 2 outlines the problem and
offers a background. Section 3 details the methodology, specifying how the synthetic
index and the strategy that we follow to measure uncertainty are built. Section 4 presents
the web application, while Section 5 develops an example. Section 6 is dedicated to
measuring uncertainty and Section 7 to responding to the question of how much resampling
is necessary. The paper closes with a discussion of the main conclusions.

2. Background

The quantified and systematic description of the economic activity of Spain and its
regions is currently carried out by the Spanish Statistical Office (hereinafter referred to as
INE, its acronym in Spanish). The INE offers an aggregate vision of the evolution of the
Spanish economy on a quarterly and annual basis through national accounting. The INE
also collates the regional accounting of Spain to measure and describe regional economic
activity. This latter information, however, is published with a significant delay and only
annually. This means that regional economic agents are deprived of a fundamental tool for
nowcasting and short-term forecasting.

Nevertheless, at the regional level, there is a set of economic series (simple indica-
tors) of high frequency (monthly and quarterly) that offer a partial vision of the regional
economic evolution [9]. This information can be exploited for a conjunctural (short-term)
economic analysis by building a synthetic (complex) indicator/index through the ‘aggre-
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gation’ of the various simple indicators. This index can be used as a tool by itself or as an
intermediate component to derive new synthesis series; for example, to estimate/predict
a specific economic macromagnitude in ‘real time’, such as (quarterly) gross domestic
product (GDP). The GDP is the macroeconomic synthetic indicator par excellence, which
is a good growth measure that provides information about the level of development and
well-being of a country [18].

This macromagnitude, however, is not naturally available and requires various compo-
nents to be created, which themselves are not readily accessible. All this makes identifying
the economic situation of a region or country a complex task. Among the research stud-
ies on this theme are those by Camacho and Perez-Quiros [19], Cuevas et al. [20] and
Dauphin et al. [3]. Camacho and Perez-Quiros [19] proposed, among other contributions, a
short-term economic prediction model to predict the growth of the Eurozone in real time.
Cuevas et al. [20] suggested a methodology to estimate real-time GDP through dynamic
factorial models using economic activity indicators. Furthermore, Dauphin et al. [3] applied
standard dynamic factor models and several machine learning algorithms to nowcast GDP
growth across several European economies combining both standard and non-traditional
variables (such as air quality and Google searches).

Additionally, descending to the regional level, we can cite Gil et al. [17], Chernis
et al. [9] and Kuck and Schweikert [14]. Gil et al. [17] proposed a model to produce
nowcasts of the GDP growth of Spanish regions by means of Bayesian dynamic factor
models. Chernis et al. [9] developed a three-frequency dynamic factor model for nowcasting
Canadian provincial GDP growth. Furthermore, Kuck and Schweikert [14] assessed, among
other models, a dynamic mixed-frequency factor model for forecasting economic growth in
Baden-Württemberg (Germany).

In the application we developed, detailed in the following section, we use a dynamic
factor model as a methodological instrument, since this enables synthetic rates to be
developed that summarise the common characteristics that a set of indicators contain,
combining the signals from leading, lagging and coincident economic variables.

The use and construction of synthetic indices as a source of knowledge of economic
evolution is not new, and dates back to the work carried out during the first part of the
last century by the National Bureau of Economic Research of the United States [21] and
continues nowadays. For instance, Bitetto et al. [16] employs dynamic factors to develop
an index which is able to identify banking and debt crises in both strong and developing
economies, while Liang et al. [22] used a dynamic factor model to forecast inflation in
China. In a similar vein, Anesti et al. [23] and Mumtaz and Musso [24] went a step further
by, respectively, proposing a dynamic factor model with time-varying parameters and
stochastic volatility to study of the impact of both regional and global volatility on the
global economy and a release-augmented dynamic factor model that improves the standard
dynamic factor model when making one-time-ahead quarterly GDP forecasts.

In this paper, together with the elaboration of a synthetic index, we also addressed the
measurement of its uncertainty. Quantifying the uncertainty of an estimate/prediction makes
it more flexible and, in a way, serves as a measure of its accuracy/correctness/robustness in
the face of the practical impossibility of knowing the true objective values. Uncertainty, as
we understand it in this paper, is a measure associated with the existing dispersion around
the predicted/estimated values, which will be approximated, given the complexity of the
methodology used, using bootstrap techniques.

The bootstrap simulation method comes from Efron [25] who stated that, given a suffi-
ciently large sample, it is possible to generate samples to replace the original to approximate
the empirical distribution of any statistic of interest. The idea is that, as these samples are
generated from the original sample, they share its empirical distribution function, which
makes it possible to derive variances or confidence intervals of the parameter of interest
with the desired precision.

In the literature, there are countless papers that apply the bootstrap methodology
for the measurement of uncertainty. For example, Meyer et al. [26] applied bootstrap
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techniques to estimate the bias, standard errors and sample distributions of per capita
growth rates; Hasni et al. [27] carried out a review and critique of the literature on the
available bootstrap methods; and Fresoli [28], in the context of the VAR models (vector
autoregressive models), analysed the impacts of the model, the estimated parameters and
the error distribution on the empirical coverages of forecasted Bonferrini cubes, obtaining
greater returns by considering the uncertainties of the parameters and the order of the
number of delays.

In the context of the elaboration of synthetic indices, our research also addresses the
question concerning the minimum number of bootstrap simulations necessary to properly
measure the uncertainty associated with each of the values of a synthetic series obtained by
dynamic factor analysis. According to Efron and Tibshirani [29], 50 or even 25 resamples
would be sufficient to obtain a good standard error estimator. However, Hesterberg [30]
affirmed in their paper “Bootstrap” that, in biased populations, the confidence intervals
generated with a small number of resamples by bootstrap techniques are inaccurate, with
the number of bootstrap resamples needed being greater than what is normally considered
the optimum. Since we consider that the solution can depend on the predetermined level of
confidence set for the interval, we study empirically, considering up to 10,000 resamples, at
what point the limits of the confidence intervals are stabilised as a function of the number
of resamples.

3. Methods
3.1. Synthetic Index

The construction of a synthetic index is dependent on its purpose for being built, and
on the simple indicators that it is composed of and how these combine; all these ingredients
interact dynamically to produce a solution (see Figure 1).

Synthetic
Indicator

Select variables

Seasonally 
adjust and 

correct 
calendar effect

Prediction of 
the variables

Dimensionality
reduction

techniques

Selection of the optimal 
variables for the generation of 
the synthetic indicator

Reduction of spurious 
results

Multivariate analysis 
techniques for 
dimensionality 
reduction

Prediction with data 
availability

Figure 1. Iterative process in the generation of a synthetic indicator.

In our case, the objective is to build a high-frequency (monthly) synthetic index capable
of capturing the aggregate economic evolution of the Comunitat Valenciana. The purpose is
to increase—without delay and synthetically—our knowledge of the current experience of
the regional economy (nowcasting) and predict its immediate future behaviour (short-term
forecasting). Our reference index (that is, its components) should therefore be related
to the gross domestic product (GDP) of the Comunitat Valenciana. Unfortunately, as
mentioned in the previous section, regional GDP series are only available annually and, as
is usually the case in many countries [9], with a significant time delay. Therefore, bearing
in mind our objective of developing a monthly index, the first issue to be addressed is
how to compare/relate the potential elementary indicators to the reference series. Of the
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two available solutions—either temporally aggregating the monthly series and studying
the annual frequency relationships or disaggregating the annual series and studying the
monthly frequency relationships— we opted for the second solution. The possibilities
for analysis are richer and the sample sizes greater. Specifically, we use the temporary
disaggregation methodology of the high frequency of Dagum and Cholette [31], which
monthly interpolate the annual series subject to the annual aggregation constraint.

The new monthly GDP series is used in the empirical part of this study to quan-
tify/objectify the criteria of representativeness and significance in the selection of simple
indicators. This is less restrictive than it might seem at first glance. From a methodological
perspective, it does not presuppose anything about which initial indicators should be con-
sidered or how the selected indicators should be combined. From a procedural perspective,
the app presented in this study can be used by any researcher/analyst to build their own
synthetic index, using their own indicators chosen according to their own criteria. Further-
more, from a substantive perspective, simple indicators are not chosen to replicate/predict
the artificial series of GDP which was built, but rather because they provide relevant in-
formation about the overall economic evolution. The introduction of the indicators in the
elaborated synthetic index is sufficiently flexible to allow the high-frequency movements of
the simple indicators to report on the changes that are occurring in the economic future.
The monthly GDP series which was built does not contain this information.

Together with the criterion of representativeness and high significance, in our empirical
application, the initial selection of indicators reflects, from a previous selection based on
expert knowledge, the criteria of availability, frequency and delay. The indicators must be
available with little delay, the cost of obtaining them must be low and their frequency of
update must be high—preferably monthly.

Once an initial set of indicators is chosen, this can be refined using variable selec-
tion methods, two of which are the “subset selection” methods (forward and backward
included) and regularisation methods [32–34]. The subset selection methods are based on
the identification of the subset variables that together best predict/explain the response
variable, or at least the identification of a good subset. The regularisation methods Ridge,
Lasso or Elastic Net select the features indirectly, adjusting a model with all the predictors
which incorporates a penalty that punishes the coefficients (approaching them to zero) asso-
ciated with the variables that provide little predictive capacity. In our empirical application,
we use a complete subset selection method.

Once the final set of simple indicators is selected, the construction phase of the syn-
thetic index begins. There are multiple methods of aggregating indicators [35], from
the simplest based on a fixed weighting structure, exogenously determined or accord-
ing to some univariate criteria, to more complex methods based on the main component
techniques and factor analysis. Many of these methods, however, face the problem of
asynchrony presented by economic series in terms of their cyclical information. Not all
series can be considered synchronous with the economic cycle; we find leading, lagging and
coincident series. The series, therefore, need to be dated and delayed/advanced in order
to be synchronised [36]. Some of the studies that address this problem, within the frame-
work of building synthetic indexes, are those of Mondéjar-Jiménez and Vargas-Vargas [37],
Domínguez Serrano et al. [38] and Cuevas and Quilis [39]. All of these propose indicator
aggregation techniques through main components and factor analysis, offering a literature
review of the existing aggregation methods. See also Doz and Fuleky [40].

One way to ignore the problem of date (temporal synchronisation) is to use dynamic
factor analysis methods. Dynamic factorial analysis techniques incorporate the dynamics
of the series in their search for the set of the time signals common to all series. Specifically,
our application takes the research by Cuevas et al. [36] as a reference and uses the dynamic
factor analysis to reduce the dimensionality of the problem and discover a single latent
factor (the first dynamic factor) that represents the original variables with the least loss of
information. The complete process is shown in Figure 1, which includes the phase of treatment
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and univariate prediction of the series, addressed below. The implemented model allows new
observations of simple indicators to be incorporated according to the availability of the data.

Following the procedure described in Figure 1, for the calculation of the synthetic
indicator, given an initial set of time series, a set of N time series is selected using the
subset selection method. These series are all completed up to the same moment in time
using univariate prediction methods. They are previously corrected of calendar effects and
seasonally adjusted. Various previous analyses (not presented in this paper) reveal that
the univariate prediction of the elementary indicators offers better results and flexibility
than the predictive extension of the dynamic factor itself, whether it is performed exoge-
nously (prediction after univariate modelling), or endogenously, during the process of its
calculation through dynamic factor analysis.

In our research, the treatment and correction of seasonal, outlier and calendar effects
of simple indicators is carried out using the methodology described in JDemetra+ [41].
Specifically, as a complement to the synthetic indicator app, there is an alternative app
that allows each series to be processed using the TRAMO-SEATS [42] or X-13ARIMA-
SEATS [43] methodology, based on an identification (defined by the user or automatic) of
the autoregressive integrated moving average (ARIMA) model of the series to be treated.
An advantage of this alternative app, other than the simplicity of its use, is that, in addition
to the usual calendar correction components (moveable Easter effect, weekly cycle or leap
year), it allows the incorporation of other components built from the festive and commercial
calendar of the Comunitat Valenciana [44]. Like the main app (for the construction of the
synthetic indicator), this app https://apps.uv.es/app_extraccion_componentes/ (accessed
on 17 April 2023) may also be of interest to other analysts.

It is common for elementary indicators to not all be available at a certain time point
and, furthermore, prior to the current time (nowcasting) and certainly prior to the time up
at which we want to make a prediction (short-term forecasting). For this reason, imposing
a restriction regarding the maximum number of months that each series can be predicted
(which we set at a maximum of 12 months with respect to the most delayed series), each
series is predicted until all of them are located at the same time instant (see Figure 2).

Figure 2 schematically shows the observed and predicted data structure for each
series; where xt,i represents the observed value of the i-th indicator during instant t and
x̂T− fi+k,i represents the prediction associated with the i-th indicator corresponding to the
instant T − fi + k (with, fi ≥ k), with T denoting the total number of periods (the time
horizon), N denoting the number of elemental indicators and fi(≤12) denoting the number
of unobserved periods (months) (to be predicted) until the i-th series is completed at
instant T.

In our application, each series/indicator is completed/predicted using automatically
identified univariate ARIMA models. The model identification (and prediction) process
is performed using the Box–Jenkins methodology (see, e.g., [45]). The greatest advantage
provided by this type of model, compared to other more sophisticated ones, usually resides
in its ability to generate optimal predictions for the immediate future [46]. Of course,
the analyst can choose to use an alternative forecasting procedure working with already
complete/predicted series before the construction of the synthetic index.

Once a complete/completed data matrix is available, such as the one shown in Figure 2,
the synthetic index (IS) is estimated using dynamic factorial analysis, as in Cuevas et al. [36],
after applying a series of transformations to the series to eliminate their scale differences
and ensure that they are stationary with an approximate normal distribution. Specifically,
the app performs in each indicator series: (i) a logarithmic transformation to ensure the
normality and symmetry of the data; (ii) a differentiation to eliminate the trend compo-
nents of the series; and (iii) a standardisation of the variables to homogenise their scales
and variances.

https://apps.uv.es/app_extraccion_componentes/
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Indicator

Time 1 2 … i … N

1 𝑥1,1 𝑥1,2 ⋮ 𝑥1,𝑖 ⋮ 𝑥1,𝑁

2 𝑥2,1 𝑥2,2 ⋮ 𝑥2,𝑖 ⋮ 𝑥2,𝑁

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

t 𝑥𝑡,1 𝑥𝑡,2 ⋮ 𝑥𝑡,𝑖 ⋮ 𝑥𝑡,𝑁

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋮ 𝑥𝑇−𝑓1,1 ⋮ ⋮ 𝑥𝑇−𝑓𝑖,𝑖 ⋮ ⋮

⋮ ො𝑥𝑇−𝑓1+1,1 ⋮ ⋮ ො𝑥𝑇−𝑓𝑖+1,𝑖 ⋮ 𝑥𝑇−𝑓𝑁,𝑁

⋮ ⋮ 𝑥𝑇−𝑓2,2 ⋮ ො𝑥𝑇−𝑓𝑖+2,𝑖 ⋮ ො𝑥𝑇−𝑓𝑁+1,𝑁

⋮ ො𝑥𝑇−1,1 ො𝑥𝑇−𝑓2+1,2 ⋮ ⋮ ⋮ ⋮

T ො𝑥𝑇,1 ො𝑥𝑇,2 ⋮ ො𝑥𝑇,𝑖 ⋮ ො𝑥𝑇,𝑁

Figure 2. Matrix of individual indicators as well as the observed and predicted values. Observed
values of each series are shaded in grey. Predicted values, attained to finish all the series in the same
month, are shaded in dark red.

Dynamic factor analysis allows each series to be expressed as a linear function of a set
r << N of common factors, which captures the patterns of co-movements shared by all
series, and some idiosyncratic effects specific to each series. In our approximation, r = 1.

Mathematically, the relationships can be expressed for t = 1, . . . , T through
Equations (1) and (2).

xt = λ(L) ft + εt (1)

ft = Ψ(L) ft−1 + ηt (2)

where xt and εt are vectors of dimension N × 1 (N being the number of indicators and εt
being the vector of specific or idiosyncratic components of the indicators at time t), ft is the
r-dimensional factorial vector which captures the values of the factor at the instant t, ηt a
random r-dimensional white noise vector and λ(L) and Ψ(L) are matrix delay polynomials
of dimensions N × r and r× r, respectively, where L is the lag operator.

On the one hand, the i-th delay polynomial λi(L), that is, the i-th row of λ(L), denotes
the loading of the factor for the i-th series and λi(L) ft denotes the common component of
the i-th series. The loadings polynomic λi(L) measures the sensitivity of the growth signal
of the i-th indicator for changes in the factor. On the other hand, the polynomial lag matrix
Ψ(L) captures the dynamic structure of common factors.

The above system is estimated under the classical assumptions of stationarity for
Equations (1) and (2), assuming that the idiosyncratic components are uncorrelated with
all factors at all lags, that is, E[εt,iη

′
t−k,j] = 0 ∀i, j, k. Once the system has been estimated,

the dynamic factorial model provides us with the communality corresponding to the first
factor; from which we derive the synthetic index in base one by means of Equation (3),
where IS1 = 1

ISt+1 = ISt(1 + ft) (3)

3.2. Uncertainty Measurement

The second of our objectives is to generate the precision measures of the synthetic
index to measure its uncertainty. From a classical frequentist perspective, the uncertainty
of a statistic is measured by accounting for the uncertainty associated with the sample used
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for its construction. On many occasions, however, as in macroeconomics, it is not possible
to have different samples of the same variable or to repeat a study a great number of times.
In these circumstances, uncertainty is measured based on the assumptions of the model
that is used to solve the problem or after assuming a certain generating structure for the
data, as occurs in the context of ARIMA time series modelling.

The construction of a synthetic index using dynamic factor analysis, however, entails
very complex mathematical operations that are difficult to trace, which prevent the error
structures from being analytically transferred through the system. In these contexts, as well
as in general, it is possible to use simulation techniques to solve the problem: resampling
techniques from which we can obtain the estimates of standard errors, confidence intervals or
resolve hypothesis tests. In this research, we use the bootstrap methodology (see, e.g., [47]).

According to Efron and Tibshirani [29], the relationship between the original sample
and the bootstrap is explained by the connection between two worlds, the real world and the
bootstrap world. In the real world, the joint multivariate probability distribution, F, of the
phenomenon under study, is unknown, and a random sample is available, x = (x1, . . . , xn),
which is used to estimate a statistic of interest θ̂ = s(x). In the bootstrap world, the empirical
distribution F̂ of the data is obtained by resampling with replacement the observed sample
(or the estimated errors) of the real world, x∗ = (x∗1 , . . . , x∗n), using this estimate of the
empirical distribution to obtain parameters of interest that would be impossible to obtain
in the real world.

In our case, dynamic factor analysis is a deterministic process: given the same inputs,
the same output is always obtained. In other words, contingent upon the observed values
of the elementary indicators, the synthetic index is invariant: it is not subject to any
uncertainty. There are, however, two sources of uncertainty that could be introduced into
the process. On the one hand, the elementary indicators are approximations to reality and
are subject to measurement errors. On the other hand, as previously stated, the nowcasting
and forecasting objectives impel the use of univariate predictions to complete the series of
indicators (see Figure 2). This is a process subject to uncertainty which also grows as the
prediction time horizon increases.

Although we do not include the uncertainty associated with the first source in this
research because the observed values are considered fixed according to a model-based
approach [48], we can suggest at least two strategies for those researchers that are interested
in incorporating it. On the one hand, the observed series could be locally perturbed,
retaining the dependency structure of the data, using the (linked) blockwise bootstrap
(see, e.g., [49]). On the other hand, the errors associated with the ARIMA modelling of the
indicators could be used to generate new series as a composition of observed values and
resampled errors.

The second source of uncertainty (the one associated with the univariate prediction
of each base indicator) is incorporated into the process and, given the dynamic structure
of the built factor, it ends up having an impact on all the time instants of the index, not
only on the instants in which a prediction has been made. The uncertainty associated with
the specific predictions of each indicator series is incorporated by building new series as a
concatenation of the observed values of the series and replicas of the predictions obtained
by sampling in their associated prediction intervals.

Mathematically, continuing with the notation introduced in the previous subsection,
the process starts from the observed values (x1,i, x2,i, . . . , xt,i, . . . , xT− fi ,i) and varies the
predictions x̂T− fi+k,i, k = 1 . . . fi of each series in each resample. To do this, denoting
by x̂−T− fi+k,i and x̂+T− fi+k,i, the minimum and maximum values (obtained, for example,
from a prediction interval with a given confidence) among which the prediction for the
instant T − fi + k of the i-th series would reasonably be found, we randomly extract
a value x∗T− fi+k,i from the interval [x̂−T− fi+k,i, x̂+T− fi+k,i], for k = 1, . . . , fi, and construct
a new series such as: x1,i, x2,i, . . . , xt,i, . . . , xT− fi ,i, . . . , x∗T− fi+k,i, . . . x∗T,i. This process is re-
peated B times for each of the N series. Specifically, for b = 1, . . . , B and i = 1, . . . , N,
x(b)i = (x1,i, x2,i, . . . , xt,i, . . . , xT− fi ,i, . . . , x∗(b)T− fi+1,i, . . . , x∗(b)T,i ) denotes the b-th resample of the
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i-th indicator series and X(b) =
[

x(b)
1 , x(b)

2 , . . . , x(b)
i , . . . , x(b)

N

]
denotes the indicator matrix

of order T × N corresponding to the b-th resample.
At this point, we have B matrices, X(b) b = 1, . . . , B, of simple indicators. The synthetic

index construction procedure described in the previous subsection is applied to each of
these, obtaining B series of synthetic indicators: IS(1), IS(2), . . . , IS(b), . . . , IS(B). All of
these share the same probability distribution, so that they can be considered as a simple

random sample, IS∗ = (IS(1), . . . , IS(b), . . . , IS(B))
iid∼ F̂IS, from which we can extract the

estimates of the mean synthetic index, the standard error associated with each time instant,
or construct confidence intervals for the value of the synthetic index, t = 1, . . . , T.

In particular, denoting by IS(b)
t the value of the synthetic index obtained for instant

t with the b-th resample, the estimator of the average synthetic index—whose expected
value will coincide with the IS index obtained in the previous section—and its associated
standard deviations at each instant are obtained, following [29], using Equations (4)–(6):

¯IS = ( ¯IS1, ¯IS2, . . . , ¯ISt, . . . , ¯IST) (4)

where

¯ISt =
B

∑
b=1

IS(b)
t

B
(5)

and

σ̂ ¯ISt
= +

√√√√∑B
b=1

(
IS(b)

t − ¯ISt

)2

B− 1
(6)

There are two possibilities for building confidence intervals. One is to assume a
normal distribution for the values of the synthetic index at each instant, and the other is to
directly use the bootstrap confidence intervals. The first approximation involves calculating
the intervals by [ ¯ISt ± z α

2
σ̂ ¯ISt

], where z α
2

is the percentile 1− α/2 of a standard normal
distribution. The second strategy estimates the confidence interval, with 1− α confidence,
for the value of the index at instant t from the bootstrap percentiles, Equation (7).[

ISα/2
t , IS1−α/2

t

]
(7)

where IS1−α/2
t denotes the 1− α

2 percentile of the bootstrapped synthetic index during pe-

riod t. These percentiles are obtained as the values of the set {IS(1)
t , IS(2)

t , . . . , IS(b)
t , . . . , IS(B)

t }
below which (α/2)% and (1− α/2)% of the values are found, respectively.

4. Synthetic Index: Web Application

The synthetic index construction methodology is complex and involves a series of
laborious operations that, fortunately, can be automated. The automation of these pro-
cesses facilitates economic decision making, particularly for regional public agents whose
statistical and computational skills are often limited. Hence, in accordance with one of
the objectives of this research, we develop an easy-to-use interactive application to build a
synthetic index, given a set of indicators, using the dynamic factor analysis methodology
described in the previous section. The application was developed using the R program-
ming language [50], common in research areas for statistical analysis, employing the Shiny
package [51], which simplifies the building of interactive applications.

The “Synthetic Indicator” application developed with Shiny (see Figure 3) is composed
of two functional components: a user interface (UI) function and a server function (SERVER).
The UI function is responsible for generating the visible part of the interactive web and
is the one that contains the visual structure. The SERVER function is in charge of the
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mechanical and internal execution of the interactive web and contains the instructions for
the application.

Figure 3. Screenshot of the Shiny web application for constructing the synthetic index.

The application has three tabs. The first one, called “Introduction”, briefly explains
the objective of the application and its main results. The second tab is the generator of the
synthetic indicator of economic growth. In this second tab, the interactive web asks the user
for various inputs, such as the date (month and year) up to which they want the synthetic
indicator to reach, as well as one (or two) Microsoft Excel file(s) with the monthly and/or
quarterly indicators that the user wants to combine to build the synthetic indicator. The
first column of these files contains the dates in YYYYMMM format (for example, 2022M12)
for monthly series and in YYYYTQ format (for example, 2023T2) for quarterly series. The
data, with a name heading for each series, are located in the columns that follow. Since the
indicator is built on a monthly basis, the quarterly series (if introduced) are interpolated on
a monthly basis using [31]. Finally, the app asks the user to decide which option to use to
combine the indicators in terms of start date: “default-observed series” or backcasting. The
backcasting option performs a backward point estimate of all the economic indicators until
completing them up to the date of the indicator for which the oldest date is available. The
default option starts all the series, taking as the start date the oldest date for which there
are known observations for all the series.

Once the user enters these inputs, the application shows the values of the generated
synthetic indicator as output and displays a graphical representation of it on the screen.
The user can download the data in a file in .xlsx format.

The application https://apps.uv.es/app_indicador_sintetico/ (accessed on 17 April
2023) also has a third tab that contains the user manual, providing a step-by-step explana-
tion in Spanish of how to create a synthetic indicator of regional economic growth.

5. Empirical Application

The use of simple economic indicators to monitor economic cycles is very useful for
measuring the effectiveness of the public policies that are being implemented [9,35]. Each
indicator gives information about the past and the situation of the phenomenon it captures,
projecting its evolution into the present and future. However, the information provided by
the indicators is partial and sometimes contradictory. Different indicators may be found at
different times in the cycle (for example, the unemployment rate tends to improve some
time after an improvement in the cycle has occurred, while an increase in the demand for
business financing usually brings forward an improvement in the cycle). Alternatively, the
underlying phenomena that the indicators measure may present different evolutions. To

https://apps.uv.es/app_indicador_sintetico/
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overcome this limitation, we must resort to aggregation methods that allow us to measure
the unobservable latent variables of the set of indicators.

With the objective of building an indicator highly correlated with the GDP of the
Comunitat Valenciana and paying particular attention to criteria such as the availability
of the variable and its high statistical significance, in this research, we initially selected 14
indicators to build the synthetic index, as detailed in Table 1. The official source producing
all the indicators is the Spanish Statistical Office (INE).

Table 1. Simple indicators initially considered to build the synthetic index.

Code Description

AFSST Total affiliated to the social security system
AFSSC Total affiliated to the social security system in the construction sector
CPPT Consumption of petroleum products
CVV Property sales
EXPORT Exports
GTOTUR Tourist spending
IASS Service sector activity indicator
ICMG Retail turnover index
IMPORT Imports
IPI Industrial production index
MATTUR Vehicle registrations
MATVC Heavy-duty vehicle registrations
PHT Total overnight stays in hotel establishments
VET Total approvals of building certificates

Although the 14 individual indicators could be combined into a single synthetic index,
based on the principle of parsimony and our objective of representativeness of the index
in terms of GDP, as indicated in the methodology section, we make a prior selection of
indicators using “subset selection”. Using the AIC criterion, we identify the subset of
indicators that together provide a lower AIC in relation to GDP. The main advantage of
performing a preselection lies in the reduction in the complexity and computational costs.
Prior to applying the “subset selection” method, the annual series of GDP is transformed
into a monthly one by applying [31] and the monthly series of elementary indicators are
standardised to avoid scale effects.

In this specific case, since we have 14 independent variables/predictors, 214 − 1 = 16, 383
different models are fitted, after considering all possible combinations with at least one
predictor. An extract with a statistical summary with three of the fitted models is presented in
Table 2. The last column of Table 2 shows the values for the coefficient AIC = 2k− 2ln(L̂)
obtained for each model, where k is the number of estimated parameters (as an indicator
of complexity) of the model and L̂ is the maximised value of the likelihood function for the
model. According to the criterion of the lowest AIC, the selected model would be the one
labelled with the number 9908 which contains eight indicators. As can be seen, most of the
selected indicators are indicators of demand and of the services sector.

As shown in Table 2, in terms of fit, there are no major differences between the most
parsimonious model selected and the most complex model built by linearly combining the
14 indicators. This is due to the prior selection of the initial indicators, for which expert
knowledge was used. Indeed, the results of this application can be considered robust
since almost the same synthetic index is obtained if the 14 initial selected indicators had
been employed.
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Table 2. Statistical summary of an extract of models in the subset selection.

Model N Predictors R2 Adj. R2 AIC

9908 8 AFSST GTOTUR IASS ICMG 0.94 0.94 15.31
IMPORT MATTUR MATVC PHT

· · · · · · · · · · · · · · · · · ·

16,383 14 AFSST AFSSC CPPT CVV EXPORT 0.94 0.94 23.12
EXPORT GTOTUR IASS ICMG IMPORT

IPI MATTUR MATVC PHT VET

· · · · · · · · · · · · · · · · · ·

14 1 CPPT 0.13 0.12 361.72

· · · · · · · · · · · · · · · · · ·

The result of calculating the synthetic index using the app option “observed data”
with the eight indicators selected in model 9908 is shown in the left panel of Figure 4 during
the period January 2009–October 2022. As an element of comparison, in the right panel
of Figure 4, the monthly GDP series of the Comunitat Valenciana, available until 2021, is
graphically represented. In both panels, a smooth LOESS curve is included to make it easier
to observe their underlying evolutions. Likewise, vertical red lines are used in both panels
to indicate the periods during which the other series is (not) available.

80

90

100

110

2000 2005 2010 2015 2020
Year

90

95

100

2010 2015 2020
Year

Figure 4. Estimated synthetic index series (left panel) and GDP (chain-linked volume indices) series
of the Comunitat Valenciana (right panel). In both panels, a smoothed LOESS curve was included.
The far-right part in the left panel, on the right of the vertical red line corresponds to the months
for which the GDP is still not available. The far-left part of the right panel, at the left of the vertical
red line, corresponds to the years for which some of the indicators are not available. As can be seen,
during the intersection period in which both series are available, the movements of both curves are
quite similar.

As can be seen by comparing both panels of Figure 4, during the intersection period
(when both series are available), the movements of both curves are quite similar—an in-
dicator of the usefulness of the synthetic index, for which we have nowcast and forecast
estimates. In both curves, the economic consequences of the lockdown implemented to
mitigate the COVID-19 pandemic are evident. Remarkably, the huge drop in economic
activity caused by the lockdown is more evident in the synthetic index than in the monthly
GDP series. On the one hand, there was a statistical smoothing effect caused by the monthly
disaggregation method and, on the other hand, the significant financial aid that accom-
panied the lockdown made it possible to maintain a significant degree of consumption
despite the reduction in activity.

6. Measuring the Uncertainty

A prediction or estimate is not complete without a measurement of its prediction/estimate
error, that is, the level of uncertainty associated with it. The calculation of uncertainty is not
always straightforward, as is the case with the construction of our synthetic index that employs
dynamic factor analysis. Fortunately, as discussed in the methodology section, simulation
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techniques can (almost) always be used to generate estimates of uncertainty. In this section, we
show (as can be seen in Figure 5) the results of measuring the uncertainty associated with the
construction of the synthetic index using the procedure described in Section 3.2 for B = 10,000.
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100

2010 2015 2020
Year

Lines IS IS10000 Confidence Invervals 80% 95%

Figure 5. Graphical representation of the uncertainty in estimating the synthetic indicator using
boostrap techniques with B = 10,000. Both the baseline synthetic index (red line) and the boostrap
average synthetic index (discontinuous red line) are plotted. Boostrap confidence intervals at 80%
and 95% of confidence are also displayed.

Figure 5 graphically shows the synthetic index together with the estimation of its
bootstrap confidence intervals at 80% and 95% confidence. Several facts stand out when
analysing this figure. First, the uncertainty bands are not homogeneous during the entire
period. During the initial years and at the time of the pandemic lockdown, the levels of
uncertainty are lower. The highest levels of uncertainty are observed during the predic-
tion/extrapolation period. Second, the bootstrap intervals are not symmetric with respect
to the base index, IS, nor with respect to the mean index, ¯IS, with the intervals being
significantly more asymmetric with respect to the former. In general, the interval range
towards the upper end is greater than it is towards the lower end. Third, as a rule, the index
series IS and ¯IS nearly coincide, drawing very similar paths. In summary, the bootstrap
methodology is revealed to be adequate to approximate uncertainty in the estimation of
the synthetic index of activity and economic forecast of the Comunitat Valenciana.

7. How Many Resamples? An Analysis of Sensitivity

The previous section concludes that the bootstrap simulation is a good alternative for
measuring uncertainty when we combine different economic series through dynamic factor
analysis. In the previous application, however, we used 10,000 simulations, which incurred
a high computational cost (high processing times and cycles), even when using parallel
processing systems that reduce computing times. The natural question that arises is whether
it is necessary to perform so many simulations. In other words, what would be the minimum
number of resamples necessary to guarantee the convergence of the confidence intervals?

Knowing the minimum number of simulated scenarios necessary to achieve stability
in the estimate of the standard errors and confidence intervals is relevant because, on
the one hand, this would allow us to be sure of the estimates obtained and, on the other
hand, it would avoid wasting resources by incurring an excessive computational cost
with unnecessary calculations. Providing an answer to this question is the second of the
contributions of this paper.
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In the literature, however, there is no consensus regarding what should be the mini-
mum number of resamples to achieve stability in the estimates. Efron and Tibshirani [29]
affirm that with a relatively low number, such as 50 or even 25 resamples, we could achieve
stability in the estimation of the standard error, although the number of resamples nec-
essary to estimate the confidence intervals would be somewhat higher. Other authors
such as Wilcox [52] recommends using a minimum of 599 simulations as a general rule,
while Davidson and MacKinnon [53] defended that the optimal minimum number for B
must be reasonably large. In practice, Davidson and MacKinnon [53] stated that using
399 simulations would be sufficient, although they recommend using a larger number if we
wish to increase the power and precision in estimating the estimation error and confidence
intervals with 1− α = 0.95.

Other authors are more conservative. Hesterberg [30] considers that 1000 resam-
ples are necessary to achieve stability in the error estimate and recommends the use of
10,000 resamples when the objective is to estimate confidence intervals with sufficient
coverage. Finally, Chernick [54] states that there is no fixed number of resamples that
guarantees reaching average convergence.

In order to answer the questions raised in the context of this research, we simulated
B = 10,000 resamples—a number above that recommended by [52,53] and equal to that
recommended by [30]—and (i) studied, as a function of the number of resamples b, when
stability is reached; and (ii) compared the differences observed between the limits of the
intervals obtained for different numbers of resamples, b = {25, 50, 399, 599, 1000, 10,000}.
The analyses were also carried out considering the possible impact of the coverage (1− α)
of the interval used in the results. Indeed, as shown in Figure 6, where the limits of the
confidence intervals obtained for the synthetic index at four different time points are shown
as a function of the number of resamples b, not all the interval limits tend to stabilise in the
same number of resamples.

2018−06 2022−07

2009−07 2012−03

0 2500 5000 7500 10000 0 2500 5000 7500 10000

94.0

94.5

95.0

95.5

98

99

100

101

97.8

98.0

98.2

98.4

96.5

97.0

97.5

98.0

98.5

Number of resamples

Percentile 10%−90% Percentile 2.5%−97.5% Percentile 5%−95%

Figure 6. Limits of confidence intervals (at 80%, 90% and 95%) as a function of the number of
resamples for the synthetic index a specific dates.

To study when stability is reached at the limits of the confidence intervals, we use
linear regressions with the independent variable being the number of resamples and the
dependent variables being the limits of the intervals: `

(b)
t = α + βb for b ≥ b0, where
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`
(b)
t represents, for instant t, any one of the limits of the confidence interval of the index

obtained using the first b resamples.
Given that, logically, the bootstrap percentiles tend to stabilise as the number of

resamples increases, the calculation of the p-values associated with the coefficients β for
b ≥ b0 indicates from which resample number b0 the coefficient β is no longer statistically
significant. From this number, we can say that the corresponding set of limits has stabilised
since the regression line is well fitted by way of a constant.

Adopting a conservative criterion, according to which we need at least as many
resamples as the maximum number of resamples required to reach stability at all time
points, it follows that, for the usual confidence levels (1− α = 0.80, 0.90, 0.95), we would
need to simulate almost 10,000 resamples. This statistical result is not very useful from a
practical point of view because, as shown in Figure 6, practical stability is generally reached
much earlier.

In order to answer the question from a practical perspective, we compare the lim-
its obtained for the different pairs of resampling number combinations and analysing
the errors and standard deviations associated with their differences. For each possible
combination of the set Ω = {25, 50, 399, 599, 1000, 10000}, we calculate across periods
the statistics sdt

(
`
(b1)
t − `

(b2)
t

)
and sdt

(
`
(b1)
t − `

(b2)
t

)
/meant

(
`
(b2)
t

)
, where b1, b2 ∈ Ω and

b1 < b2. Tables 3–5 show the values obtained for such statistics associated with the confi-
dence intervals at 80, 90 and 95 %, respectively.

Table 3. Standard deviations (left panel) and relative errors in percentages (right panel) across time
between confidence interval limits at 90% (upper triangles) and 10% (lower triangles) for a selected
number of resamples.

25 50 399 599 1000 10,000 25 50 399 599 1000 10,000
25 0.1018 0.0991 0.1001 0.1034 0.0985 0.1058 0.1029 0.1040 0.1074 0.1023
50 0.1171 0.0352 0.0439 0.0629 0.0590 0.1232 0.0365 0.0456 0.0653 0.0612
399 0.0969 0.0688 0.0195 0.0460 0.0405 0.1020 0.0724 0.0203 0.0477 0.0420
599 0.0954 0.0683 0.0098 0.0312 0.0260 0.1005 0.0719 0.0103 0.0324 0.0270
1000 0.1124 0.0682 0.0254 0.0247 0.0114 0.1183 0.0718 0.0267 0.0260 0.0118
10,000 0.1079 0.0704 0.0181 0.0177 0.0106 0.1136 0.0742 0.0191 0.0186 0.0112

Table 4. Standard deviations (left panel) and relative errors in percentages (right panel) across time
between confidence interval limits at 95% (upper triangles) and 5% (lower triangles) for a selected
number of resamples.

25 50 399 599 1000 10,000 25 50 399 599 1000 10,000
25 0.0858 0.1149 0.1373 0.1270 0.1260 0.0890 0.1190 0.1422 0.1315 0.1305
50 0.0623 0.0701 0.0904 0.0951 0.0963 0.0656 0.0726 0.0936 0.0985 0.0997
399 0.0855 0.0868 0.0396 0.0518 0.0508 0.0901 0.0915 0.0410 0.0537 0.0526
599 0.0892 0.0837 0.0205 0.0595 0.0578 0.0940 0.0883 0.0217 0.0616 0.0598
1000 0.1006 0.0861 0.0438 0.0305 0.0119 0.1061 0.0908 0.0463 0.0322 0.0123
10000 0.0999 0.0887 0.0345 0.0232 0.0140 0.1053 0.0936 0.0364 0.0245 0.0148

Table 5. Standard deviations (left panel) and relative errors in percentages (right panel) across time
between confidence interval limits at 97.5% (upper triangles) and 2.5% (lower triangles) for a selected
number of resamples.

25 50 399 599 1000 10,000 25 50 399 599 1000 10,000
25 0.1178 0.1112 0.1160 0.1437 0.1483 0.1219 0.1150 0.1199 0.1485 0.1532
50 0.1031 0.1263 0.1241 0.1280 0.1310 0.1085 0.1305 0.1282 0.1323 0.1354
399 0.0911 0.0859 0.0238 0.0558 0.0618 0.0961 0.0906 0.0246 0.0577 0.0638
599 0.0970 0.0874 0.0191 0.0970 0.0874 0.1024 0.0922 0.0202 0.0487 0.0531
1000 0.1029 0.0926 0.0245 0.0181 0.0142 0.1087 0.0978 0.0258 0.0191 0.0147
10,000 0.1059 0.0913 0.0286 0.0212 0.0126 0.1119 0.0964 0.0302 0.0224 0.0133
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The analysis of the values of the tables shows that the lower limits of the intervals
presented greater stability than the upper limits and that, in addition, their relative error
reaches a value close to 1% relatively quickly. The mean distances across periods between
the lower limits are practically equivalent for 399 resamples. For the upper limits, however,
we need approximately 1000 resamples to achieve limits similar to those obtained with
10,000 resamples. In light of these results, we consider that, in this context, it is more than
enough to take 1000 resamples to calculate the confidence intervals for the synthetic index
at the different time points.

8. Summary and Final Remarks

Economic agents, both public and private, have the responsibility to make decisions
on a daily basis that can have important social and financial consequences. These decisions
are made based on current and future conditions. Therefore, having adequate tools for con-
junctural analysis, economic forecasting and measuring uncertainty constitutes a powerful
instrument that can improve the quality of decisions.

This paper shows a part of the research being carried out by the authors with the
objective of facilitating the economic decision making of regional public agents. In this
paper, we present an interactive web application (https://apps.uv.es/app_indicador_
sintetico/, accessed on 17 April 2023) that allows a synthetic indicator to be easily generated
using dynamic factor analysis through the dynamic combination of individual economic
indicators, and we analyse how to measure its associated uncertainty. Our research also
answers the question concerning the minimum number of bootstrap simulations needed
to adequately measure the uncertainty of a synthetic series obtained through dynamic
factor analysis.

Throughout our study, it was verified that the methodology proposed by Cuevas
et al. [36] to obtain a synthetic indicator based on latent factors allows the common joint
signal of a group of simple indicators to be captured, adequately estimating the aggregate
economic evolution of the Comunitat Valenciana. This allows public decision makers
to synthetically improve their understanding without delay and, thanks to the app, au-
tonomously, for the present condition of the regional economy (nowcasting) as well as
predicting its immediate future evolution (short-term forecasting). In light of these findings,
as a policy recommendation, we consider that Comunitat Valenciana economic agents can
rely on this new tool for their decision making.

The construction of the synthetic index is complemented by the study of the calculation
of its uncertainty for which, given the complexity associated with the methodology, we
use bootstrap techniques. The chosen approximation is revealed as a good alternative
for measuring uncertainty when we combine different economic series through dynamic
factorial analysis, showing that, in this context, 1000 resamples is enough to adequately
calculate the confidence intervals of the synthetic index at different time points.

Our tool and results, however, do not come without limitations. The app we developed
only considers the first dynamic factor and imposes a maximum forecasting period of
12 months based on the most delayed series. Additionally, it predicts each indicator using
an automatically identified univariate ARIMA model. All of these issues limit the flexibility
of the tool and may not lead to the most accurate estimates under certain circumstances.
Nevertheless, we believe that assuming them represents a reasonable trade-off given the
target user of our app.

Similarly, it is worth noting that, if the monthly series in our application had been
annually aggregated to study their relationship with GDP, if a different approach to subset
selection had been used to choose individual indicators, and/or if the measurement error of
the indicators had been taken into account when estimating the uncertainty of the synthetic
index, slightly different solutions may have been reached.

Finally, readers may be interested to know that, although this index is valuable as a
stand-alone tool, we are currently working on a new app in which the synthetic indicator

https://apps.uv.es/app_indicador_sintetico/
https://apps.uv.es/app_indicador_sintetico/


Forecasting 2023, 5 440

construction code and its associated methodology are used as an intermediate component
to estimate the regional quarterly series of GDP (see, e.g., [55]).
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