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Abstract: In times of rapid change and rising human pressures on marine systems, information about
the future state of the ocean can provide decision-makers with time to avoid adverse impacts and
maximise opportunities. An ecological forecast predicts changes in ecosystems and its components
due to environmental forcing such as climate variability and change, extreme weather conditions,
pollution, or habitat change. Here, we summarise examples from several sectors and a range of
locations. We describe the need, approach, forecast performance, delivery system, and end user
uptake. This examination shows that near-term ecological forecasts are needed by end users, decisions
are being made based on forecasts, and there is an urgent need to develop operational information
systems to support sustainable ocean management. An operational information system is critical
for connecting to decision makers and providing an enduring approach to forecasting and proactive
decision making. These operational systems require significant investment and ongoing maintenance
but are key to delivering ecological forecasts for societal benefits. Iterative forecasting practices
could provide continuous improvement by incorporating evaluation and feedback to overcome the
limitations of the imperfect model and incomplete observations to achieve better forecast outcomes
and accuracy.
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1. Introduction

Oceans are changing rapidly, with hotspots of long-term ocean warming [1] and
increased frequency of extreme events (e.g., marine heatwaves, [2]) impacting marine
species and habitat quality, distribution, structure, and function (e.g., [3]). Major impacts
on coastal habitats have been recorded around the world [4,5], as have large-scale shifts in
species distribution [6,7] and abundance (e.g., [8]). The combination of rapid ocean change
with increasing pressure from human activities and use of marine spaces for new industries
associated with the Blue Economy [9] means that historical expectations for ecological
conditions may not be realised in the future. This will make ocean use and management
more challenging than in the past unless new tools and approaches for ecological forecasting
can be provided and operational information systems developed.

Many sectors can benefit from ecological forecasts [10], (Ecological Forecast Initiative
https://ecoforecast.org/ (accessed on 1 December 2022)), which can lower the risk of
management failure under global change [11] on both short- and long-term scales [12].
Ecological forecasts, commonly referred to as “ecoforecasts”, can deliver predictions of
abundance, distribution, and phenology for single species, multispecies, or communities, or
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predictions of ecological events such as harmful algal blooms, pathogen loads, hypoxic con-
ditions, and shifts in species and habitats under climate change (https://oceanservice.noaa.
gov/ecoforecasting/noaa.html (accessed on 1 December 2022); [10,13]). These forecasts can
be for a range of time scales, from nowcasts through to seasonal and climate scales [14,15],
and tend to be at local (~10 km) to regional spatial scales (~100 km). Ecosystem-based
approaches to management (such as the Ecosystem Approach, Ecosystem-based Manage-
ment, Ecosystem-based Fisheries Management, Nature-based Solutions, etc), which are
being practiced in a multitude of settings around the world, could benefit from forecasts of
vital ecosystem indictors and/or valued services/threats [16].

Forecasts can provide information on large and difficult-to-observe ecosystems to
support the effective managers of iconic habitats such as the Great Barrier Reef. Forecasts
could support the application of Integrated Pest Management (e.g., the crown-of-thorns
starfish) and increase the preparation time for managers. Ecological forecasts can also
reduce the risk to human life to offer a great benefit to society, just as weather or storm
forecasts have been widely adopted by coastal and offshore vessel captains. Studies
have shown there are statistically significant patterns between environmental drivers and
hazardous marine species, e.g., significant patterns do occur for shark and crocodile attacks
and Irukandji stings on humans (e.g., [17–19]). Therefore, forecasts of environmental
conditions could provide the likelihood of occurrences of marine hazards to humans.

Early marine ecological forecasts were developed for fisheries applications rather than
for conservation or tourism. These forecasts have been used in decision-making systems
for management, e.g., forecasts of the distribution of southern bluefin tuna habitat off the
east coast of Australia [20] and leatherback turtles off the Hawaiian Islands [21], which
have been expanded to other pelagic species and regions [22]. The first marine ecoforecast
systems have been developed in Australia [23] and North America (e.g., [24–26]), and there
are a few examples from elsewhere [22,27]. However, there has been a large increase in
ecological forecasts over the years and they now cover marine, fresh water and terrestrial
ecosystems over all seven continents [22,28].

Although there has been a science push for some of these applications, end-user de-
mand for information has also contributed to uptake. Realizing the full potential of marine
ecological forecasting will require bridging the gaps between marine ecology and oceano-
graphic modelling on the one hand, and between science and end-users on the other [22];
this will require improved information delivery systems. Although ecological forecasts
often depend on physical forecasting capability, such as dynamical ocean model forecasts,
these often feed into statistical approaches and other types of modelling. Ecological fore-
casts also include single species models widely used to generate short-term abundance
forecasts based on population dynamics, and often do not use environmental data. These
population models are used widely in fisheries [29] and we do not cover them here.

To apply ecological forecasting for management decision support, operational infor-
mation systems have been developed to integrate comprehensive interoperable information
and modelling platforms. These systems provide government agencies and industries
access to improved environmental information (e.g., [30,31]; NOAA Ecoforecasting). An
operational information system usually integrates data with marine models (which may
include physical and socioecological models), visualisation, reporting, and decision support
tools for management options. An example of such a system is shown in Figure 1, where
users can access a range of decision support information through a web-based dashboard,
such as forecasts (of disease outbreaks, extreme events, climate change and economic
shocks), risk and strategic assessments, reports from farm status to compliance status,
incidence response, and guidance and documentation. This system is underpinned by
integrated observational data, which is key to improving model accuracy and forecasts to
inform management decisions [32]. The data is then processed and analysed and combined
with near real-time output of a suite of environmental and socioecological models to be
ingested and visualised, and a number of products are produced. The users are insulated
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from these underlying processes. This system provides user friendly services and users are
not required to be equipped with expert knowledge to interpret data or model output.
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Figure 1. Conceptual diagram of SIMA (Spanish for Integrated Management System for Aquaculture)
information platform showing user-level functionality and the SIMA models and databases to be
implemented (adapted from Figure 1 in [30], see Section 2.2.2 for details).

Here, we review the progress in developing ecological forecasts and their inclusion in
information delivery systems at operational timescales – days, weeks, months to several
years, rather than long-term climate-scale projections of ecological conditions (e.g., habitat
models based on IPCC Earth system models; [33]). We use a case-study approach, high-
lighting successful applications to demonstrate the potential utility of ecoforecasting and
to encourage its broader use in systems management and decision making. We illustrate
different levels of system maturity and implementation, as well as common themes, and
recommend key areas requiring further investment, development, and research. Our study
will show the benefits of ecological forecasts towards supporting ecosystem-based manage-
ment of fisheries and aquaculture, predicting harmful algal blooms, and protecting iconic
habitats and their users. The practice of making ecological forecasts will also help advance
ecological theory [28].

2. Case Studies

We have selected representative examples of ecological forecasts to illustrate applica-
tions in four areas: (1) fisheries, (2) aquaculture, (3) algal blooms in coastal habitats, and
(4) iconic habitats. Each case study briefly describes the context, followed by the technical
approach, how performance is assessed, and delivery mode and user uptake.

2.1. Ecological Forecasts for Fisheries

Marine fisheries play a vital role in supporting global food and nutrition security, im-
proving human health [34], and promoting economic prosperity and employment [35]. Fish-
ery resources are an important source of proteins, vitamins, and micronutrients. Healthy
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fish populations lead to healthy oceans whereas the resilience of marine ecosystems and
coastal communities depend on sustainable fisheries. Fisheries provide about 17% of an-
imal proteins consumed by many low-income populations in rural areas [36]. In many
developing countries, fish is often the only affordable and easily available source of animal
protein. With climate change, conditions that sustain food production and availability will
be altered and societies will be vulnerable to a reduction in food supplies from marine
fisheries. For many decades, fisheries management has involved estimating population
size as part of stock assessments [29], but environmental data is rarely considered. In
recent years, centennial scale projections of abundance, distribution, and phenology have
been developed, often based on environmental data from Earth system models [33]. These
long-term projections have been useful for illustrating the future impact of climate change
but have not been incorporated into fisheries management and decision making, which
occurs on much shorter time scales. Spatial forecasts have been most common, as there is
a clear link for many species between distribution and environmental variables such as
temperature, currents, and productivity. Pelagic species respond quickly and strongly to
environmental signals, and these taxa have been the most common subject for ecological
forecasts [22].

2.1.1. Case Study 1—Southern Bluefin Tuna in the Great Australia Bight

Large numbers of juvenile southern bluefin tuna (SBT) (Thunnus maccoyii) are found
in the Great Australian Bight (GAB) during the austral summer (Dec-Apr). Here, they are
caught in a purse-seine fishery worth ~AUD 41 million annually (2019-20 value) and towed
in pontoons back to Port Lincoln (~135◦ E 35◦ S) to be grown and fattened before harvest
several months later. There have been changes in the distribution of SBT in the GAB over
the past decade, with fish being distributed further east than previously observed and
the majority of purse-seine catches no longer occurring in traditional fishing areas. The
presence of fish in unusual locations makes fishing operations for stocking the ranching
pontoons challenging because the slow pontoon towing speed precludes a rapid response
to shifts in fish distribution, so vessels need to be positioned prior to fish arrival.

In 2012, the Australian Southern Bluefin Tuna Industry Association recognized the
need for scientific support to improve operational planning. They funded a project to
provide seasonal forecasts (1 week to 2 months in advance) of areas of preferred SBT
habitat. Environmental variables influencing the spatial distribution of SBT in the GAB
during summer were examined using location data collected from electronic tags on SBT
over many years, and ocean conditions where fish were found were compared with con-
ditions available throughout the region and time period of interest [37,38]. Sea surface
temperature (SST) was found to have the greatest influence on fish distribution, with fish
preferring waters of 19–22 ◦C. Once habitat preferences were established, this information
was coupled with a seasonal climate forecasting system developed by the Bureau of Meteo-
rology (POAMA: Predictive Ocean Atmosphere Model for Australia) to predict locations of
preferred SBT habitat in future [38,39]. A website, updated daily, was created to provide
the industry with forecasts of environmental conditions and SBT distributions up to two
months into the future, along with a suite of other relevant information, including forecast
skill (www.cmar.csiro.au/gab-forecasts (accessed on 1 December 2022)). As the SBT fishery
is quota-managed, the forecasting system was not designed to increase catches (and thus
impact sustainability) but to enable fishers to better plan their operations and potentially
increase efficiency and profitability.

In 2020, POAMA was decommissioned by the BoM and superseded by a new state-of-
the-art seasonal climate forecasting model referred to as the Australian Community Climate
Earth-System Simulator–Seasonal (ACCESS-S). One of the key benefits of ACCESS-S is the
increased spatial resolution of the ocean model, from approximately 200 km longitude ×
100 km latitude with POAMA, to 25 km × 25 km with ACCESS-S. To keep the forecast
delivery website operational, a follow-up project updated the forecasting system to use
ACCESS-S. Although the decommissioning of POAMA was the initial motivator for the

www.cmar.csiro.au/gab-forecasts
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follow-up project, another important factor was the availability of additional electronic tag
data. These new data allowed for verification that the habitat models were still relevant,
and enabled age-specific preference models to be developed. The age-specific models
showed that fish ages 3–4 (the ages of most interest to industry for ranching operations)
prefer slightly cooler surface temperatures (18.5–21.5 ◦C) than fish ages 2 (19–22 ◦C), which
can make a noticeable difference to the areas deemed to contain the preferred habitat
(Figure 2).
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Figure 2. (Left) Sea surface temperature (SST) forecast (in ◦C) for February 2022 as predicted by the
Bureau of Meteorology’s seasonal forecasting system ACCESS-S on 15 January 2022. (Middle) Areas
predicted to contain preferred habitat for age 2 southern bluefin tuna in February 2022 based on
the SST forecast on the left; colour corresponds to level of preference, where a value >1 indicates
preferred habitat (up to a maximum of 3). (Right) Same as the middle panel except for fish ages 3–4.

Based on feedback from industry members and an industry liaison representative,
the website has been used consistently in the lead up to and throughout every fishing
season since its development and has proven a valuable tool for fishers making decisions
concerning when and where to position vessels and conduct fishing operations; for instance,
in the 2017 and 2019 fishing seasons, forecasts indicated slow and delayed warming of the
GAB so companies opted to delay fishing operations rather than send boats, pontoons, and
crew out to sit idle for weeks until conditions became suitable for SBT [39,40].

The current habitat preference models are estimated using data obtained from elec-
tronic tags deployed on SBT mainly during 1998–2011, from only six tags from 2015–2017.
Thus, it has not been possible to evaluate whether preferences have changed over the past
two decades, which is particularly important given warming waters and other oceano-
graphic changes in the GAB under climate change. To ensure that the habitat preference
forecasts continue to be relevant, more recent biological data, ideally from further electronic
tagging, must be obtained (noting that this is a large undertaking and funding would need
to be established). Furthermore, environmental variables other than SST also influence the
distribution of SBT in the GAB (e.g., subsurface temperature, chlorophyll, salinity). These
variables are not currently available as forecasts, so they are not included in the habitat
forecasting models; however, this is an area worth pursuing as more forecasted variables
become available in future.

2.1.2. Case Study 2—Forecasts in a Multispecies Longline Fishery in Eastern Australia

The Australian Eastern Tuna and Billfish Fishery operates along much of the east
coast inside and beyond the exclusive economic zone (EEZ) with effort concentrated in
the dynamic portion of the East Australian Current. This multispecies longline fishery
is managed by integrating single species assessments, catch limit trigger points, harvest
strategies, and gear restrictions in a whole-of-area management approach. Historically, the
five main target species in the fishery have been Bigeye Tuna, Thunnus obesus; Yellowfin
Tuna, Thunnus albacares; Albacore, Thunnus alalunga; Striped Marlin, Kajikia audax; and
Broadbill Swordfish, Xiphias gladius, but more recently, fishers have also been targeting
Southern Bluefin Tuna (SBT, Thunnus maccoyii), an internationally quota-managed species.

Regular fortnightly reports were provided from 2003 onwards to the Australian Fish-
eries Management Authority during the fishing season [41]. These reports presented a
habitat preference model providing near-real-time advice to management about likely SBT
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habitat. Managers used these habitat preference reports to frequently update spatial re-
strictions to fishing grounds. These restrictions, which were enforced by vessel monitoring
systems and fisheries observers, limited unwanted interactions by fishers that did not
hold a SBT quota (SBT cannot be landed without a quota, and in that situation must be
discarded), and allowed those with a SBT quota to operate efficiently [41].

The habitat prediction system integrated tagging data from SBT, near real-time sea
surface and sub-surface temperatures from a three-dimensional ocean model, and output
from the seasonal forecast POAMA model to provide a habitat nowcast and forecasts for
6 months (Figure 3a,b). This system was in operational use by the Australian Fisheries
Management Authority since 2003, evolving over the years from a surface-only model to
an integrated sub-surface model with seasonal forecasting capability to aid managers and
fishers in planning for future changes in the location of the habitat zones [23]. Incorporating
the seasonal forecasting component was an important step in informing and encouraging
managers and fishers to consider decisions on longer timescales [23]. The delivery of this
prediction system ceased in 2014 when the management system changed and no longer
relied on a forecast of habitat distribution.

More recently, the influence of oceanographic conditions on species distribution for
all key target species has been investigated. Boosted regression trees (BRTs) were used
to identify oceanographic variables that best explain the observed patterns in catches
in the region and other regions of the southwest Pacific (Figure 3c); full details of the
modelling work can be found in [42]. Forecasted oceanographic variables could then be
input to the BRTs to provide spatial forecasts of catch rates in future months (Figure 3d).
This information can be used by fishers and managers in understanding likely abundance
patterns in the short term. By considering a range of oceanographic predictors that reflect
the subsurface ocean structure, this method has improved forecast performance over earlier
approaches using surface only information.

2.2. Ecological Forecasts in Aquaculture

Aquaculture is the fastest growing food producing sector in the world, increasing
16-fold between 1985 and 2018 [43], and it is expected to accelerate further in the near
future to meet global protein demand. However, it must overcome a range of challenges
that threaten its operations, including managing its environmental impacts for sustainable
coastal development. Major environmental impacts of concentrated finfish farming on
surrounding waters include increased organic matter from animal feeding and waste,
which can then lead to deoxygenated water, harmful algal blooms (HABs), and outbreaks
of parasitic, bacterial, and viral diseases, resulting in major economic losses and livelihood
hardships [44]. The industry is also vulnerable to climate change, which might cause HABs
to occur more often and more intensely, compromise infrastructure, and change the habitat
suitability for some aquaculture species. Consequently, both industry and regulators
are looking to system-based decision support tools to assist operational sustainability.
Increasingly, operational information systems that can provide environmental forecasts and
risk assessments on conditions that may pose a threat to the industry are being developed
and relied on to ensure aquaculture does not breach regulatory conditions and guide
day-to-day operations at the farm level [45].
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Figure 3. (a) Data and delivery steps for an SBT habitat report: southern bluefin tuna are tagged
in the study region, and from these tags, temperature at depth data is matched with real-time
oceanographic data to produce a habitat nowcast, which is then used by fisheries managers to
implement spatial management zones; (b) Seasonal forecast of habitat zones: The monthly mean
position of the boundaries between core and buffer zones (lower line), and buffer and OK zones
(upper line) for 1994–2013 is indicated by the yellow band. The blue lines indicate the maximum
northerly and southerly extent of these boundaries recorded during the period. The position of
the habitat boundaries in the current year (2014) up to the date of the current habitat nowcast is
depicted by the red band. Red stars represent forecasts from a seasonal forecast model for the
location of the southern habitat boundary for future months; (c) relative contributions of each of the
oceanographic variables included in the boosted regression tree forecasting models for swordfish for
all regions (ALL = whole region; EAC= East Australia Current dominated region; CS = Coral Sea;
WCP = Western Central Pacific; NZ = New Zealand) for all years in the validation dataset (2016–2020)
for SWO; (d) example ecoforecast of predicted catch per unit effort for swordfish in the EAC area.
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2.2.1. Case Study 1—Dissolved Oxygen Forecasts in Tasmania

The deep (50 m) and sheltered waters of Macquarie Harbour on the west coast of
Tasmania support an economically important salmonoid farming industry. In recent years,
however, episodic depletion of dissolved oxygen has contributed to major fish kills [46].

A three-dimensional hydrodynamic and biogeochemical model of the estuarine system
was implemented to characterise the complex circulation and consequent variable oxygen
concentrations in the harbour [47]. The harbour is 35 km long and 8 km wide, with a
narrow ocean channel to the northwest and freshwater input from two major river systems
(Gordon–Franklin, King–Queen; combined catchment area 6900 km2). Tracer studies found
that residence time in the harbour was longest in midwater (110 days) and low oxygen
concentrations were persistent in this layer. Simulations showed that during periods of low
river flow, marine intrusions crossed the shallow sill (5 m depth) at the harbour entrance
and increased oxygen concentrations at depth; during periods of strong north westerly
winds, low oxygen content in midwaters could be displaced upwards by marine intrusions
into the aquaculture zone.

The model was assessed against observations of sea level, temperature, salinity, and
dissolved oxygen from multiple sites throughout the harbour. Statistical evaluation con-
firmed that the model adequately simulated the near real-time variation in dissolved
oxygen concentrations in the harbour, based on observations from an operational profil-
ing mooring.

Results from the hindcast, near real-time, and short-term forecasting model were
provided on a dashboard, with visualisation tools that enable interactive selection and
display of model output (e.g., timeseries of oxygen saturation at three locations, Figure 4a),
together with the latest observations of water quality from the automated profiling mooring.
The information dashboard was available to fish farmers and included a simple water
quality index to show favourable and unfavourable temperature and oxygen conditions
for salmonoids along a transect through the harbour (Figure 4b). The model information
displayed on the dashboard supported tactical operational decisions, including the timing
of smolt movements, stock harvesting, and the deployment of supplementary oxygen
systems. As a result of this, the number of fish kills in the harbour were reduced.

In addition to tactical decision support, a number of multi-year scenario simulations
were completed to explore long-term drivers of low oxygen in the harbour. Scenarios
showed that under reduced river flow and/or reduced anthropogenic loads, oxygen
conditions were predicted to improve throughout the harbour. These findings provided
evidence to underpin the Environment Protection Authority’s strategic decision to limit
the biomass of salmon in farms in Macquarie Harbour. At the time of writing, oxygen
conditions throughout the harbour were slowly improving.

The modelling system deployed in Macquarie Harbour provided water quality fore-
casts to support strategic planning and tactical operational decisions for salmon aquaculture.
Circulation in the harbour is strongly modulated by river flow which was estimated from
rainfall scaled against a historical timeseries of river flow data. A useful improvement to
the study would be to include a catchment model, including episodic dam discharge, for
more reliable prediction of river flow. A further development to the system could provide
extended forecasts at seasonal timescales and for future climate change scenarios, inform
long-term planning of salmon industry operations.
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2.2.2. Case Study 2—An Operational Information System for Managing the Chilean
Aquaculture Industry

The Chilean aquaculture industry in Patagonia, an area of ∼ 300,000 km2, has been
challenged by recurrent disease outbreaks and harmful algal blooms, which have caused
substantial economic losses for the industry and erosion of social license to operate [48].
To address the sustainability and competitiveness of the Chilean aquaculture industry, the
SIMA (Spanish for Integrated Management System for Aquaculture) Austral information
system was commissioned by the Chilean government in 2015 and has been operational
since 2019 [30].

SIMA is a comprehensive decision support tool developed for the Chilean Aqua-
culture industry and government agencies to provide access to improved environmental
intelligence. SIMA integrates available historical and near-real time observation data and
physical and socioecological models to create decision support tools (Figure 1). Users can
generate regulatory and non-regulatory reports through a web-based dashboard, and access
tools for strategic and tactical planning and incident response (such as disease outbreaks).
The information underpinning SIMA is derived from routine (daily to weekly) produc-
tion and environmental data and near real-time output from regional-scale environmental
and socioecological models. The coupled environmental models (hydrodynamic, biogeo-
chemical, sediment, and stream flow) predict environmental conditions such as oxygen
concentration and temperature to assess the suitability for production. They also provide
warnings for mitigation if environmental properties might cause a negative impact, so
that the industry could alter operational behaviours if necessary, such as changing feeding
patterns or harvesting early. Maps and time series for major indicators (such as aquaculture
production, biomasses, fish catch, disease levels, income, and revenue, etc) are produced
by the regional-scale socioecological models (linking more than 20 other statistical, process,
and agent-based approaches). This information is delivered directly as data layers within a
hierarchical Ecological Risk Assessment framework. Individual models can use data from
other parts of SIMA to answer a particular question (e.g., an epidemiological or economic
question) or they can form a systems model for the entire region to inform strategic re-
sponses under different market, management, or environmental scenarios identified by
users [49]. The farm-scale epidemiological and economic models offer tactical support
for farm operators. The epidemiological model is a statistical probabilistic model with its
parameters and transition probabilities between infection states estimated on a regional
scale from the weekly data reported by industry. The model simulates fish growth, and
forecasts mortality and disease dynamics for three finfish species (Atlantic salmon Salmo
salar, Coho salmon Oncorhyncus kisutch, and rainbow trout Oncorhyncus mykiss) and
two common diseases, Salmonid Rickettsia Septicemia and bacterial kidney disease. Fish
growth, survival, total production, and disease prevalence are predicted by the model. The
economic model is coupled with the epidemiological model to provide cost and revenue
estimates based on operation behaviours of the farms.

Several SIMA models can work together to evaluate disease transmission and risk
mitigation. The Environmental Model climatology, together with a connectivity tool (CON-
NIE), can be used to investigate the transmission between farm locations and execute
incident response in near real-time. This can be used by a range of practical applications,
including assessing the risks of pathogen exchange between leases such as the predicted
probability of Piscirickettsiosis disease as a function of the week of the salmon farming
cycle for the SIMA Chile system validated by observations (Figure 5). Results from these
models demonstrate that hydrodynamic connectivity between farms plays a major role in
disease prevalence and waterborne transmission of the disease [50].
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2.3. Ecological Forecasts of Harmful Algal Blooms

HABs can cause direct and indirect negative impacts to aquatic ecosystems, coastal
resources, aquaculture (see Section 2.2), and human health (through consumption of con-
taminated drinking water or shellfish) [51,52]. Ecological forecasts of HABs have been
developed around the world, recognising their threats to public health, ecosystem health,
aquaculture, tourism, and other blue economy industries [53,54]. However, there are major
challenges in the operational forecasting of HABs. The efficacy of the forecasting relies on
location-specific HAB species and local oceanographic conditions and may need a range
of data types such as satellite remote sensing data, field observations (e.g., samples and
glider data), and oceanographic and meteorological monitoring data from buoys or surface
temperature/current data, as well as a range of models and forecasts such as wind forecasts
or transport models.

2.3.1. Case Study 1—Real-Time Forecasting of Harmful Algal Blooms in the Yellow SEA

Since 2007, macroalgal blooms of Ulva prolifera, known as “green tides”, reach Qingdao
(China) beaches each year. During the 2008 Beijing Olympics, the sailing event was affected
and the government mobilised millions of people to clean the beaches. The tourism industry
suffered as the blooms usually reach Qingdao in July-August, the peak tourism season.
Central and regional governments have implemented a series of mitigation measures,
targeting the source region of green tide to prevent its expansion and formation into an
intense green tide, as well as interception at sea before it reaches Qingdao beaches. There is
considerable interest in monitoring and forecasting methods to aid interception, collection,
processing, and utilization of green algae.

By using satellite remote sensing data to identify floating macroalgal blooms, a data-
assimilating ocean general circulation model for the Yellow Sea successfully predicted the
observed drift trajectory of floating macroalgae with a lead time of 6.5 days [55–57]. By
calculating the Normalized difference vegetation index (NDVI) index from MODIS and
Sentinel-2, an input dataset for the dispersing algae at a resolution of 1 km was created
(Figure 6). The macroalgal blooms were treated as passive floating particles passively
advected by the ocean currents. The drift trajectory of the blooms was predicted by the
integration of modelled currents by the ROMS (Regional Ocean Model System) model for
the Yellow Sea. The ROMS model provides a 6.5-day forecast, initialised by assimilating
sea surface temperature, sea surface height, Argo observations, and real-time observation
of salinity and temperature data from Yellow Sea stations. By coupling the growth process
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of floating algae, the forecasting model for floating macroalgae trajectories can be improved
to further support the monitoring and prediction of macroalgal blooms adjacent to coastal
cities. To improve future forecasts, the relationships of macroalgal blooms with aquaculture
rafts, water temperature, salinity, and other environmental factors in the Yellow Sea need
to be further explored and incorporated, and remote sensing algorithms for detecting the
blooms needs to be further improved.

2.3.2. Case Study 2—Toxic Algal Blooms in Tasmanian Coastal Waters

In many parts of the world, dinoflagellate species from the genus Alexandrium form
HABs by producing paralytic shellfish toxins [58]. Since 2012, Alexandrium catenella has been
detected in coastal waters off eastern Tasmania from June to October, where they have been
responsible for life-threatening instances of human paralytic shellfish poisoning, as well as
extended closures of fisheries and aquaculture for mussels, oysters, abalone, and rock lob-
ster [59,60]. Although there is a need to detect and forecast A. catenella blooms because they
are toxic, their low biomass provides major challenges for traditional detection approaches
such as satellite remote sensing. Development of a forecasting capability has therefore
focused on identifying relationships of blooms to local meteorological, hydrological, and
oceanographic conditions.
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Figure 6. Distribution of macroalgal blooms in the Yellow Sea, China, derived from remote-sensing
data in 2021 for 18 May, 28 May, 7 June, and 23 June (adapted from [57]).

Statistical analyses have shown that A. catenella blooms off eastern Tasmania are often
associated with the transition from persistent upwelling favourable winds (southward) to
weak or downwelling favourable winds (northward), with accompanying changes in sea
surface temperature and chlorophyll [61]. Relaxation of upwelling winds allows warmer
offshore water to move towards the coast, where it can enhance local stratification. Because
dinoflagellates are mostly positively buoyant, they tend to be carried onshore and are
concentrated in the upper water column [62], where they are most likely to influence
aquaculture and coastal fisheries. An understanding of these mechanisms can be used
as a basis for ecological forecasting. For example, environmental factors that enhance
coastal stratification have been combined within a single meteorological risk factor defining
the energy balance between the influence of air temperature and/or rainfall in increasing
stratification, and wind-driven ocean mixing in eroding stratification [59]. Over the short
history of A. catenella blooms off eastern Tasmania, there has generally been an upward
trend in the meteorological risk factor, with corresponding increases in observed paralytic
shellfish toxin levels (Figure 7).

Although routine ecological forecasting for A. catenella in eastern Tasmania is yet
to be realised, improved understanding of the underlying physical drivers provides a
foundation for a system based on standard meteorological data. Alternatively, given that
meteorological drivers were originally chosen as proxies for stratification and onshore flow,
operational oceanographic models able to resolve the key coastal processes may ultimately
provide more direct and reliable predictions.
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2.4. Ecological Forecasting for Risks to Iconic Habitats or Their Users

Growing coastal populations and increasing coastal development, along with climate
change, is leading to increased pressure on iconic coastal habitats, e.g., [5]. Threats can
be to the habitats directly, such as with marine heatwaves leading to coral death (Case
Study 1 Coral bleaching), via biological interactions with the habitats (e.g., Case Study 2
Crown-of-thorns starfish), or to humans making use of iconic habitats via tourism (Case
Study 3 Irukandji jellyfish).

2.4.1. Case Study 1—Near Real-Time Forecasts of Coral Bleaching on the Great Barrier Reef

Mass coral bleaching driven by ocean warming has emerged in the 21st century as
the greatest threat to the health of the coral reefs globally [63]. In recent times, the Great
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Barrier Reef (GBR) has suffered widespread bleaching events in 2016, 2017, 2020, and 2022.
Aerial surveys can observe surface bleaching rates along flight paths, but processed data
takes months to be available and is not spatially complete.

The eReefs Project [31] has developed a 1-km resolution coupled hydrodynamic-
biogeochemical model that has been run in near-real time since 2016. The biogeochemical
processes include a mechanistic model of the coral-symbiont relationship that considers
temperature-mediated build-up of reactive oxygen species due to excess light, leading
to zooxanthellae expulsion. The model explicitly represents the coral host biomass, as
well as zooxanthellae biomass, intracellular pigment concentration, nutrient status, the
state of reaction centres, and the xanthophyll cycle, and the internal concentrations of
reactive oxygen that leads to bleaching [64]. A hindcast of the model for 2016 showed good
correspondence between processed aerial survey data and model zooxanthellae reactive
oxygen concentrations (Figure 8, [64]).

The latest version of the near-real time biogeochemical model, including the coral
bleaching submodule described above, has been run since 16 October 2019 [65,66], capturing
the 2020 GBR bleaching event that was considered widespread but mild. The simulation is
archived in near real time on the publicly-accessible National Computing Infrastructure
(see eReefs Research (csiro.au) for details). The simulation is maintained at between 4 and
6 days behind the present, a result of waiting for ocean and atmospheric forcing products
and the ~1 real day duration to run 3 days of simulation time.

The simulation shows that during some periods, there was sufficiently high thermal
stress on some reefs, combined with elevated bottom light levels, for the reactive oxygen
stress to become toxic and to begin zooxanthellae expulsion, or bleaching (yellow to red
pixels, northern GBR, Figure 8). The levels do not appear to be as high as in 2016 or 2017 [66].
The distribution of bleaching-level stress is restricted to the inshore and mid-shelf regions.
The greatest rate of zooxanthellae expulsion (up to 0.3 d-1, enough to pale a coral skeleton
in a few days) was found on inshore reefs between Cooktown and Princess Charlotte Bay
on the 17 March 2020 during neap tides of the 3rd quarter moon (Figure 8). Around this
time, seabed temperatures reach their maximum for the summer. Neap tides correspond to
low current speeds, and less resuspension, resulting in greater light levels on the seabed.
Furthermore, the few days preceding the 17 March had low cloud cover. Thus, 17 March
had the most intense bleaching conditions for 2020.

In addition to these simulations in hindcast mode, forecasts at a 3-day lead time
have been produced, although they are not yet routinely used. The nowcast is part of an
internally maintained information system and the results are currently provided through
emails to stakeholders. A summary of the seasonal outlook is provided by written reports.

At present, management options for preventing coral bleaching are limited. Thus,
the present value of forecasts of bleaching from a numerical model are simply in their
spatial coverage and the quantification of bleaching in hard-to-observe deeper waters. In
the future, management intervention may be deployed to reduce bleaching through solar
radiation reduction and/or introducing temperature tolerant corals [67]. The optimisation
of these deployments, especially solar radiation reduction, will require spatially-resolved
forecasts of bleaching.

2.4.2. Case Study 2—Forecasting to Inform Suppression of Crown-of-Thorns Starfish on the
Great Barrier Reef

Coral reefs have long faced a wide range of threats, including diminishing water
quality, overfishing, and coastal development [63] However, processes related to climate
change, in particular warming and its impacts on coral bleaching, are increasingly threat-
ening coral reefs [68], especially on the Great Barrier Reef [63,69]. Other major causes of
coral mortality include cyclone damage and predation by crown-of-thorns starfish [70].
Outbreaks of crown-of-thorns starfish (Acanthaster cf. solaris, hereafter COTS) on the GBR
are one of the main causes of the ongoing coral decline in that location [70–72], and cause
coral decline throughout the Indo Pacific [69,73]. The GBR is now experiencing its fourth
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starfish outbreak since the 1960s, and mortality due to COTS is likely to continue to be one
of the largest contributors to coral decline on the GBR. Given that it will be decades before
global warming is halted or reversed, reducing predation on corals by direct action to cull
COTS is the most effective means to prevent loss of coral cover over short time scales [74].

COTS control on the GBR is now part of the management policy for the entire reef.
This was not always the case, since management authorities considered the benefits of
large-scale control would not justify the costs of implementation [75]. This change is due
not only to the changing urgency of the need to preserve corals, but also to the higher
levels of confidence among reef policy makers around the effectiveness of COTS control, its
likelihood of success, and the costs of inaction. Modelling shows that controlling COTS
results in much better outcomes for the GBR in terms of its overall coral cover than if other
management strategies were implemented with no attempt at active control (Figure 9, [67]).
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model [65]. The water looks greener due to suspended particles such as inorganic particulates and
phytoplankton. Each model pixel with a reef community is assigned a colour and rendered on
top of the true colour image. White is used to show reefs that are too deep (z > 20 m) in the 1 km
resolution model to bleach. Grey shows pixels that are shallower than 20 m, but with reactive oxygen
concentrations less than that initiated zooxanthellae expulsion. Yellow to red shows increasing rates
of expulsion.



Forecasting 2022, 4 1068

Forecasting 2022, 4, FOR PEER REVIEW  18 
 

success, and the costs of inaction. Modelling shows that controlling COTS results in much 
better outcomes for the GBR in terms of its overall coral cover than if other management 
strategies were implemented with no attempt at active control (Figure 9, [67]). 

  
(a) (b) 

Figure 9. (a) COTS outbreak consuming live staghorn coral. (b) Management scenario effects on 
coral cover on the GBR showing coral cover with no interventions, with regional shading of reefs, 
and with regional shading combined with CoTS control (adapted from [67]). 

Among the reasons for the success of recent control efforts on the GBR relative to 
previous attempts is the adoption of Integrated Pest Management principles [74]. The ap-
plication of these principles to COTS on the GBR has relied heavily on several ecological 
modelling approaches. To allow effective COTS density targets to be determined, control 
target thresholds relevant to maintaining coral cover have been determined through 
MICE (Models of Intermediate Complexity for Ecosystems) models combining multiple 
coral types and multiple COTS life history stages (Figure 10a, [76]). Another important 
component of the Integrated Pest Management approach in a system of over 2000 indi-
vidual reefs is the ability to prioritize reefs for control, in part based on their connectivity 
with other reefs and the network dynamics of the system. Using hydrodynamic particle 
dispersal models and network analysis (Figure 10b, [77]), reefs most important as sources 
of COTS larvae to the rest of the GBR system can be targeted for control. Modelling of the 
COTS phenomenon at the GBR scale also showed an inherent cyclicity in COTS outbreaks, 
allowing the timing and location of a likely fifth outbreak to be predicted [78]. This has 
allowed for targeting of pre-outbreak COTS populations with a view to suppressing fu-
ture outbreaks. 
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and with regional shading combined with CoTS control (adapted from [67]).

Among the reasons for the success of recent control efforts on the GBR relative to
previous attempts is the adoption of Integrated Pest Management principles [74]. The
application of these principles to COTS on the GBR has relied heavily on several ecological
modelling approaches. To allow effective COTS density targets to be determined, control
target thresholds relevant to maintaining coral cover have been determined through MICE
(Models of Intermediate Complexity for Ecosystems) models combining multiple coral
types and multiple COTS life history stages (Figure 10a, [76]). Another important compo-
nent of the Integrated Pest Management approach in a system of over 2000 individual reefs
is the ability to prioritize reefs for control, in part based on their connectivity with other
reefs and the network dynamics of the system. Using hydrodynamic particle dispersal
models and network analysis (Figure 10b, [77]), reefs most important as sources of COTS
larvae to the rest of the GBR system can be targeted for control. Modelling of the COTS phe-
nomenon at the GBR scale also showed an inherent cyclicity in COTS outbreaks, allowing
the timing and location of a likely fifth outbreak to be predicted [78]. This has allowed for
targeting of pre-outbreak COTS populations with a view to suppressing future outbreaks.

2.4.3. Case Study 3—Real-Time Forecasting to Manage Risks Posed by Irukandji Jellyfish
on the Great Barrier Reef

Irukandji are small (about the size of a thumbnail) transparent jellyfish found in
coastal tropical waters globally. Their stings produce debilitating illness and are poten-
tially fatal [80,81]. Their presence imposes major financial costs on tourism and fisheries
sectors [82]. With their small size, Irukandji cannot be easily monitored or excluded using
physical barriers such as nets. Managing threats to swimmers and divers can be improved
via prediction of their presence from local meteorological and oceanographic conditions to
guide the closures of beaches and other marine operations (Figure 11).
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Figure 10. (a) Steady state coral cover values (shaded area) under varying scenarios of coral cover
and COTS density as measured by CPUE (from Figure 6 in [76]); (b) Predicted importance of reefs on
the GBR for seeding outbreaks on other reefs (from Figure 3 in [79]).
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Figure 11. (a) Beach closure on the northern Great Barrier Reef (Photograph: S. Condie). (b) Geo-
graphical distribution of Irukandji stings on the Great Barrier Reef and adjacent coast. There are
sting hotspots where swimmers are most common. Also shown are seasonal patterns for the three
main tourism regions, with stings peaking in late December and January, or slightly later to the south.
Prevailing wind conditions over the few days prior to stings tend to be directed onshore and favour
downwelling circulation.

De-identified records of Irukandji stings from hospitals and surf lifesaving clubs
over nearly 30 years were combined with Irukandji sampling data from the Great Barrier
Reef (GBR) region to support development of a forecast model based on a generalised
linear model [83]. The number of Irukandji stings per day was the response variable [78]
and several environmental variables were included as predictors. In addition to the
well-established seasonality (December to April), wind direction was the most important
predictor, with most areas having a higher incidence of stings during periods of weak,
westerly or north-westerly winds (Figure 11b). Under these conditions, any jellyfish
migrating upwards in the water column will tend to accumulate along the coast [84].
Incoming tides were also associated with more Irukandji stings on beaches in the northern
and central GBR, the majority of which were around low tide or over the early phase of the
flood tide.

Responding to operational forecasts of Irukandji sting risk requires a trade-off between
reducing stings and closing beaches and marine tourism operations such as reef diving,
with associated financial losses. For example, in the northern GBR, the percentage of sting
days avoided through use of the model would be expected to be approximately 30% more
than the percentage of closure days. For example, one intervention strategy (beach closure
when southeasterly wind reverses to northwesterly wind) affected 31% of all days and
reduced sting days by 61% [81]. This large effect highlights the efficacy of the forecast
model (percentages would be equal if the operational model provided no benefit and
closures were effectively random). There is significant potential for further improvement
in the forecast model through harnessing detailed oceanographic data on coastal flows
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and predicted accumulation patterns from existing models such as the eReefs model [31].
Particle-tracking approaches have been used extensively in the GBR region to model the
movement of a wide range of planktonic organisms [85–87] and could be used here to better
understand oceanographic conditions prior to major sting events. For example, given we
know sting locations and that the lifecycle of Irukandji is likely to be about 2 weeks [88],
there is potential to use particle-tracking to trace back in time and space to find the currently
unknown source populations of the benthic polyps. This approach might also afford a
greater degree of understanding of oceanographic conditions such as temperature that
might trigger strobilation by the benthic polyps leading to the pelagic Irukandji stage that
we are familiar with. Although there is potential to deploy models to support operational
prediction of Irukandji risk on the GBR, this has been prevented by the absence of an
agency with both a mandate and sufficient capacity to operate a system delivering routine
forecasts. For example, most Irukandji stings are off public beaches where bathers are
not the responsibility of particular tourism operators, health authority responsibilities are
limited to post-sting treatment, and volunteer lifesaving organisations have no capacity to
run operational forecast systems. Efforts to date have therefore focused on the provision of
guidelines to lifesavers, tourism operators and other sectors operating in the GBR marine
environment based on statistical relationships. The organisation with the closest mandate
and capacity to provide forecasts is probably the Australian Bureau of Meteorology.

2.5. Common Features amongst Case Studies

Although different modelling approaches were used, the case studies had some com-
mon features (Table 1). These examples commonly combined sustained and innovative
observations with a modelling approach. Eight of the nine case studies produced nowcasts,
which might be expected if the model is developed based on historical relationships. In the
case of the east Australia tuna model, a nowcast was the forerunner to the forecast, as it
was developed ahead of any forecasting capability. The time scales of forecasts were mainly
from a few days to seasonal, probably reflecting the predictability in the system. One
forecast system (COTS) had a lead time of several years because past summer spawnings
continued to contribute to current populations. The delivery mode varied from email to
websites to interactive dashboards. They all had a value for decision making, however, not
all the forecasts have been taken up by stakeholders, and of those that have been developed,
not all were sustained.

Table 1. Case study summary showing the model method, delivery of a nowcast, forecast lead time,
use of an information system, and uptake by end users.

Case study and
Location Method Nowcast Forecast Lead

Time Delivery Mode
Part of an

Information
System

Uptake

Fisheries

Tuna—eastern
Australia Habitat preferences Yes 0–3 months Email No Yes

Tuna—
southern
Australia

Habitat preferences Yes 0–3 months Website No Yes

Aquaculture

Hypoxia—
Tasmania Coastal model Yes <10 days Dashboard

Yes, with
interactive data

explorer

Yes, but not
sustained

SIMA-Austral
Chile Integrated models Yes Days to months Website Yes Yes
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Table 1. Cont.

Case study and
Location Method Nowcast Forecast Lead

Time Delivery Mode
Part of an

Information
System

Uptake

Algal blooms

Yellow Sea,
China Ocean model Yes 6.5 days Website No Yes, but not

sustained

Tasmania Environmental
correlation Yes 0–3 months Not yet No No

Iconic habitats and their users

Coral
bleaching—

GBR

eReefs models
(hydrodynamic and
biogeochemistry)

Yes 3 days Email and
reports Yes (nowcast)

Yes (through
reports,
papers)

Crown of
Thorns—GBR

Combined
hydrodynamic and
ecosystem models

No A few years Reports and
publications No No

Jellyfish—
Queensland GLM Yes <3 days Publications No Only as

guidelines

3. Discussion

Although long-term prediction has been used to understand the future state of the
ocean in response to climate change [12], near-term or seasonal environmental forecasts,
which allow for rapid feedback for both model developers and forecast users, can lead
to effective decisions for sustainable ocean use and management given the increase in
pressure on the ocean [9]. Because ecological patterns in the ocean can impact human
health, food, water, and the environment, ecoforecasting provides valuable tools to power
the blue economy and build climate resilience for the coastal resource managers, private
industry, and public. As the world’s environment is changing rapidly under climate
change, ecoforecasting has been increasingly recognised as a national priority around
the world [24,89]. However, there are significant challenges given the complexity of the
ecosystems, the difficulty in modelling them, the lack of comprehensive observations, and
considerable knowledge gaps. Nevertheless, significant progress has been made and the
benefits of ecoforecasting to triple bottom line outcomes associated with ecosystem-based
management has seen increased effort around the world in recent years.

3.1. Insights from the Case Studies

The case studies presented here span a range of forecast metrics (abundance, distri-
bution, and phenology) applied to different species and predictions of various ecologi-
cal events such as harmful algal blooms, starfish outbreaks, jellyfish blooms, and coral
bleaching. Among the different forecast metrics, distribution was the most common [22].
Abundance continues to be a difficult ecological property to forecast, and traditional popu-
lation models are yet to be routinely combined with environmental drivers. Most forecasts
covered relatively short time periods from several days to several months, and all had a
clearly identified management problem. They have allowed resource managers and other
stakeholders to make decisions on how to respond to ecological events that may affect
economies, communities, and environments.

3.1.1. A Clearly Identified Management Problem Benefits from Environmental Intelligence

Although the case studies presented here could all be considered successful as a
skillful forecast was produced, the engagement between developers and end users varied
substantially. In some cases, this may have limited the uptake (e.g., hypoxia forecast in
Macquarie Harbour). In other cases, there were close interactions between the parties and
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the forecast that solved a management problem identified by end users with an operational
information system explaining the results clearly and visually, and it was readily taken up
by stakeholders (e.g., the SIMA-Austral information system on Chilean salmon farming;
SBT in the Great Australian Bight).

3.1.2. Operational Information Systems can Enhance Forecast Value

Ecoforecasting can integrate a wide range of research, from observations to multiple
models. However, they often require expertise and understanding of models to interpret
the forecasts correctly. This requires extension efforts and end user education [38]. Delivery
approaches varied, from simple to complex, depending on the end user.

An operational information system, which runs in real-time and provides easy-to-
access information on environmental conditions and early warnings of potential harmful
events, effectively translates a technical forecast into practical information, providing a use-
ful decision-making tool for government regulators, private industry, and the public alike.

A challenge in developing an operational information system is that it often requires
significant investment in cyber infrastructure and capabilities, in additional to an observing
network and a modelling system. It also takes some time to be set up and becomes
operational. Another challenge is its ongoing maintenance, as evidenced by some of the
case studies having stopped their operational systems due to lack of funding after the
projects have finished.

3.1.3. An Enduring Funding Model Is Needed to Sustain and Develop the Field

Developing ecoforecasts using research project funding is problematic for sustained
use when a project concludes. Some of the case studies presented here were successful in
terms of their forecast skill, but were not implemented or were halted after the research
projects ended. Researchers cannot typically sustain ongoing operational forecasts, which
require infrastructure and sufficient funding for running the system, monitoring, mainte-
nance, and service distribution [NOAA’s process to make ecological forecasts operational].
As part of developing an operational forecast, developers should investigate how forecasts
will meet user needs, if the user is prepared to use the product, and how it will be delivered
when a project concludes [15]. For instance, the lack of an agency with both the mandate
and the capability to deploy a forecasting system and maintain long-term delivery has been
a limiting factor and prevented the uptake of the Irukandji forecast model in Australia.

National efforts could be one approach to sustained forecasting, as occurs with national
weather prediction services. For example, Australia is building a National Environmental
Prediction System, which could become the infrastructure backbone, although marine
applications are rare in current discussions.

3.2. Gaps and Improvements

These marine examples from Australia, China, and Chile broaden the geographic
scope reported in the review of ecological forecasting in [22]; however, this scan is not
comprehensive and other examples elsewhere in the world will also be instructive. These
selected examples are used to highlight some recent advances in the fast-growing field
of ecological forecasting [22,28]. Connections between forecast teams, such as via the
Ecological Forecasting Initiative (https://ecoforecast.org (accessed on 1 December 2022)),
can help expand their use, although these initiatives and conference sessions tend to connect
researchers from the Global North. One potential solution to make global connections may
be the sharing of open-source code and development of transferrable and reproducible
forecasts [16].

Ecoforecasts are iterative approaches [10], and thus present the opportunity for practice
and feedback (similar to the weather forecasting community) by research teams and end
users after each cycle of forecasting and delivery. Consideration of metrics for evaluating
success (e.g., model accuracy threshold; [16]) can also focus a forecast team on continual
improvement. Iterative processes to improve models acknowledge that imperfect models

https://ecoforecast.org


Forecasting 2022, 4 1074

are sufficient as long as uncertainties and assumptions are presented clearly, and progress
is made through a willingness to learn and improve. Improved data can also improve
forecasts, such as additional data on the prey that also influences the distribution of the
focal species (e.g., fisheries). These data are likely to be available from ecosystem models in
future, but observational data are rare, and so inclusion of these predictors is difficult.

Co-development with end users can also result in additional improvement. Col-
laborative teams linking researchers and decision makers are needed to build the best
approaches [16]. For example, visualisations such as infographics can help non-modellers
understand the process and uncertainties in forecasts intuitively and incorporate measured
risk during decision making [16].

Finally, the models we covered lack consideration of social ecological feedbacks, except
the SIMA-Austral operational information system. Social factors can influence ecosystems
and forecasts could also influence social systems [16]. Social-ecological drivers, interactions,
and feedback can be directly built into the model, or social information could be used to
interpret and contextualize the output of forecasts (e.g., [90,91]).

3.3. Recommendations

• Information systems can help end users. To integrate ecoforecasting into decision
making, an operational information system that synthesises observations and mod-
elling to provide easy-access information delivered through cyberinfrastructure can
be used as a powerful tool to communicate a complex forecast. Not all forecasts need
to be developed by mechanism-based models, which tend to be more expensive to
run. Sometimes empirical models relying on correlations of past events (which can be
run very quickly) can be effective. The trade-off between these two types of models
needs to be considered for optimal outcome. Similarly, not all forecasts need to be
delivered by operational information systems, and in some situations, a simple alert
or warning might be sufficient. However, in complex situations or when the model
results need expert interpretation, an easy-to-use information system will be essen-
tial. Significant and ongoing investment in cyberinfrastructure is needed to support
operational forecasting systems.

• Active engagement with end users is essential to ensure forecasts are reliable and
useful, with their assumptions, uncertainties, and results clearly communicated, and
the needs of decision makers addressed [16,23]. Effective partnerships should be
formed between scientists and stakeholders. These could aim to develop effective
communication tools that recognise stakeholders’ level of forecasting knowledge,
priorities, and interests related to the forecast [39]. Ethical issues associated with
forecasting should be considered to allow societal, ecological, and economic benefits
(e.g., [15]).

• National ecoforecasting agencies are best able to support long-term delivery. The
project-based funding model needs to be backed by strategic funding or commercial
investment to execute ongoing delivery and operationalisation. Research projects and
teams have delivered excellent forecast systems, but dedicated national programs to
provide marine ecoforecasts (e.g., [24]) are needed to bring together scientists and
resource managers together to solve resource management challenges in a rapidly
changing world, and deliver consistent, timely, and reliable forecasts to a wide range
of users. The Ecological Forecasting Initiative is a grass roots coordination approach
connecting forecast developers in the USA, Canada, and Oceania regions, but is still
supported by project-based funding. We proposed that funding agencies consider sup-
porting a national agency responsible for coordinating existing monitoring, modelling,
and dissemination capabilities for nationally important priority areas of ecoforecasting.

• Real-time data access will require new technologies. New technologies need to be
developed to provide real-time in situ observation data and fit-for-purpose mod-
els (e.g., hydrodynamic, ecological, disease). For example, DNA-based techniques
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and data could inform ecological models, especially when cryptic, sporadic, remote,
organisms are involved.

3.4. The Future of Forecasts in Supporting Sustainable Ocean Management

The case studies presented here highlight an innovative way of delivering forecasts
through an information system, which integrates observations, modelling, and expert
interpretation to produce forecasts that are easily understandable and accessible by the
decision makers. The aquaculture case studies and NOAA’s approach of developing
operational forecasts [92] are leading examples.

Adopting more sustainable ways of managing the ocean is a global priority. Near-term
ecological forecasting is a valuable tool that supports rapid and science-based decision
making. It empowers regulators and stakeholders to better manage marine resources,
respond to environmental change, and address societal needs to proactively protect the
environment and mitigate harm. A successful forecast relies on solid scientific founda-
tion, but we cannot wait until the models are perfect and observations are complete. To
overcome such limitations, more iterative forecasting practices could provide continuous
improvement by incorporating evaluation and feedback to improve ecological theory, in-
corporate new observations and model enhancement, achieve better forecast outcomes,
and continually improve forecast accuracy. By providing forecasts of ecosystem indicators
or services/threats that are vital to management decision making (e.g., coral bleaching
risks, habitat preferences of important fishery species, upcoming disease outbreaks in
aquaculture, etc.), the forecasts will more likely be taken up by management authority and
there may be a higher chance of securing sustained funding.
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