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Abstract: Traders and investors are interested in accurately predicting cryptocurrency prices to
increase returns and minimize risk. However, due to their uncertainty, volatility, and dynamism,
forecasting crypto prices is a challenging time series analysis task. Researchers have proposed
predictors based on statistical, machine learning (ML), and deep learning (DL) approaches, but
the literature is limited. Indeed, it is narrow because it focuses on predicting only the prices of
the few most famous cryptos. In addition, it is scattered because it compares different models on
different cryptos inconsistently, and it lacks generality because solutions are overly complex and
hard to reproduce in practice. The main goal of this paper is to provide a comparison framework
that overcomes these limitations. We use this framework to run extensive experiments where we
compare the performances of widely used statistical, ML, and DL approaches in the literature for
predicting the price of five popular cryptocurrencies, i.e., XRP, Bitcoin (BTC), Litecoin (LTC), Ethereum
(ETH), and Monero (XMR). To the best of our knowledge, we are also the first to propose using the
temporal fusion transformer (TFT) on this task. Moreover, we extend our investigation to hybrid
models and ensembles to assess whether combining single models boosts prediction accuracy. Our
evaluation shows that DL approaches are the best predictors, particularly the LSTM, and this is
consistently true across all the cryptos examined. LSTM reaches an average RMSE of 0.0222 and MAE
of 0.0173, respectively, 2.7% and 1.7% better than the second-best model. To ensure reproducibility
and stimulate future research contribution, we share the dataset and the code of the experiments.

Keywords: cryptocurrency prediction; time series forecasting; deep learning; machine learning;
ensemble modelling; temporal fusion transformer; recurrent neural networks; bitcoin

1. Introduction

Cryptocurrencies are virtual currencies that rely on blockchain technology. They
have seen widespread market adoption since the introduction of Bitcoin in 2009, the
most popular crypto so far. Many different subjects trade cryptos and invest in crypto
funds and companies; according to CoinMarketCap [1], the global market capitalisation
of cryptocurrencies reached an estimated value of USD 932.49 billion in September 2022.
Although investments have seen lucrative returns, ubiquitous price fluctuations across
most cryptocurrencies make such investments challenging and risky. For example, Bitcoin’s
price has been highly volatile since its market launch, reaching peaks as high as +122% and
+1360% in 2016 and 2017, respectively [2]. Ethereum, XRP, and Litecoin have seen similar
fluctuations in 2017 alone [2].

For these reasons, investors require a forecasting approach to effectively capture
crypto price fluctuations to minimise the risk and increase their profit. Moreover, it is
possible to use volatility forecasts to estimate swings in their price, which is useful for
developing and analysing quantitative financial trading strategies [3]. However, similar
to stock price forecasting, whose market is dynamic and complex as well [4], crypto price
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forecasting is regarded as one of the most challenging prediction tasks in the financial
domain at present [5]. Most successful researchers cast this problem as an example of time
series forecasting [6–11], since the idea is to leverage historical and current price data to
predict future prices over a period of time or a specific point in the future. Time series
analysis has also been applied in weather forecasting and demand forecasting for retail and
procurement, for example.

In the literature, the application of statistical techniques is the traditional approach
for time series forecasting. Such techniques adopt statistical formulas and theories to
model and capture patterns in the time series. The most frequently employed statistical
models are the autoregressive integrated moving average (ARIMA) model and its variants,
exponential mmoothing, multivariate linear regression, multivariate vector autoregressive
model, and extended vector autoregressive model [12]. In addition, in forecasting the
future prices of cryptos, the most popular example is the ARIMA [13]. Researchers have
commonly employed this model to forecast Bitcoin prices [6,14,15]. Other models have also
been applied, such as generalized autoregressive conditional heteroscedasticity (GARCH)
models in volatility forecasting of cryptos [16,17] and diffusion processes in probabilistic
forecasting of cryptos [18].

Another research branch employs machine learning (ML) models such as stochastic
gradient boosting machines [19], linear regression, random forest, support vector ma-
chines, and k-nearest neighbours [20]. By leveraging historical data, these techniques focus
on identifying the most influential features that determine future crypto prices to boost
prediction accuracy.

A third body of work employs deep learning (DL) models to tackle crypto price
forecasting, following their recent widespread success in quantitative finance [21]. Neural
networks, recurrent neural networks (RNN) such as gated recurrent unit (GRU) and
long short-term memory (LSTM), yemporal convolutional networks (TCN), and hybrid
architectures have been applied to predict prices of Bitcoin, Ethereum, and Litecoin, for
example [7,9,11]. DL approaches are considered effective at time series forecasting because
they are robust to noise, they can provide native support for data sequences, and they can
learn non-linear temporal dependencies on such sequences [22].

Although the literature has proposed statistical, ML, and DL techniques, there is no
clear evidence of which of these approaches is superior. Indeed, the research is scattered
and lacks generality because it focuses on predicting the price of a single crypto among
a small number of the most popular cryptocurrencies (mainly Bitcoin). Moreover, the
over-complexity of the model architecture makes their adoption in a real-world scenario
very challenging because implementation, training, and predictions are expensive. Lastly,
with different datasets, pre-processing strategies, and experimental methodologies, the
approaches’ comparisons are inconsistent, the experiments are hard to reproduce, and their
findings are therefore unreliable.

The main goal of this paper is to overcome these limitations and shed light on the
effectiveness of the most popular approaches proposed in the literature so far on the
crypto price prediction task. Therefore, as a major contribution, we design a framework
for comparing widely used statistical, ML, and DL approaches in predicting the price of
five popular cryptocurrencies, i.e., Ripple (XRP), Bitcoin (BTC), Litecoin (LTC), Ethereum
(ETH), and Monero (XMR). DL networks selected include different architectures such as
convolutional neural networks, recurrent neural networks, and transformers. To the best of
our knowledge, we are also the first to propose using temporal fusion transformer (TFT)
as a DL approach to tackle crypto price prediction. In addition, we investigate the use of
hybrid models and ensembles to determine whether a combination of multiple models can
improve the accuracy of the predictions.

To overcome cryptocurrency prices’ high fluctuation and volatility, we transform
non-stationary time series into stationary ones by applying detrending. Predictive mod-
els are trained and tested on a 5-year time-window dataset we collected from online
cryptocurrency trading platforms. Our evaluation methodology spans over one year of
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data and is incremental with monthly time windows. Results show that DL approaches
are better than ML and statistical approaches, and, for DL models, complex architec-
tures outperform less complex ones. To ensure reproducibility and stimulate future re-
search contribution, we open source the dataset and the code of the experiments (https:
//github.com/katemurraay/tsa_crt, accessed 15 January 2023), as we believe our work to
be an essential starting point for practitioners to investigate crypto price prediction.

The remainder of this paper is structured as follows: Section 2 presents the models
comparison, the data collection and preprocessing, and finally describes the experimental
methodology; Sections 3 and 4 outline the results of the experiments and discuss their
findings, respectively; finally, Section 5 draws conclusions and illustrates future plans.

2. Materials and Methods

In our framework, we assume the availability of a dataset of size m with daily interval
granularity, i.e., each dataset’s instance refers to a timestamp day ti, i ∈ (1, m), where t1 and
tm denote the earliest and the latest data points available in the dataset, respectively. We
denote with yti the value of the target variable at timestamp ti, i.e., the cryptocurrency price
to predict. We also denote with xti the features available at time ti; xti = [yti−l , . . . , yti−1 ],
where l is the length of the window considered as input by the models. Our goal is to build
predictive models that learn a function f (xti ) = yti , see Section 2.1 for the list of models
we employ in this study. This learning task is a typical example of univariate time series
analysis because only one variable (i.e., the crypto price, y) varies over time.

In the remainder of this section, we describe the predictive models, the data acquisition
and its preprocessing, and the experimental methodology we use to compare the models.

2.1. Predictive Models

Below we give details of the statistical, ML, DL, hybrid, and ensemble models we compare.

• Auto Regressive Integrated Moving Average (ARIMA). This is a generalisation of
the simpler ARMA model (auto regressive moving average). The traditional three-
step process of constructing ARIMA models by [13], includes model identification,
parameter estimation, and finally, the diagnosis of the simulation and its verification.
Essentially, a prediction for a yttarget value is the linear combination of the yti values
up to the ttarget timestamp and the prediction errors made for the same yxti

values.
Examples of ARIMA usage include forecasting for air transport demand [23,24], long-
term earning prediction [25], and next-day electricity price prediction [26]. ARIMA
has effectively predicted BTC prices in [6,14,27].

• k-Nearest Neighbor (kNN). Originally suited for classification tasks, kNN is a non-
parametric model that has been successfully extended and employed for regression
tasks in time series analysis. To predict yttarget , the kNN calculates the k most-similar
xti values to xttarget . Then, prediction of ytarget is the weighted average of the k yti

values. The kNN model has been used in financial forecasting [28], electric market
price prediction [29], and in the prediction of Bitcoin [30].

• Support Vector Regression (SVR). Built on support vector machines for classification,
SVR enables both linear and non-linear regression. Similarly to kNN, SVR is a non-
parametric methodology introduced by [31]. SVR aims to maximise generalisation
performance when designing regression functions [32]. SVR was applied to a variety
of time series tasks such as forecasting warranty claims [32], predicting blood glucose
levels [33], and for stock predictions in the financial market [34]. Examples of SVR
usage in forecasting crypto prices can be found in [20,21].

• Random Forest (RF) Regressor. This is essentially an ensemble of decision trees,
each of which is built on a random subset of the training set. RF’s predictions are
performed by averaging the predictions of individual trees. The key benefits of RF
are its generalisation capability, and minimal sensitivity to hyperparameters [35]. RF
has been used in time series tasks for forecasting cyber security incidents [36], for the
prediction of methane outbreaks in coal mines usage [37], and for projecting monthly

https://github.com/katemurraay/tsa_crt
https://github.com/katemurraay/tsa_crt
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temperature variations [35]. In the prediction of cryptos, RF has been used for BTC
forecasting in [20] and BTC, ETH, and XRP in [19].

• Long Short Term Memory (LSTM). This is a type of RNN capable of learning long-
term dependencies and, therefore, is suitable for time series analysis [38]. Although
LSTMs follow a chain-like structure similar to ordinary RNNs, in an LSTM’s repeating
module, four neural layers interact, i.e., two in the input gate, one in the forget gate,
and one in the output gate. The input gate adds or updates new information, and
the forget gate removes irrelevant information. The output gate ultimately passes
updated information to the following LSTM cell. Examples of LSTM usage can be
found in short-term travel speed prediction [39], predicting healthcare trajectories
from medical records [40], and forecasting aquifer levels [41]. The model has also been
successful for crypto price prediction [7–9].

• Gated Recurrent Unit (GRU). Although the GRU model is similar to LSTM, the former
improves upon the computational efficiency of the latter because it has fewer external
gating signals in the interpolation. Consequently, the related parameters are reduced.
GRU has been used in the short-term prediction for a bike-sharing service [42], network
traffic predictions [43], and forecasting airborne particle pollution [44]. GRU was
found in [10] to forecast the prices of BTC, ETH, and LTC successfully.

• LSTM-GRU (HYBRID). This method was proposed by Patel et al. [11] to avail of the
advantages of both LSTM and GRU. Their study indicated that this hybrid approach
effectively predicted Litecoin and Monero daily prices, for this reason we include it
herein. Combinations of LSTM and GRU have been successfully applied to predict
water prices [45].

• Temporal Convolution Network (TCN). Presented by Bai, Kolter, and Koltun [46],
TCN is a variant of the convolutional neural network architecture, and uses dilated,
causal, one-dimensional convolutional layers. TCN’s causal convolutions prevent
future data from leaking into the input. TCNs have been widely adopted in time
series forecasting. For example, TCNs can produce a short-term prediction of wind
power [47], predict just-in-time design smells [48], and forecast in stock volatility [49].
In addition, TCN was effective at forecasting weekly Ethereum prices [50].

• Temporal Fusion Transformer (TFT). Introduced by [51], the architecture of TFT is built
on the vanilla transformer architecture. TFT is one of the most recent deep learning
approaches for time series forecasting. Its design incorporates novel components such
as gating mechanisms, variable section networks, static covariates, prediction intervals,
and temporal processing. TFT has been applied in other time series tasks such as the
prediction of pH levels in bodies of water [52], flight demand forecasting [53], and
projecting future precipitation levels [54]. To the best of our knowledge, we are the
first to employ it for the crypto price prediction.

We employ the voting regressor for the ensemble, a combination of different base
inducers using the models described above. We build a total of 502 ensembles, one for each
possible combination. An ensemble’s prediction is given by averaging the predictions from
the individual models that compose the ensemble. Note that each individual model was
trained separately and independently.

In our comparison, other approaches for time series forecasting could have been
investigated, for example, functional data analysis for predicting electricity prices [55,56],
group method of data handling and adaptive neuro-fuzzy inference system for predicting
faults [57], and multi-modality graph neural network for financial time series prediction [58].
However, we limited our choice to the most popular and representative models proposed
in each category (i.e., statistical, ML, and DL) in the literature because a complete and
exhaustive comparison of time series methods is beyond the scope of this paper.

2.2. Data Collection

The data were gathered from Binance.com (https://www.binance.com/en, accessed 13
July 2022) and Investing.com (https://www.investing.com, accessed 13 July 2022) websites.

https://www.binance.com/en
https://www.investing.com
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Binance.com is the world’s largest and most popular cryptocurrency exchange portal for
daily trading. It provides an array of features specific to cryptocurrency products which
include market information for thousands of cryptocurrencies. Investing.com acts as a
global portal for stock market information and analysis on many worldwide financial
markets. For our investigation, we selected five popular cryptocurrencies in the literature,
i.e., XRP, Bitcoin (BTC), Litecoin (LTC), Ethereum (ETH), and Monero (XMR).

The data collection process made use of the Binance API as a primary resource and
it was complemented by information retrieved from Investing.com when missing values
occurred (e.g., when the closing price of XMR was not available for a specific day). The
time frame of the collected data ranges from 1 June 2017 to 31 May 2022, i.e., five years. A
summary of the resulting datasets are reported in Table 1, and the covariates available for
the i-th instance of each dataset are the following:

• ti—the timestamp of the day;
• OPti —the opening price of the cryptocurrency at ti;
• HPti —the highest price of the cryptocurrency at ti;
• LPti —the lowest price of the cryptocurrency at ti;
• yti —the target variable, i.e., the closing price of the cryptocurrency at ti (which corre-

sponds to the opening price of the following day, i.e., OPti+1 = yti ).

In this paper, we address the crypto price prediction task as a univariate time series
analysis problem, and therefore we ignore the covariates OP, HP, and LP, but they are
included in the available preprocessed dataset. We plan to consider such covariates in
future work.

Table 1. Details of the cryptos analysed in this work. All prices are in US Dollars (USD).

Name Release Year Market
Cap 1

24 h
Volume 1 Min Price 2 Max Price 2 Mean Price 2 Price SD 2

Bitcoin (BTC) 2009 393.41 45.67 1914.10 67,525.83 18,621.99 17,623.38
Etherium

(ETH) 2015 192.46 19.31 83.76 4807.98 1021.77 1220.11
Litecoin

(LTC) 2011 3.93 0.53 23.08 387.80 101.41 64.33
Monero
(XMR) 2014 2.71 0.09 29.20 484.00 142.39 90.43

XRP (XRP) 2012 22.96 0.96 0.14 2.78 0.51 0.36
1 In billions of US dollars (USD). Values recorded on the 31 October 2022 from CoinMarketCap [1]. 2 In US dollars
(USD). Values relative to the collected data period, 1 June 2017 to 31 May 2022.

2.3. Data Pre-Processing

When forecasting with time series, their stationarity property is crucial for effective
modeling [5]. A time series with mean and variance that do not change over time is referred
to as stationary. On the contrary, a time series whose mean, frequency, and variance
fluctuate over time and frequently display high volatility, trend, and heteroskedasticity
is referred to as non-stationary [5]. Typically, traditional statistical forecasting methods
such as ARIMA require time series to be stationary in order to successfully capture their
properties [59]; similarly, stationarity favours learning in non-statistical models such as
the ML and DL employed in this paper [60]. For these reasons, we run the augmented
Dickey–Fuller (ADF) statistical test [61] to identify whether our datasets are stationary. The
results show that all datasets are non-stationary except the XRP dataset.

We transform our datasets into stationary datasets by applying detrending, i.e., the
process of removing the trend from a time series. In particular, we apply the differencing
transformation, the simplest detrending technique that generates a new time series where
the new value y′ti

at timestamp ti is calculated as the difference between the original
observation and the observation yti−1 at the previous time step, i.e.,

y′ti
= yti − yti−1 (1)
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Figure 1 shows the original Bitcoin time series in yellow and its differenced version in
red. The ADF test computed on the detrended datasets confirm their stationarity.

Another typical pre-processing step that is widely adopted to enhance learning is data
normalisation (e.g., [11]). We apply the Min-Max normalisation to all yti of each dataset, so
that values are mapped in the (0, 1) range according to the following formula:

yti =
yti − ymin

ymax − ymin
(2)

where ymin = min{yti} and ymax = max{yti}. To avoid leakage, ymin and ymax values are
calculated from training data only.

Figure 1. Bitcoin’s daily closing price from June 2017 to May 2022. We plot the original time series in
yellow and the detrended one in red.

2.4. Experimental Methodology

We performed experiments on each dataset/crypto separately, with the following
methodology that was the same for all models. We performed an initial temporal training-
test split on each dataset. The first 80% of the data belonged to the training set (i.e., four
years of data, from t = 1 June 2017 to t = 31 May 2021) and the last 20% of the data
belonged to the test set (i.e., one year of data, from t = 1 June 2021 to t = 31 May 2022). We
further partitioned the test set into twelve non-overlapping monthly windows (from June
2021 to May 2022 included) and we labelled them with Mi, i ∈ {1, 2, . . . , 12}.

Inspired by [62], an incremental monthly-based strategy was employed to evaluate
each model. In the first evaluation step, we trained the model on the training set, we
performed predictions, and we computed the test metrics (presented in Section 2.5) on M1.
In the second evaluation step, we included M1’s data in the training set and we retrained
the model from scratch on this newly enlarged training set. We again performed predictions
and we computed the test metrics on M2. We repeated the same process for the remaining
ten partitions, each time increasing the training set and moving the evaluation window one
step forward. Both ML and DL models have hyperparameters; therefore, we tuned them
only in the first evaluation step by using 20% of the training data for validation (optimizing
for MSE), and we kept them fixed for the remainder of the evaluation. Hyperparameter
details and values spaces are reported in Appendix A Table A1. We considered a sliding
window of 30 days of data as input to compute a one-step-ahead prediction. To avoid
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overfitting of the DL models during training, we applied early stopping and we performed
the experiments three times (averaging the results) to account for the randomness in the
initialisation of the models.

2.5. Evaluation Metrics

To assess the quality of a model’s predictions, we computed the root mean squared
error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and
R-squared score (R2) in each evaluation step described in the previous section, as follows:

RMSE =

√
∑n

i=1(yti − ŷti )
2

n
(3)

MAE =
1
n

n

∑
i=1
|yti − ŷti | (4)

MAPE =
1
n

n

∑
i=1

|yti − ŷti |
|tti |

∗ 100 (5)

R2 = 1− ∑n
i=1(yti − ŷti )

2

∑n
i=1(yti − y)2 (6)

In the above Equations (3)–(6), yti is the true price of the crypto after the normalisation,
ŷti is the predicted value, y is the average of the predicted values, and n indicates their
number. Note that the R-squared metric highlights the model’s variance in relation to the
total variance. Therefore, as opposed to the other error metrics, the higher the R-squared
value, the better the model’s performance.

3. Results

This section reports the results of the experiments and compares the regression models
in terms of accuracy and computational time. We assess both their average and crypto-
specific performances. Then, we examine the results of the ensembles and the contribution
of each individual model to an ensemble’s performance.

3.1. Individual Models

Table 2 shows the average performance of each model computed across all cryptos.
Models are ranked by RMSE in ascending order.

First, we observe that the models’ ranking is consistent across all the accuracy metrics
(with very few exceptions). The LSTM exhibits the best performance, with a consistent gap
compared to the other models. For each metric, values are quite close because we compute
them on the normalised predicted price, and not on the detrended data. The recurrent
neural network models occupy the first three positions of the rank, followed by the KNN
and the convolutional network approach. Interestingly, ARIMA performs better than TFT,
RF, and SVR.

Regarding the time required to train and deploy the models, DL approaches are more
expensive compared to machine learning and statistical methods, as expected. Overall,
all the models provide a prediction in a reasonably short time, so they might be suited to
operate in some online settings. In particular, for training and inference, HYBRID (LSTM-
GRU Hybrid in Section 2.1) and TFT are the most expensive, respectively. In contrast,
ML models are considerably faster to run. The KNN provides a good trade-off between
accuracy and computational cost.
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Table 2. The average performance of individual models ranked by RMSE in ascending order.

Model RMSE MAE MAPE R2 Train (s) Inference
(ms)

LSTM 0.02224 0.0173 3.862% 0.735 173.765 1.862
GRU 0.02285 0.0176 3.939% 0.720 254.520 1.550

HYBRID 0.02295 0.0177 3.959% 0.717 461.967 2.383
KNN 0.02332 0.0179 4.003% 0.711 <0.01 0.074
TCN 0.02334 0.0180 4.021% 0.711 40.475 1.219

ARIMA 0.02343 0.0180 4.010% 0.708 4.035 0.109
TFT 0.02353 0.0181 4.062% 0.707 105.913 8.842
RF 0.02402 0.0184 4.095% 0.697 2.121 0.586

SVR 0.02452 0.0189 4.240% 0.681 <0.01 0.008

Table 3 indicates the RMSE results across the different cryptos. The ranking of the top
three models is consistent across all the cryptos. However, in the lower positions, some
variability can be observed, e.g., SVR and TFT perform particularly well on BTC.

Table 3. The RMSE performance of individual models for each crypto (ranks are reported in brackets).

BTC ETH LTC XMR XRP Average

LSTM 0.0239 (1) 0.030 (1) 0.0189 (1) 0.0236 (1) 0.0148 (1) 0.0222 (1)
GRU 0.0245 (2) 0.0309 (2) 0.0193 (2) 0.0243 (2) 0.0153 (2) 0.0229 (2)

HYBRID 0.0246 (3) 0.0309 (3) 0.0195 (3) 0.0244 (3) 0.0154 (3) 0.0230 (3)
KNN 0.0249 (6) 0.0319 (5) 0.0197(4) 0.0245 (5) 0.0155 (4) 0.0233 (4)
TCN 0.0250 (7) 0.0319 (4) 0.0198 (5) 0.0245 (6) 0.0156 (5) 0.0233 (5)

ARIMA 0.0251 (8) 0.0320 (7) 0.0198 (6) 0.0244 (4) 0.0158 (7) 0.0234 (6)
TFT 0.0249 (5) 0.0319 (6) 0.0199 (7) 0.0250 (7) 0.0159 (8) 0.0235 (7)
RF 0.0266 (9) 0.0332 (8) 0.0199 (8) 0.0251 (8) 0.0157 (6) 0.0240 (8)

SVR 0.0248 (4) 0.0342 (9) 0.0207 (9) 0.0268 (9) 0.0160 (9) 0.0245 (9)

3.2. Ensembles

Table 4 highlights the performances of the best ten ensembles in terms of RMSE.
The ensembles do not outperform the LSTM network, and the latter is included in all
the top-performing ensembles. It is interesting to see how the LSTM and GRU ensemble
outperforms the HYBRID model, which is a deep non-sequential network that combines
LSTM and GRU.

Table 4. Average ensemble performance against individual models ranked by RMSE in ascending
order.

Ensemble RMSE MAE MAPE R2

LSTM 0.0222 0.0173 3.86% 0.73
GRU, LSTM 0.0225 0.0174 3.89% 0.73

HYBRID, LSTM 0.0225 0.0174 3.89% 0.73
HYBRID, GRU, LSTM 0.0226 0.0175 3.90% 0.73

LSTM, KNN 0.0227 0.0175 3.92% 0.73
GRU, LSTM, KNN 0.0227 0.0176 3.91% 0.72
GRU, LSTM, TCN 0.0227 0.0176 3.92% 0.72

LSTM, TCN 0.0227 0.0176 3.93% 0.72
HYBRID, LSTM, KNN 0.0227 0.0175 3.92% 0.72

HYBRID, GRU, LSTM, KNN 0.0227 0.0175 3.91% 0.72

To evaluate the contribution of an individual model, we compared the average accu-
racy of all the ensembles that include this model and those that do not (and the difference
can be seen as the average RMSE contribution given by that individual model). The results
in Table 5 confirm the individual model ranking in Table 2. Most notably, the contribu-
tions of the non recurrent models are negative, i.e., they worsen the ensemble accuracy
on average.
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Table 5. Each model’s contribution within the ensemble ranked by difference in descending order.

Model RMSE with Model RMSE without
Model Difference (%) 1

LSTM 0.023 0.0233 1.26%
GRU 0.0231 0.0232 0.57%

HYBRID 0.0231 0.0232 0.48%
KNN 0.0232 0.0232 −0.03%
TCN 0.0232 0.0232 −0.06%

ARIMA 0.0232 0.0231 −0.2%
TFT 0.0232 0.0231 −0.21%
RF 0.0232 0.0231 −0.41%

SVR 0.0233 0.0231 −0.87%
1 Difference = (RMSE Without Model−RMSE with Model)

RMSE Without Model × 100.

4. Discussion

The results show that the models’ performance ranking is consistent across different
cryptos, and their average performance confirms the ranking. Recurrent DL approaches
dominate the cryptocurrency price prediction task according to all accuracy metrics. In
particular, the LSTM is the best-performing model with an average RMSE of 0.0222 and
substantially outperforms other network architectures, such as TCN (convolutional) and
TFT (transformer), which have a 4.9% and 5.8% higher error, respectively. The nature of
the latter architectures can explain their poor performance. Regarding TCN, convolutional
networks are good at interpreting repeated hierarchical patterns in the data (captured by
the dilated convolutions), but these patterns are absent from the crypto price time series.
Moreover, TCN generally performs better for fine-grained (dense) predictions (such as
hourly predictions rather than daily or monthly predictions). This is because the oscillation
between a wider time window has a different distribution and is harder to capture by
dilated convolutions. Regarding TFT, its attention mechanism is known for capturing
the relationship between covariates of the time series at hand. However, such covariates
are ignored in our experiments (and we leave this for future work). TCN and TFT are
also known to be data-hungry, i.e., they require substantial volumes of data to capture
patterns successfully. Unfortunately, the amount of historical data available to train these
models on forecasting daily prices is limited. The second best model is GRU, a recursive
network simpler than LSTM, which achieves an RMSE of just 2.7% higher with a similar
computational effort. To wrap up, results for DL models suggest that more expensive and
complex architectures may be redundant for this type of time series task.

The KNN provides an excellent trade-off between the accuracy of the prediction and
the computational effort required, with an error 4.8% higher than LSTM but with no training
time required and a 25 times faster inference time. The other machine learning models
(SVR and RF) are at the bottom of the ranking and, quite surprisingly, are outperformed by
the baseline ARIMA. This is probably because they cannot capture meaningful patterns in
the time series, which is noisy and presents outliers (SVR performs better because it is less
prone to outliers). In contrast, due to its linearity assumptions, ARIMA’s predictions are
directional and more accurate for short-term analysis. In conclusion, ARIMA provides a
good trade-off between good accuracy and reduced computational demand.

Ultimately, the last part of the experiment highlights that combining different regres-
sors into an ensemble does not boost performance. This approach aims to compensate for a
model’s shortcomings by averaging it with others that are more accurate in particular cases.
However, if a regressor provides more accurate predictions in the vast majority of cases,
averaging it with considerably more inaccurate models negatively affects its performance.
Indeed, the LSTM consistently outperforms all the ensembles due to a wide accuracy gap
with the other models.

5. Conclusions

This paper compares deep learning (DL), machine learning (ML), and statistical mod-
els for forecasting the daily prices of cryptocurrencies. Our one-step-ahead evaluation
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framework is incremental and works on a monthly retraining schedule. We tested over
12 months of data. Results show that, in general, recurrent DL approaches are the best
models for this task. In particular, the LSTM is the best-performing model, and its training
is less expensive than the other DL models with the closest performance. The reasons
why DL models such as TCN and TFT underperform might be, for example, that the
convolutional approaches are better suited for dense predictions (“sparse” in our analysis)
and TFT are good at leveraging covariates (ignored in our analysis), while both approaches
suffer from a data scarcity problem. KNN and ARIMA provide a good trade-off between
accuracy and computational expense. Finally, the deployment of ensemble approaches is
detrimental, as their performance is inferior to the individual LSTM approach.

The availability of accurate predictions is essential to crypto traders, who often trade
hourly and daily. Therefore, tailoring accurate predictors for trading strategies might help
them increase their revenue. However, our predictors can only predict daily prices; in
the future, we aim to build predictors that also provide hourly prices and investigate the
integration of such predictors with some trading strategies (e.g., [3]).

Several factors can also affect the price fluctuations of cryptos, including regulations,
social media trends, market sentiments, and other cryptos’ volatility. For example, the work
of [63] analyses how regulatory news and events affect returns in the cryptocurrency market
using an event-based approach. According to this report, events that raise the likelihood
of regulation adoption are linked to a negative return for cryptos. Another example is
from [64], where the prices of other cryptos exhibit an interdependent relationship (Bitcoin
is the parent coin for both Litecoin and Zcash). Therefore, in the future, we aim to integrate
these kind of covariates in our models to improve prediction accuracy.

Another avenue of improving forecasting involves investigating the relationship
between cryptos. Their prices exhibit an interdependent relationship, and the coins can
be grouped into clusters of similar behaviour [65]. Using this framework, similar cryptos
can be used to train a more accurate model specific to that pattern and offer rich and
valuable insights into the dynamics between cryptos, while also improving the accuracy of
predictions of crypto forecasting.
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Appendix A. The Hyperparameter Values of the Predictive Models

The details regarding the values of hyperparameters of each model are shown in
Table A1.
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Table A1. Hyperparameters and architecture of forecasting models.

Model Python Library Architecture Hyperparameters Used

LSTM TensorFlow
Single

Convolutional
Layer and a
LSTM Layer.

• convolutional layer: 64
• convolutional activation: ReLU
• convolutional kernel: 5
• lstm layer : 75
• dense layer : 16
• dense layer activation: ReLU
• learning rate: 1× 10−4

GRU TensorFlow
Single GRU
Layer and

Dense Layer.

• gru layer size: 75
• gru layer activation: ReLU
• dense layer size: 100
• dense layer activation: ReLU
• learning rate: 1× 10−3

LSTM-GRU
Hybrid

TensorFlow
Two LSTM

Layers and a
GRU Layer.

• first lstm layer : 75
• first dropout rate: 0.05
• second lstm layer : 50
• lstm activation: ReLU
• first dense layer : 32
• gru layer : 50
• second dropout rate: 0.0
• second dense layer : 64
• learning rate: 1× 10−3

TCN TensorFlow
Four

Convolutional
Layers

• convolutinal filters: 32
• convolutional kernel: 16
• dilation rate: 8
• dense layer dimensions: 64
• dropout rate: 0.05
• learning rate: 1× 10−4

TFT DARTS

• input chunk length: 30
• output chunk length: 1
• number of LSTM layers: 3
• number of attention heads: 7
• hidden layer dimensions: 64
• dropout rate: 0.05
• learning rate: 1× 10−3

RF Scikit-Learn

• number of estimators: 200
• criterion: mse
• max depth: 100
• max features: sqrt
• bootstrap: True

SVR Scikit-Learn

• kernel: poly
• degree: 5
• gamma: auto
• tol: 0.001
• C: 100

kNN Scikit-Learn

• number of neighbours: 28
• weights: uniform
• algorithm: brute
• p: 2

ARIMA StatsModel
• p: 1
• d: 0
• q: 2
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